Трансформатор тока нулевой последовательности

Трансформатор тока нулевой последовательности принцип работы

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Схемы подключения ТТНП для параллельных кабелей

В данной статье речь пойдет о схемах подключения ТТНП для параллельных кабелей. Как оказалось, данный вопрос достаточно актуален, так как многие начинающие инженеры применяют для нескольких параллельно проложенных кабелей к одному потребителю один трансформатор тока нулевой последовательности (ТТНП).

На рис.1 показан один из примеров правильного и неправильного подключения ТТНП для параллельных кабелей.

Если защищаемая линия выполнена из нескольких параллельных ниток кабеля, на каждой из них устанавливается однокабельный ТТНП, вторичные обмотки которых соединяются параллельно или последовательно .

На рис.2 показаны схемы подключения вторичных обмоток ТТНП к терминалу защиты для параллельных кабелей.

Оптимальной является, как правило, схема соединения вторичных обмоток и реле тока (терминал защиты), обеспечивающая минимальный первичный ток срабатывания защиты Iс.з.мин. Значение Iс.з.мин. определяется техническими характеристиками реле тока и ТТНП и схемой соединения их вторичных обмоток. На практике же в основном отдается предпочтение параллельному соединению вторичных обмоток ТТНП.

Особенностью однокабельного ТТНП является небольшое значение тока небаланса в режимах без ОЗЗ. Это обусловлено практически симметричным расположением токоведущих жил кабеля по отношению ко вторичной обмотке ТТНП. Кроме того, при установке ТТНП на кабель с металлической оболочкой последняя выполняет функции выравнивающею экрана.

Поэтому основной причиной возникновения тока небаланса в однокабельном ТТНП является различие взаимоиндукции между фазными проводами, расположенными выше кабельной воронки, и вторичной обмоткой ТТНП . Для уменьшения влияния электромагнитных полей фазных токов и соответственно тока небаланса ТТНП рекомендуется устанавливать на расстоянии не менее, чем 0,5 — 1 м от кабельной воронки . Однако в серийных КРУ такое расположение ТТНП по отношению к кабельной воронке не всегда возможно.

При ОЗЗ в сети токи повреждения могут возвращаться как через землю, так и по проводящей оболочке и броне кабелей. Для предотвращения возможности ложных срабатываний защит на неповрежденных присоединениях от блуждающих токов в земле и снижения чувствительности защиты поврежденною присоединения при внутренних ОЗЗ защитное заземление оболочки и брони кабелей выполняется проводом, пропущенным через окно ТТНП и изолированным от заземленных конструкций на участке от кабельной воронки до трансформатора тока.

Учитывая, что во многих случаях (на ВЛ и КЛ небольшой протяженности) значения тока ОЗЗ могут составлять единицы и даже доли ампера, в токовых защитах нулевой последовательности, как правило, применяются реле тока с малыми значениями Iс.р.min например, электромагнитные реле типа РТ — 40/0,2, или специальные реле для защиты от ОЗЗ типа АЛ-4 или же используются отдельные токовые входа в микропроцессорном устройстве.

  1. В.А.Шуин, А.В.Гусенков. Защиты от замыканий на землю в электрических сетях 6-10 кВ.
  2. Сирота И. М. Защита от замыканий на землю в электрических сетях. Киев: Изд-во АН УССР, 1955.
  3. Кискачи В. М. Защита от однофазных замыканий на землю ЗЗП-I (описание, наладка, эксплуатация). М.: Энерrия, 1972.

Максимальные токовые защиты

Основной защитой здесь так же является МТЗ. Она должна быть всегда и обычно в проектах применяется без каких-либо дополнительных пусковых органов, хотя может комбинироваться с органами напряжения.

Также вы наверное заметили, что я отмечаю две важнейших цели МТЗ — основная защита своего присоединения и резервная защита смежных. В сетях 6-10 кВ МТЗ — это базовая фундаментальная защита, без которой невозможно надежное функционирование сети!

Токовая отсечка также обязательна на всех трансформаторах, где не применяется дифференциальная защита (ПУЭ 3.2.54), а это как раз наш случай. До мощности 6,3 МВА обычно дифф. защиту не устанавливают.

Защита от перегрузки в принципе выполняется всегда, хотя ПЭУ 3.2.69. говорит о том, что это нужно делать «…в зависимости от вероятности и значения возможной перегрузки». Я отметил ее как необязательную, но советую применять ее всегда, когда хватает токовых ступеней в устройстве. Также стоит отметить, что данную защиту может выполнять и вводной автомат 0,4 кВ так, как питание здесь одностороннее.

Токовая защита от ОЗЗ устанавливается, если есть ТТНП, а сам трансформатор подключается через кабель (что чаще всего и бывает). Иногда ей пренебрегают, считая, что повреждение на столь малом участке маловероятно. Однако, если терминал содержит эту функцию и есть возможность подключения к ТТНП, то защиту нужно вводить.

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.

Также читайте: Измерительный трансформатор напряжения Учитывая характер условий эксплуатации, различают трансформаторы:

для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;

Три трансформатора тока для 3-х фаз(А, B? C)

внутренние – применяемые внутри помещений;

ТТ для установки внутри помещений

встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).

Встроенные ТТ

В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.

С учётом способа установки их подразделяют на следующие типы:

  • проходной;
  • опорный.

По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Трансформатор — ток — нулевая последовательность — тип

Для защиты кабельной линии 6 — 10 кВ от однофазных замыканий на землю используются трансформаторы тока нулевой последовательности типов ТЗ, ТЗР, ТЗЛ, ТЗЛР, монтируемые вблизи воронки на головном участке. Принципиальное устройство трансформаторов тока нулевой последовательности этих типов одинаково. Магнитные потоки, обусловленные токами трех фаз, замыкаются по общей магнитной системе. Геометрическая сумма первичных токов в нормальном режиме и при междуфазных КЗ равна нулю, поэтому результирующий магнитный поток в таких режимах также равен нулю и тока в обмотке реле, подключенной ко вторичной обмотке трансформатора, нет — защита на данные режимы не реагирует; по обмотке реле возможно лишь прохождение незначительного тока небаланса, причиной возникновения которого является некоторая несимметрия фаз первичной цепи относительно магнитной системы. С целью уменьшения тока небаланса вторичную обмотку секционируют.

На одном из обследованных заводов для контроля состояния пробивного предохранителя применена схема с использованием трансформатора тока нулевой последовательности типа ТЗР ( рис. VIII-12) и сигнальным реле ЭС-21. Для контроля состояния предохранителя дежурный персонал периодически включает цепь регулируемого резистора R и, выводя его, убеждается в отсутствии тока в данной цепи. Если же ток возникает, а приборы контроля изоляции не зафиксировали повреждение, то предполагается, что предохранитель пробит.

Защита от однофазных замыканий на землю осуществляется реле косвенного действия типа ЭТ-521 / 0 2 и трансформаторами тока нулевой последовательности типа ТЗ или ТЗР.

Токовая защита нулевой последовательности в однорелеином исполнений с применением устройств типа УСЗ 2 / 2, включенных на трансформаторы тока нулевой последовательности типа ТНПШ, предусматривается на токопроводах, отходящих, как правило, от шин генераторного напряжения ТЭЦ с развитой сетью 6 — 10 кВ и действует на сигнал.

Для защиты от однофазных замыканий на землю обмотки статора двигателя применяется максимальная токовая защита нулевой последовательности, выполняемая с помощью одного токового реле, которое подключается к трансформатору тока нулевой последовательности типа ТНП.

Принципиальная схема защиты токопровода 6 — 10 кВ.

Для защиты используются трансформаторы тока нулевой последовательности типа ТЗЛ ( ТЗ, ТЗРЛ) для одиночных кабелей. При наличии на линии нескольких кабелей вторичные обмотки трансформаторов тока соединяются последовательно.

Схема АВР высоковольтного двигателя.

В необходимых случаях, рассмотренных ранее, на двигателях устанавливается защита от замыканий одной фазы на землю. Она выполняется использованием трансформатора тока нулевой последовательности типа ТЗЛ или ТЗРЛ и действует на отключение без выдержки времени. Если двигатель не имеет дифференциальной защиты, то трансформатор тока нулевой последовательности устанавливается в распределительном устройстве на кабеле, идущем к электродвигателю. В этом случае питающий кабель входит в зону действия защиты от замыканий на землю.

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Токи небаланса

Правильное сложение токов возможно только в случае полной идентичности характеристик трансформаторов тока. На этапе проектирования для защиты обязательно выбираются одинаковые обмотки трансформаторов с одинаковым классом точности, кратностью насыщения.

Но и этого может оказаться недостаточно. Если при всем при этом характеристики намагничивания оказываются разными, ток небаланса все-таки появляется. Если в нормальном режиме он не приводит к ложному срабатыванию защиты, то при симметричных КЗ, когда токи становятся в несколько раз большими, ток небаланса существенно возрастет.

Поэтому при замене трансформаторов тока, если не удается подобрать аналог для одного из них с полным соответствием вольт-амперных характеристик, то лучше сменить не один или два, а все три.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов. При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу. Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.

Но так будет только при отсутствии в системе замыканий на землю. При междуфазных увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Принцип работы токовой направленной защиты нулевой последовательности в электрических сетях 110 кВ

В электротехнике есть понятие о симметричных и несимметричных системах фазных токов или напряжений. Симметричная система предусматривает равенство фазных токов (напряжений) трехфазной сети. При этом векторы фазных токов могут стоять относительно друг к другу в прямой, обратной, а также нулевой последовательности (НП). При прямой последовательности векторы фазных токов идут в последовательности А, В, С, каждая из фаз отстает от другой на 120 гр. Обратная последовательность – чередование фаз А, С, В, угол сдвига фаз тот же – 120 гр. При нулевой последовательности векторы трех фаз совпадают по направлению. Несимметричная система представляется как значение тока – геометрическая сумма векторов всех составляющих прямой, обратной и нулевой последовательности.

В нормальном режиме работы участка электросети система токов и напряжений является симметричной, то же самое касается межфазных коротких замыканий. В данном случае, как напряжение, так и ток НП равны нулю. В случае возникновения однофазного замыкания на землю система становится несимметричной – возникает ток и напряжение НП.

В данном случае ток (напряжение) одной из фаз нулевой последовательности равен трети суммы векторов несимметричной системы, соответственно сумма векторов несимметричной системы – это тройной ток (напряжение) НП.

Результаты расчетов коротких замыканий в электрических сетях также показывают, что ток однофазного замыкания на землю в электрических сетях равен тройному значению тока НП – 3I0, а напряжение, возникающее между нейтралью трансформатора и точки короткого замыкания – тройному значению напряжения НП – 3U0.

Принцип работы токовой защиты нулевой последовательности заключается в контроле значения 3I0 на линии электропередач и в случае достижения его определенной величины – реализации автоматического отключения выключателя линии электропередач с определенной выдержкой времени.

На практике токи небаланса 3I0 получают на выходе так называемого фильтра токов нулевой последовательности. Данный фильтр получают путем электрического соединения между собой начал и концов обмоток трансформаторов тока каждой из фаз линии.

В нормальном режиме работы участка электрической сети на выходе фильтра токов НП отсутствует ток. В случае возникновения повреждения – падения одного из фазных проводов линии электропередач на землю, возникает небаланс – появляется некоторое значение тока 3I0, значение которого фиксируется на выходе фильтра токов НП.

ТНЗНП, как правило, многоступенчатая защита. Каждая из ступеней защиты имеют свою выдержку времени срабатывания. Для обеспечения селективности работы защит на смежных подстанциях участки электрической сети разделяют на участки (зоны действия). Таким образом, защита обеспечивает защиту линии электропередач, питающейся от подстанции, где установлен данный комплект защит, и выступает в роли резервирующей защиты смежных подстанций.

Существует такое явление, как качания в системе. Если защита от междуфазных КЗ, например, дистанционная защита, может ложно срабатывать при возникновении данного явления, то ложное срабатывание ТНЗНП исключено, так как данная защита реагирует исключительно на возникновение токов нулевой последовательности, возникновение которых нехарактерно для явления качаний в энергосистеме.

Защита трансформаторов распределительных сетей — дифференциальная токовая защита

Рассматриваемая в статье защита, по сути, является защитой от замыканий на землю, поэтому данная защита имеет альтернативное название – земляная защита (ЗЗ) .

Какие устройства выполняют функцию направленной токовой защиты нулевой последовательности в электрических сетях

Для обеспечения защиты линий электропередач от всех видов повреждений (как однофазных, так и междуфазных коротких замыканий) токовая защита нулевой последовательности реализуется совместно с дистанционной защитой. Устройства, выполняющие функции данных защит, могут быть выполнены, как на реле электромеханического принципа работы, так и на современных устройствах – микропроцессорных терминалах защит.

Среди электромеханических защит приобрели наибольшую популярность комплекты типа ЭПЗ-1636, которые имеют несколько различных модификаций. В современных условиях, при строительстве новых распределительных подстанций или техническом переоснащении старых объектов, преимущество отдается микропроцессорным защитным устройствам. Для реализации резервных защит линий 110 кВ, в том числе и ТНЗНП, часто используются микропроцессорные терминалы производства компании ABB, например, многофункциональное устройство REL650.

3.2.51

Для трансформаторов должны быть предусмотрены устройства
релейной защиты от следующих видов повреждений и ненормальных режимов работы:

_________________

     Здесь и далее в разд. 3 термин
«трансформаторы» распространяется и на автотрансформаторы
(соответствующих напряжений и мощностей), если в тексте не делается специальной
оговорки.

1) многофазных замыканий в обмотках и на выводах;

2) однофазных замыканий на землю в обмотке и на выводах,
присоединенных к сети с глухозаземленной нейтралью;

3) витковых замыканий в обмотках;

4) токов в обмотках, обусловленных внешними КЗ;

5) токов в обмотках, обусловленных перегрузкой;

6) понижения уровня масла;

7) частичного пробоя изоляции вводов 500 кВ;

8) однофазных замыканий на землю в сетях 3-10 кВ с
изолированной нейтралью, если трансформатор питает сеть, в которой отключение
однофазных замыканий на землю необходимо по требованиям безопасности (см.
3.2.96).

Рекомендуется, кроме того, применение защиты от однофазных
замыканий на землю на стороне 6-35 кВ автотрансформаторов с высшим напряжением
220 кВ и выше.

Что такое нулевая последовательность?

Преимущественное большинство сетей получают питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю. Это означает, что в системах 110, 10 и 6 кВ, для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать. Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.
Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: