Введение
Заряды, помещенные в электростатическое поле с разностью потенциалов приходят в движение. Это движение называется электрическим током, который определяется как направленное (упорядоченное) движение заряженных частиц через любое поперечное сечение проводящей среды. Величина этого тока зависит от сопротивления проводящей среды этому движению зарядов, которое, в свою очередь, зависит от поперечного сечения проводника.
Следует отметить, что в электротехнике основные физические величины, то есть единица измерения силы электрического тока ампер и единица измерения электрического заряда кулон часто бывают связаны между собой с помощью единицы длины — метра. И это неспроста. Заряд, который протекает через поперечное сечение проводящей среды, часто бывает распределен неравномерно. Поэтому вполне естественно было бы определять поток заряженных частиц через единичное поперечное сечения или единичную длину, иными словами определять плотность тока
В этой статье мы сравним электрический ток и плотность тока, а также рассмотрим важность достижения, поддержания и измерения необходимой плотности тока в различных областях электротехники и электронной техники
1.3.31
Выбор экономических сечений проводов воздушных и
жил кабельных линий, имеющих промежуточные отборы мощности, следует производить
для каждого из участков, исходя из соответствующих расчетных токов участков.
При этом для соседних участков допускается принимать одинаковое сечение
провода, соответствующее экономическому для наиболее протяженного участка, если
разница между значениями экономического сечения для этих участков находится в
пределах одной ступени по шкале стандартных сечений. Сечения проводов на
ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой
производится ответвление. При большей длине ответвления экономическое сечение
определяется по расчетной нагрузке этого ответвления.
Виды электротока, условия протекания
Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.
Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений
Во втором – имеют место синусоидальные колебания с определенной частотой. Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит. Также требуется сила, которая будет эти заряды перемещать.
Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду. Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток. Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.
Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов. В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы. В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.
В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.
Формула вычисления
Рассматриваемая величина находится в обратной зависимости от размеров сечения (чем больше площадь, тем меньше плотность тока) и временного периода прохождения электрозаряда и в прямой – от величины этого заряда.
Это можно записать так:
j=Δq/ΔtΔS (q тут – элементарно малый заряд, t – бесконечно малый промежуток времени, а S – площадь сечения).
Так как токовая сила выражается как частное заряда и временного промежутка его прохода, формулу можно записать и так:
Формула плотности тока с опорой на параметры перемещающихся зарядов будет выглядеть так:
j=q*n*V (V тут – скорость, а n – концентрация электронных частиц).
Выбор сечения провода по количеству потребителей
После того как выбран кабель для подключения к сети и для него подобран защищающий от перегрузок и коротких замыканий автомат ввода, необходимо подобрать провода для каждой группы потребителей.
Нагрузка разделяется на осветительную и силовую. Самым мощным потребителем в доме является кухня, где устанавливаются электроплита, стиральная и посудомоечная машины, холодильник, микроволновка и другие электроприборы.
На бойлер, электроплиту, кондиционер и другие мощные нагрузки целесообразно подключать отдельный провод с автоматом. В ванную комнату также делается отдельный ввод с автоматом и УЗО.
На освещение идет провод на 1,5 мм2. Сейчас многие применяют основное и дополнительное освещение, где может потребоваться большее сечение.
Рассчитывая сечение питающего кабеля для квартиры, необходимо нарисовать схему. На чертёж нанести всех потребителей электроэнергии, для каждой комнаты. Количество электроприёмников, включенных в отдельную цепь, будет составлять общее число только для этой цепи. Суммарная мощность всех потребителей – главный критерий при выборе сечения вводного кабеля. Далее сечение будет уменьшаться по мере разветвления от общих цепей к отдельным ветвям схемы.
Как создать длительный ток и что для этого необходимо
Положительный заряд – это недостаток электронов, а отрицательный – это их избыток. В момент соединения тел проводником, отрицательные электроны устремились к положительно заряженному телу.
А в конце ток прекратился потому, что заряды тел скомпенсировались и тела превратились в электрически нейтральные. Нам известно, что нейтральные тела электрическое поле не создают.
Значит, ток существует до тех пор, пока существует электрическое поле. Поэтому, нужно каким-либо образом поддерживать электрическое поле. А для этого нужно, чтобы одно из тел обладало избыточным отрицательным зарядом. То есть, нужно поддерживать на одном из тел отрицательный, а на другом – положительный заряд. Пока заряды тел будут поддерживаться, ток будет существовать.
Чтобы на теле с положительным зарядом поддерживать этот заряд, нужно убирать с этого тела прибежавшие туда электроны и отправлять их обратно на отрицательно заряженное тело.
Такая схема по своему устройству напоминает фонтан, в котором насос поддерживает разность давлений. В нагнетающей воду трубе давление больше, чем в трубе, через которую вода поступает обратно в насос.
Рис. 18. Поток воды циркулирует благодаря насосу, поддерживающему разность давлений
Именно благодаря этой разности, из одной трубы вода выплескивается вверх, а собранная в чашу вода попадает обратно в насос. При этом, по контуру циркулирует одно и то же количество воды, то есть, водяной контур замкнут. А ток воды в этом контуре поддерживается специальным устройством – насосом. Он совершает работу против силы тяжести.
Рис. 19. Водяной насос в фонтане совершает работу против силы тяжести
Сторонние силы — что это такое
Подобно своеобразному насосу устроен источник тока. Внутри источника действуют сторонние силы. Они возвращают электроны на «-» контакт.
На заряды в электрическом поле будет действовать сила. Она называется силой Кулона и имеет электрическую природу. Электроны будут притягиваться к телу, имеющему положительный заряд.
Сила Кулона будет мешать возвращать электроны на отрицательное тело. Подобно силе тяжести, которая мешает воде в фонтане двигаться вверх.
Чтобы вернуть электроны на отрицательно («-») заряженное тело, нужно совершить против силы Кулона. Значит, должна присутствовать какая-то внешняя сила, возвращающая электроны на отрицательно («-») заряженное тело. Эта сила имеет неэлектрическую природу, она называется сторонней силой.
Рис. 20. Источник тока совершает работу против электрической силы Кулона
Теперь можно ответить на вопрос: Что такое источник тока?
Во время существования электрического тока сами электроны не расходуются. Они, как вода в фонтане, циркулируют по замкнутой траектории.
Чтобы ток существовал постоянно, нужно, чтобы между заряженными противоположно телами электрическое поле существовало непрерывно.
Примечание: В качестве заряженных противоположно тел можно рассматривать контакты источника тока.
Для этого электроны нужно пропустить по замкнутому контуру, т. е. непрерывной электрической цепи. Поэтому, еще одно условие существования постоянного тока – это замкнутая электрическая цепь. Как только замыкается цепь, в направленное движение приходят все заряженные частицы, находящиеся в этой цепи.
Рис. 21. Электрический ток источник может создать только в замкнутой цепи
В такой цепи заряды циркулируют по замкнутой траектории. То есть, заряд, вышедший из источника и совершивший полный оборот, попадет обратно в источник тока. Там он будет подхвачен сторонними силами и через противоположный вывод источника тока попадает обратно в цепь. Затем, будет двигаться далее и, совершит следующий круг. Поэтому, во время протекания электрического тока сами заряды не расходуются.
Нам известно, если на заряд действует сила и, под действием этой силы заряд перемещается, то эта сила совершает работу.
Это значит, что сторонние силы в источнике совершают работу. Подробнее о работе сторонних сил (ссылка).
Плотность тока смещения
В классической электродинамике существует понятие тока смещения, который пропорционально равен быстроте изменения индукции электрического поля. Он не связан с перемещением каких-либо частиц поэтому, по сути, не является электрическим током. Несмотря на то, что природа этих токов разная, единица измерения плотности у них одинаковая — A/м2
Ток смещения – это поток вектора быстроты изменения электрического поля ∂E/∂t
черезS — некоторую поверхность. Формула тока смещения выглядит так:
JD
— ток смещения
ε0
– электрическая постоянная, равная 8,85·10-12 Кл2/(H·м2)
∂E/∂t
— скорость изменения электрического поля [Н/(Кл·с)]
ds
– площадь поверхности
Плотность тока смещения определяется по следующей формуле:
для вакуума:
для диэлектрика:
jD
— ток смещения [А/м2]
ε0
– электрическая постоянная, равная 8,85·10-12 Кл2/(H·м2)
∂E/∂t
— скорость изменения электрического поля [Н/(Кл·с)]
∂D/∂t
— скорость изменения вектора эл. индукции [Кл/м2·с)]
Что такое поперечное сечение проводника
Электрический ток – это направленно движущиеся по проводнику свободные заряды. Его можно определить, когда известно количество заряженных частиц, прошедших через проводник.
Проводник может быть достаточно длинным. Поэтому неудобно учитывать заряды, находящиеся во всей длине проводника.
Чтобы было проще посчитать количество зарядов, на проводнике выбирают точку в любом удобном месте.
Через эту точку мысленно проводят плоскость, располагая ее перпендикулярно по отношению к проводнику. Так как эта плоскость в проводнике ограничивает собой площадь S, ее часто называют площадью поперечного сечения проводника.
Для вычисления силы тока, ведут подсчет зарядов, прошедших через это сечение.
Как рассчитать площадь сечения
Проводник будем считать круглой трубкой, по аналогии с трубой, по которой течет жидкость. Пользуясь этой аналогией, так же, примем, что внутри такой трубки будут двигаться заряды, они обозначены кружками на рисунке.
Рис. 8. Что такое поперечное сечение
Выделим на трубе какую-либо точку. Мысленно отрежем кусок трубы, проводя разрез перпендикулярно. Стенки трубки в месте отреза являются границей круга.
Площадь полученного круга можно вычислить по такой геометрической формуле:
\(\large S_{0} \left( \text{м}^{2} \right)\) – площадь круга;
\(\large \pi \approx 3,14\) – число Пи;
\(\large D \left(\text{м}\right)\) – диаметр круга;
\(\large R \left(\text{м}\right)\) – радиус круга;
Проводник может иметь не только цилиндрическую форму. Промышленность изготавливает металлические проводники, имеющие квадратное, прямоугольное, треугольное или какое-либо другое сечение. Понятно, что площади таких сечений нужно рассчитывать, пользуясь другими геометрическими формулами.
Плотность тока насыщения
В физической электронике используют понятие плотности тока насыщения. Эта величина характеризует эмиссионную способность металла, из которого сделан катод, и зависит от его вида и температуры.
Плотность тока насыщения выражается формулой, которая была выведена на основе квантовой статистики Ричардсоном и Дешманом:
j – плотность тока насыщения[А/м2]
R — среднее значение коэффициента отражения электронов от потенциального барьера
A — термоэлектрическая постоянная со значением 120,4 А/(K2·см2)
T— температура
qφ — значение работы выхода из катода электронов , q – электронный заряд
k — постоянная Больцмана, которая равна 1,38·10-23 Дж/К
Скорее всего, Вам будет интересно:
- Закон Кулона: формулировка, определение, формула
- Основные положения молекулярно-кинетической теории (МКТ), формулы МКТ
- Уравнение состояния идеального газа Менделеева-Клапейрона с выводом
- Свойства вписанной в треугольник окружности
- Основное уравнение молекулярно-кинетической теории (МКТ) с выводом
- WN6 рейтинг – что это
- Свойства прямоугольной трапеции
- Как найти область определения функции онлайн
- Средняя линия трапеции: чему равна, свойства, доказательство теоремы
- Состав служебного программного обеспечения
Уравнение неразрывности
Поскольку заряд сохраняется, плотность тока должна удовлетворять уравнению неразрывности . Вот вывод из первых принципов.
Чистый поток из некоторого объема V (который может иметь произвольную форму, но фиксирован для расчета) должен равняться чистому изменению заряда, удерживаемого внутри объема:
- ∫Sj⋅dАзнак равно-ddт∫VρdVзнак равно-∫V∂ρ∂тdV{\ displaystyle \ int _ {S} {\ mathbf {j} \ cdot \ mathrm {d} \ mathbf {A}} = — {\ frac {\ mathrm {d}} {\ mathrm {d} t}} \ int _ {V} {\ rho \; \ mathrm {d} V} = — \ int _ {V} {{\ frac {\ partial \ rho} {\ partial t}} \; \ mathrm {d} V} }
где ρ представляет собой плотность заряда , а д является поверхность элементом поверхности S , охватывающий объем V . Поверхностный интеграл слева выражает текущий отток из объема, а объемный интеграл с отрицательным знаком справа выражает уменьшение общего заряда внутри объема. Из теоремы о расходимости
- ∫Sj⋅dАзнак равно∫V∇⋅jdV{\ displaystyle \ int _ {S} {\ mathbf {j} \ cdot \ mathrm {d} \ mathbf {A}} = \ int _ {V} {\ mathbf {\ nabla} \ cdot \ mathbf {j} \ ; \ mathrm {d} V}}
Отсюда:
- ∫V∇⋅jdV знак равно-∫V∂ρ∂тdV{\ displaystyle \ int _ {V} {\ mathbf {\ nabla} \ cdot \ mathbf {j} \; \ mathrm {d} V} \ = — \ int _ {V} {{\ frac {\ partial \ rho } {\ partial t}} \; \ mathrm {d} V}}
Это соотношение справедливо для любого объема, независимо от размера или местоположения, что подразумевает, что:
- ∇⋅jзнак равно-∂ρ∂т{\ displaystyle \ nabla \ cdot \ mathbf {j} = — {\ frac {\ partial \ rho} {\ partial t}}}
и это соотношение называется уравнением неразрывности .
Что такое ток и его сила
Прежде чем перейти к понятию, в чем измеряется ток, специалисты рекомендуют рассмотреть его определение. Электроток — это упорядоченное движение частиц, имеющих заряд. Простыми словами ток определяется как некое количество частиц, имеющих заряд, которые за определенное время прошли через сечение проводимых материалов (алюминиевый или медный провод).
Направление движения тока
Металлический проводник в качестве носителей зарядов использует электроны. Когда ток в проводнике отсутствует, электроны в нем находятся в хаотическом состоянии, простыми словами, через сделанное сечение в проводнике без электротока слева направо и обратно протекает равное количество электронов. Когда включается электроток, это движение упорядочивается, электроны начинают двигаться направленно через воображаемое сечение в проводнике.
Силой электрического тока является величина, характеризующаяся численным значением заряда, который за определенное время (единицу времени) прошел через воображаемое сечение проводника.
Формула нахождения силы тока
Для лучшего понимания физического значения силы электротока специалисты часто представляют электрическую цепь в виде водопроводной системы любой квартиры, в которой насос, подающий воду, изображает источник тока.
Вода в кране как аналог заряженных частиц
Когда насос прекращает свою работу, в доме или квартире прекращается подача воды в запорные устройства (краны, смесители). В этом случае кран является аналогом прерывателя в электрической цепи: когда он открыт, вода поступает, если его закрыть, подачи не будет. Молекулы воды могут в этом случае заменить заряженные частицы в электросхеме.
Как двигаются молекулы в воде при отрытом кране
Рассмотрим в этом примере величину, аналогичную силе тока, — это количество молекул воды, которые за одну секунду прошли через сечение водопроводной трубы. Другими словами, это напор воды. Когда сильный напор, вы за то же время наберете больше воды, чем при слабом напоре. Поводим аналогию, и получается, что чем больше сила ампера, тем сильнее электроток и его воздействие.
Электроток в различных средах
Электрический ток в разных средах протекает по-разному, специалисты рассматривают его протекание в твердых материалах, к ним относятся: проводники (металл, медь, железо, алюминий), полупроводники и материал, не проводящий ток (диэлектрик). Необходимо всегда учитывать состояние среды, в которой находятся носители зарядов, а именно:
- твердое состояние;
- жидкая среда;
- газообразный проводник.
Носители зарядов в разных средах
Примером носителя часто встречающегося заряда нам может быть простая вода. Когда она находится в жидком виде и после заморозки становится льдом, это твердое состояние вещества. Современная наука рассматривает и такую среду протекания тока, как плазма, которая находится в ионосфере земной поверхности. Условия изучения в лабораториях создать сложно, для этого надо сделать температурный режим около 1 млн кельвина.
В чем измеряется сила тока
Величина, которая определяется как сила тока, измеряется в амперах. Количество электричества полностью не может характеризовать электроток. Возьмем количественное значение электричества 1 кулон, которое может протекать по проводу (проводнику) в течение 60 минут (час), но такое же количество может через тот же самый провод пройти за 1 секунду (единица времени).
Из приведенного примера видно, что интенсивность электротока во втором случае будет выше, это 1 секунда времени и 1 кулон электричества, проходящего через сечение провода.
В электротехнике принято обозначать силу тока литерой I, а измерять ее в амперах.
Что такое ампер в системе измерений (СИ)? Это единица, которой измеряется сила электротока в цепи, он равняется силе неизменного тока, который протекает по параллельным проводам, имеющим неограниченную длину. Сечение имеет минимальное значение, с удалением в 1 метр друг от друга, среда — вакуум, вызывающий воздействие на метре длины силу, равную 2*10 минус 7 степени ньютона. Это можно записать следующим образом:
единица измерения: 1 ампер = кулон/секунду.
Формула, чему равен один ампер
Сила тока названа ампером в честь ученого из Франции Анри М. Ампера, который работал над магнитным воздействием протекающего в проводе тока. Для точных измерений используются дополнительные величины силы тока: миллиампер = единица/1000 ампер = 10 в минус 3 степени ампера, микроампер = единица/ 1 млн ампер = 10 в минус 6 степени ампера.
Нахождение значения силы ампера
Применение
Плотность тока особенно важна в тех случаях, когда необходимо оптимизировать сечение проводника по соображениям стоимости, площади и веса. Как правило, сечение проводника выбирается как можно меньше, чтобы соответствовать условиям применения.
Здесь важно, чтобы фактическая плотность тока в проводнике не превышала максимально допустимую плотность тока. Причина этого в том, что каждый электрический проводник имеет электрическое сопротивление
При протекании электрического тока на этом сопротивлении возникает падение электрического напряжения. В результате происходит преобразование энергии и нагрев линии. Чрезмерный нагрев может повредить изоляцию проводника и вызвать серьезные повреждения.
Именно поэтому, например, допустимые плотности тока для бытовых установок регламентируются соответствующими стандартами. Кроме того, все кабели в домашних хозяйствах оснащены предохранителем, который срабатывает до достижения максимально допустимой плотности электрического тока.
В автомобильном секторе важную роль играет экономия веса и пространства. Поэтому здесь также тщательно подбираются кабели, чтобы найти компромисс между нагревом и весом/пространством.
Основные типы проводников
В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).
Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.
Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.
Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.
Закон Ома
Для токопроводящей среды, обладающей изотропными характеристиками, данный закон имеет следующий вид:
где j – плотность идущего электротока, Е – полевая напряженность в рассматриваемой точке (скалярная величина, как и предыдущая), а σ – удельная проводимость средового окружения.
Что касается работы электрополя для такой среды (w), то она может быть выражена следующими формулами:
w= E2* σ=j2/σ=p*j2 (p здесь – удельное сопротивление).
Выражение для работы в этом случае примет вид:
w=E* σ *E=j*p*j (E и j в данном случае – скалярные величины).
В матрице справа налево умножают столбчатый вектор на строчной и на матрицу. Тензорные величины р и σ генерируют релевантные им квадратичные формы.
Расчет сечения кабеля по мощности и длине
Правильно подобранное сечение кабеля позволит смонтированным сетям не перегреваться, выдерживать даже кратковременные нагрузки, в 2-3 раза превышающие номинальную величину. Это создаёт определённый запас по току в случае увеличения количества и мощности включённых в сеть потребителей. Нагруженный по максимуму провод не будет нагреваться и создавать опасность самовозгорания, повлекшую за собой пожар на объекте.
В квартире при скрытой проводке обнаружить точное место повреждения сложно, требуется замена всего участка с выполнением штробы и последующего ремонта помещения.
Можно подобрать сечение при определении нагрузки на кабель, зная только потребляемую мощность и длину. Расчёт производится в следующем порядке:
- вычисляют силу тока I = P/U, (A);
- находят сопротивление R = U/I, (Ом).
Далее, зная длину кабеля и удельное сопротивление материала, определяют площадь сечения S = (ρ*L)/R, (мм2).
Какой ток считается длительно допустимым? Ясно, что для разных кабелей или проводников он будет различным. Для кабельной продукции существует рабочая длительная температура Тдд, указанная в документации. При такой температуре токопроводящие жилы могут находиться постоянно без вреда для своих характеристик.
Предлагаем ознакомиться Инструкция: как правильно ходить в баню — Большая Деревня
Iдд = √((Тдд*S*Ктп)/R),
- Ктп – коэффициент теплопередачи;
- R – сопротивление;
- S – сечение жилы.
Для практического применения подходят таблицы из Правил Устройств Электроустановок (ПУЭ).
1.3.27
Увеличение количества линий или цепей сверх необходимого по условиям надежности электроснабжения в целях удовлетворения экономической плотности тока производится на основе технико-экономического расчета. При этом во избежание увеличения количество линий или цепей допускается двукратное превышение нормированных значений, приведенных в табл. 1.3.36.
Таблица 1.3.36. Экономическая плотность тока
В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии.
Данными указаниями следует руководствоваться также при замене существующих проводов проводами большего сечения или при прокладке дополнительных линий для обеспечения экономической плотности тока при росте нагрузки. В этих случаях должна учитываться также полная стоимость всех работ по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и материалов.
Закон Ома для электрической цепи
В простейшем случае электрическая цепь состоит из источника питания и нагрузки (потребителя).
Закон Ома для участка цепи звучит так:
Закон Ома формула:
Используя формулу закона Ома и зная два параметра цепи можно найти и третий. Например зная ток и напряжение на участке цепи можно вычислить сопротивление этой цепи. Для это цели придумали «магический треугольник» закона Ома:
Теперь мы рассмотрим закон Ома для полной цепи.
Для выше изображенной электрической цепи в другой статье было получено уравнение: Е = U + U0. По закону Ома напряжения U и U
пропорциональны току в цепи: U = Ir и U0 = Ir0, где r — внутреннее сопротивление источника питания, а r—сопротивление внешнего участка цепи. Подставив вместо U и U их значения, получим, что Е = Ir + Ir0 = I(r + r0). Отсюда ток I = E / r +r0 Найденная зависимость называется законом Ома для электрической цепи или закон Ома для полной электрической цепи. Этот закон звучит так:
Из статьи также следует, что напряжение на зажимах источника питания U = E — U0 = E — Ir0. Размыкание электрической цепи соответствует увеличению сопротивления приемника (внешнего сопротивления) до бесконечности. В этом случае ток равен нулю, а напряжение на зажимах источника питания U = Е — Ir0 = E
Плотность электрического тока
Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.
Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.
Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.
В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.
Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.
Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.