Как определить анод и катод
Электролиз
Что это такое катод и анод, выясняют в частных моментах: при определении выводов у полупроводниковых элементов или при идентификации электродов в электрохимических процессах.
Полупроводниковый диод требует позиционного размещения в электросхемах. Для правильного соединения необходимо отождествить выводы. Это можно сделать по следующим признакам:
- маркировка, нанесённая на корпус элемента;
- длина выводов детали;
- показания тестера при измерениях в режиме омметра или проверки диодов;
- использование источника тока с известной полярностью.
Маркировка полупроводников такого типа может быть выполнена при помощи нанесения на корпус графического обозначения диода. Тогда минус (К) – это вывод со стороны вертикальной линии, в которую упирается контур стрелки. Ножка диода, от которой выходит стрелка, – это плюс (А). Так графически указано прямое направление тока – от «А» к «К».
Другим способом обозначения анода у диодного элемента могут быть нанесённые на корпус одна или две цветные точки или пара узких колец. Существуют конструктивно выполненные диоды, у которых минусовой (катодный) вывод обозначен широким серебряным кольцом. Диод 2А546А-5 (ДМ) служит таким примером.
Примеры нанесения меток на диоды
Длина ножек светодиодов, ни разу не паянных в платы, также может указывать на полярность выводов. У led-диодов длинная ножка – это положительный электрод, короткая – отрицательный вывод. К тому же форма корпуса (обрез края окружности) может служить ориентиром.
Полярность выводов led-диодов
При определении мультиметром полярности контактных выводов полупроводника подключают его в режиме тестирования диодов. Если на дисплее появились цифры, значит, диод подключён в прямом направлении. При этом красный щуп подсоединён к аноду «+», чёрный – к катоду «-».
Если под рукой нет тестера, определить названия выводов диода можно, собрав последовательную цепь из батарейки, лампочки и диода. При прямом включении лампочка загорится, значит, плюс батарейки – на аноде и аналогично минус – на другом электроде.
Информация. Электроды светодиода можно идентифицировать с помощью постоянного ИП с заведомо известной полярностью и включенного последовательно резистора, ограничивающего ток. Свечение элемента укажет на прямое включение. Для этой цели можно взять батарейку RG2032 на 3 вольта и резистор сопротивлением 1кОм.
Включение светодиода через ограничивающий резистор
Что касается полупроводников, всегда существует строгое соответствие наименований. В других случаях правильное определение проходящих электрохимических реакций поможет чётко ориентироваться в отождествлении электродов.
Законы Фарадея
В первой работе по электролизу 1833 года Фарадей представил свои два закона электролиза. В первом речь шла о массе вещества, выделяющегося на электродах:
Первый закон Фарадея гласит, что эта масса пропорциональна заряду, прошедшему через электролит:
Здесь роль коэффициента пропорциональности играет величина – электрохимический эквивалент. Это табличная величина, которая уникальна для каждого электролита и является его главной характеристикой. Размерность электрохимического эквивалента:
Физический смысл электрохимического эквивалента – масса, выделившаяся на электроде при прохождении через электролит количества электричества в 1 Кл.
Если вспомнить формулы из темы о постоянном токе:
То можно представить первый закон Фарадея в виде:
Второй закон Фарадея непосредственно касается измерения электрохимического эквивалента через другие константы для конкретно взятого электролита:
Здесь: – молярная масса электролита; – элементарный заряд; – валентность электролита; – число Авогадро.
Величина называется химическим эквивалентом электролита. То есть, для того чтобы знать электрохимический эквивалент, достаточно знать химический эквивалент, остальные составляющие формулы являются мировыми константами.
Исходя из второго закона Фарадея, первый закон можно представить в виде:
Фарадей предложил терминологию этих ионов по признаку того электрода, к которому они движутся. Положительные ионы называются катионами, потому что они движутся к отрицательно заряженному катоду, отрицательные заряды называются анионами как движущиеся к аноду.
Вышеописанное действие воды по разрыву молекулы на два иона называется электролитической диссоциацией.
Помимо растворов, проводниками второго рода могут быть и расплавы. В этом случае наличие свободных ионов достигается тем, что при высокой температуре начинаются очень активные молекулярные движения и колебания, в результате которых и происходит разрушение молекул на ионы.
Электрический ток в газах
Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.
Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.
Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.
Прохождение электрического тока через газ называется газовым разрядом.
В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».Между электродами сварочного аппарата возникает дуговой разряд. Дуговой разряд горит в ртутных лампах — очень ярких источниках света.Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.
Электрический ток в вакууме. Электронная эмиссия.
Электрический ток в вакууме может проходить при условии, что в него будут помещены свободные носители заряда. Ведь вакуум это отсутствие, какого либо вещества. А значит, нет никаких носителей зарядов, чтобы обеспечить ток. Понятие вакуум можно определить так, когда длинна свободного пробега молекулы больше размеров сосуда.
Для того чтобы выяснить каким же образом можно обеспечить прохождение тока в вакууме проведем опыт. Для него нам понадобится электрометр и вакуумная лампа. То есть стеклянная колба с вакуумом, в которой находятся два электрода. Один, из которых выполнен в виде металлической пластины назовем его анод. А второй в виде проволочной спирали из тугоплавкого материала назовём его катод.
Подсоединим электроды лампы к электрометру таким образом, чтобы катод был подключён к корпусу электрометра, а анод к стержню. Сообщим заряд электрометру. Поместив положительный заряд на его стержень. Мы увидим, что заряд сохранится на электрометре, несмотря на наличие лампы. Это и не удивительно ведь между электродами в лампе нет носителей зарядов, то есть не может возникнуть ток, чтобы электрометр разрядился.
Рисунок 1 — вакуумная лампа, подключённая к заряженному электрометру
Теперь подключим к катоду в виде проволочной спирали источник тока. При этом катод разогреется. И мы увидим, что заряд электрометра начнет уменьшаться, пока совсем не исчезнет. Как же это могло произойти ведь в зазоре между электродами лампы небыли носителей заряда, чтобы обеспечить ток проводимости.
Очевидно, что носители заряда каким-то образом появились. А произошло это, потому что при нагревании катода в пространство между электродами эмитировались электроны с поверхности катода. Как известно в металлах есть свободные электроны проводимости. Которые способны перемещаться в объёме металла между узлами решётки. Но чтобы покинуть металл им недостаточно энергии. Так как их удерживают Кулоновские силы притяжения между положительными ионами решётки и электронами.
Электроны совершают хаотическое тепловое движение, перемещаясь по проводнику. Подходя к границе металла, где отсутствуют положительные ионы, они замедляются и в итоге возвращаются внутрь под действием силы Кулона, которая стремится приблизить два разноименный заряда. Но если металл подогреть, то тепловое движение усиливается, и электрон приобретает достаточно энергии чтобы покинуть поверхность металла.
При этом вокруг катода образуется так называемое электронное облако. Это электроны, вышедшие из поверхности проводника, и при отсутствии внешнего электрического поля они вернутся обратно в него. Так как, теряя электроны, проводник заряжается положительно. Это тот случай если бы мы сначала подогрели катод, а электрометр при этом был бы разряжен. Поле бы внутри при этом отсутствовало.
Но поскольку на электрометре есть заряд, он создает поле, которое заставляет двигаться электроны. Помните на аноде у нас положительный заряд к нему, и стремятся электроны под действием поля. Таким образом, в вакууме наблюдается электрический ток.
Если скажем, мы подключим электрометр наоборот, что при этом произойдет. Получится, что на аноде лампы будет отрицательный потенциал, а на катоде положительный. Все электроны, вылетевшие с поверхности катода, тут же вернутся обратно под действием поля. Поскольку катод теперь будет иметь еще больший положительный потенциал, он будет притягивать электроны. А на аноде будет избыток электронов отталкивающих электроны с поверхности катода.
Рисунок 2 — зависимость ток от напряжения для вакуумной лампы
Такая лампа называется вакуумный диод. Она способна пропускать ток только в одном направлении. Вольтамперная характеристика такой лампы состоит из двух участков. На первом участке выполняется закон Ома. То есть с увеличением напряжения все больше электронов вылетевших с катода долетают до анода и тем самым увеличивается ток. На втором участке все электроны, вылетевшие с катода, долетают до анода и с дальнейшим увеличением напряжения ток не увеличивается. Просто нет нужного количества электронов. Этот участок называется насыщением.
Смотреть видео : Ток в вакууме
Характеристики
Электрический ток характеризуется величинами, которые описывают его свойства.
Сила и плотность тока
Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).
1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).
Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.
Мощность
Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).
Частота
Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.
Ток смещения
Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.
Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.
Реакции окисления и восстановления
Реакция окисления является электрохимической реакцией, которая производит электроны. Электрохимическая реакция, которая происходит на отрицательном элементе цинкового электрода никель-цинковой батареи во время разряда:
Zn + 4OH- → Zn (OH) 2-4 + 2e-
реакция окисления. Окисление — это потеря электронов.
Реакция восстановления — это электрохимическая реакция, которая потребляет электроны. Электрохимическая реакция, происходящая на положительной стороне литий-ионного аккумулятора во время разряда:
Li1 — xCoO2 + XLI++ Xe- → LiCoO2
является реакцией восстановления. Сокращение — это выигрыш электронов.
Вакуумный диод
Одним из типичных устройств, использующих проводимость безвоздушного пространства, является вакуумная двухэлектродная электронная лампа. Если на её положительный вывод подаётся обратное напряжение, то все испущенные катодом электроны возвращаются. При прямом же смещении носители зарядов устремляются к аноду. Другими словами, происходит выпрямление переменного сигнала. Устройство работает как диод.
Исследовать появление электрического тока в вакууме и газах можно с помощью радиоэлемента, состоящего из следующих частей:
- запаянной колбы;
- электрода из металла (анод);
- вольфрамовой спирали (катод);
- реостата.
Реостатом можно регулировать температуру катода. Переменным сопротивлением устанавливается разность потенциалов между положительным и отрицательным выводом. Вольт-амперная характеристика, то есть зависимость анодного тока от напряжения будет формироваться следующим образом. Допустим, напряжения нет. Тогда электроны, вылетевшие из катода, притянутся обратно. Ток в цепи анода не течёт. Если на вывод подать отрицательный сигнал, то электроны будут отталкиваться. Ток снова не течёт.
Когда на анод поступает положительное напряжение, то возникает электрическое поле. Оно создаёт силу, направленную в сторону анода. Скорость полёта электронов разная, так как некоторые из них отталкиваются от уже ранее вылетевших частиц. Чем больше будет напряжённость поля, тем сильнее начнёт протекать ток. Но изменение будет происходить не линейно. Например, если увеличить напряжение в два раза, то число электронов, вылетевших из катода, увеличится в больше раз, чем это число. Чем больше разность потенциалов, тем меньше пространственный заряд электронов.
На графике эта зависимость будет представлять полукубическую параболу. Описать её можно приблизительной формулой: I = U3/2. Если продолжить поднимать напряжение, то напряжённость становится намного больше поля, создаваемого пространственным облаком. Все электроны начнут добираться до анода. Сила тока уже не будет зависеть от напряжения. На ВАХ это изображается прямой линией, а эффект называется током насыщения.
Где берутся свободные носители зарядов в вакууме? Вакуумный диод
Если в сосуде создан вакуум, то в нем все же есть немало молекул, некоторые из них могут быть и ионизированы. Но заряженных частичек в таком сосуде для выявления заметного тока мало.
Как же получить в вакууме достаточное количество свободных носителей заряда? Если нагреть проводник, пропуская по нему электрический ток или другим способом (рис. 7.6), то часть свободных электронов в металле будут иметь достаточную энергию, чтобы выйти из металла (выполнить работу выхода).
Явление излучения электронов накаленными телами называется термоэлектронной эмиссией.
Однако кинетическую энергию свободных электронов в веществе можно увеличить и с помощью света.
Излучение электронов веществом под действием света называется фотоэлектронной эмиссией, или внешним фотоэффектом.
Рис. 7.6. Излучение электронов раскаленным проводником |
Природу и закономерности внешнего фотоэффекта объяснил Альберт Эйнштейн, за что и получил Нобелевскую премию по физике 1921 г.
Рассмотрим подробнее явления, происходящие в сосуде (баллоне), где имеется проводник, который может быть накален с помощью электрического тока (рис. 7.6). В баллоне создан вакуум.
Поскольку при нагревании проводника из него излучаются электроны, то может возникнуть мысль, что электроны с течением времени могут заполнить весь баллон. Тем не менее это не так. Будем называть этот проводник в баллоне катодом. Электроны, которые оставили накаленный катод, образуют вокруг него облачко. Это вызвано тем, что катод, утратив часть свободных электронов, заряжается положительно. Положительно заряженный катод и удерживает возле себя облачко электронов.
Рис. 7.7. Если в баллон ввести положительно заряженный анод, то в пепи появится электрический ток |
Катод (гр.— опускание, движение книзу): 1) Электрод прибора или устройства, который соединяют с отрицательным полюсом источника тока. 2) Отрицательный полюс источника тока (гальванического элемента и т. п.). 3) Источник электронов в электронно-вакуумных приборах. Материал с сайта https://worldofschool.ru
Рис. 7.8. Внутреннее строение вакуумного диода |
Если теперь в баллон ввести еще один электрод (анод) и создать электрическое поле между анодом и катодом (рис. 7.7), то в баллоне возникнет электрический ток. В этом случае ток возможен, поскольку положительно заряженный анод притягивает отрицательно заряженные электроны. Если же анод будет иметь отрицательный заряд, то электроны от него будут отталкиваться. Однако при небольших напряжениях наиболее быстрые электроны все же могут долететь до анода, и в цепи может наблюдаться небольшой ток. При увеличении напряжения (если анод заряжен отрицательно) ток в цепи совсем прекратится.
Анод (гр.— путь вверх, восхождение): 1) Электрод электро- и радиотехнических приборов, электролитических ванн и других устройств, соединяющихся с положительным полюсом источника электрического тока. 2) Положительный полюс источника электрического тока.
Рассмотренный прибор называется вакуумным диодом, строение одного из которых показано на рис. 7.8. Практически диод проводит ток лишь в одном направлении — когда анод заряжен положительно. Поэтому его используют в основном для выпрямления переменных токов. Однако в наше время вакуумные диоды в выпрямителях повсеместно вытеснены полупроводниковыми диодами — более надежными, экономичными, долговечными.
На этой странице материал по темам:
Вопросы по этому материалу:
Свойство электронных пучков
В технике очень важное значение имеет использование так называемых электронных пучков. Определение
Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3)
Определение. Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).
Рис. 3. Электронная пушка
Электронные пучки обладают рядом ключевых свойств:
В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке
Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников
— При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).
Рис. 4. Снимок, сделанный при помощи рентгеновского излучения
— При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.
— Возможность управлять движением пучков с помощью электрических и магнитных полей.
Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.
На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод (см. рис. 5):
Рис. 5
В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).
Рис. 6. Использование электрода косвенного накаливания
Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.
ФИЗИКА
§ 3.11. Электрический ток в вакууме
До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы. В этих лампах, а также в электронно-лучевых трубках, широко используемых и сейчас, электроны движутся в вакууме. Как же получают потоки электронов в вакууме? Какими свойствами они обладают?
Когда говорят об электрическом токе в вакууме, то имеют в виду такую степень разрежения газа, при которой можно пренебречь соударениями между его молекулами. В этом случае средняя длина свободного пробега молекул больше размеров сосуда.
Такой разреженный газ является изолятором, так как в нем нет (или почти нет) свободных заряженных частиц — носителей электрического тока.
На рисунке 3.27 изображена схема цепи, содержащей сосуд, из которого откачан воздух. В этот сосуд впаяны два электрода, один из которых (анод (А) соединен с положительным полюсом источника тока (батарея G1), другой (катод К) — с отрицательным. Несмотря на достаточно большое напряжение, которое обеспечивает источник тока (около 100 В), включенный в цепь чувствительный гальванометр не фиксирует тока; это указывает на отсутствие в вакууме свободных носителей заряда.
Рис. 3.27
Электронная эмиссия
Электрический ток в вакууме будет существовать, если ввести в сосуд свободные носители заряда. Как это осуществить?
Наиболее просто проводимость межэлектродного промежутка в вакууме можно обеспечить с помощью электронной эмиссии с поверхности электродов. Электронная эмиссия возникает в случаях, когда часть электронов металла (электрода) приобретает в результате внешних воздействий энергию, достаточную для преодоления их связи с металлом (для совершения работы выхода Авых).
В § 3.8 мы уже познакомились с двумя видами электронной эмиссии: ионно-электронной эмиссией (при бомбардировке катода положительными ионами) и термоэлектронной эмиссией (испускание электронов с поверхности достаточно нагретого металла). Электроны испускаются также при воздействии на поверхность металла электромагнитным излучением. Такое явление называется фотоэлектронной эмиссией. И наконец, с поверхности металла испускаются электроны при бомбардировке ее быстрыми электронами. Это вторичная электронная эмиссия.
Все виды эмиссии широко используются для получения электрического тока в вакууме. Однако в большинстве современных электронных вакуумных приборов используется термоэлектронная эмиссия.
Получение электрического тока в вакууме
Посмотрим, как, используя термоэлектронную эмиссию, можно получить ток в вакууме. Для этой цели внесем изменения в цепь, схема которой изображена на рисунке 3.27. В качестве катода в вакуумном баллоне теперь впаяна вольфрамовая нить, концы которой выведены наружу и присоединены к источнику тока — батарее накала G2 (рис. 3.28). Замкнем ключ S2 и, когда вольфрамовая нить накалится, замкнем и ключ S1. Стрелка прибора при этом отклонится, в цепи появился ток. Значит, накаленная нить обеспечивает появление необходимых для существования тока носителей заряда — заряженных частиц.
Рис. 3.28
С помощью опыта нетрудно убедиться, что эти частицы заряжены отрицательно.
Изменим полярность анодной батареи G1 — нить станет анодом, а холодный электрод — катодом (рис. 3.29). И хотя нить по-прежнему накалена и по-прежнему посылает в вакуум заряженные частицы, тока в цепи нет.
Рис. 3.29
Из этого опыта следует, что частицы, испускаемые накаленной нитью, заряжены отрицательно — отталкиваются от холодного катода и притягиваются к аноду. Измерением заряда и массы было доказано, что катод испускает электроны.
Итак, электрический ток в вакууме представляет собой направленный поток электронов.
В отличие от тока в металлическом проводнике (где проводимость тоже электронная), в вакууме электроны движутся между электродами, ни с чем не сталкиваясь. Поэтому под действием электрического поля электроны непрерывно ускоряются. Скорость электронов у анода даже в маломощных электровакуумных приборах достигает нескольких тысяч километров в секунду, что в десятки миллиардов раз превышает среднюю скорость направленного движения электронов в металле.
Для создания тока в вакууме необходим специальный источник заряженных частиц. Действие такого источника обычно основано на термоэлектронной эмиссии. |
Заключение
Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:
Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.
Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.
Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!
Материалы