Методы управления частотно-регулируемым приводом (чрп)

Векторное управление с обратной связью

Этот режим отличается более высокой точностью управления скоростью двигателя. Обратную связь обеспечивает энкодер, который сопрягается с частотным преобразователем через дополнительный модуль.

Энкодер устанавливается на валу электродвигателя либо последующего механизма и передает данные о текущей частоте вращения. На основании полученной информации преобразователь меняет напряжение, момент и, соответственно, скорость двигателя. Стоит добавить, что при больших динамических нагрузках (частых изменениях момента) и работе на пониженных скоростях рекомендуется применение принудительного охлаждения внешним вентилятором.

Другие полезные материалы:

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление. 

Пуск и остановка электродвигателя осуществляются с панели или пульта управления частотника. При этом преобразователь осуществляет регулировку частоты вращения и остановку при возникновении аварийных ситуаций автоматически.

2) Внешнее управление. 

ЧП с поддержкой интерфейсов передачи данных можно подключать к удаленному ПК для контроля текущих параметров и задания режимов работы привода.

3) Управление по дискретным входам или “сухим контактам”. 

4) Управление по событиям. 

Некоторые модели ЧП позволяют запрограммировать время пуска или остановки, работу двигателя в другом режиме. Преобразователи такого типа применяют для полностью или частично автоматизированного технологического оборудования.

Преимущества частотных преобразователей.

Основные преимущества использования частотных преобразователей:

1) Экономия электроэнергии. 

Применение ЧП позволяет снизить пусковые токи и регулировать потребляемую мощность двигателя в зависимости от фактической нагрузки.

2) Увеличение срока службы промышленного оборудования. 

Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межремонтный интервал и продлить срок эксплуатации электродвигателей.

Возможность отказаться от редукторов, дросселирующих задвижек, электромагнитных тормозов и другой регулирующей аппаратуры. снижающей надежность и увеличивающей энергопотребление оборудования.   

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом. 

5) Широкий диапазон мощности двигателей. 

Частотные преобразователи устанавливают как на однофазные конденсаторные двигатели мощностью менее 1 кВт, так и на синхронные электромашины мощностью в десятки МВт.

6) Защита электродвигателя от аварий и аномальных режимов работы. 

ЧП комплектуют защитой от перегрузок, коротких замыканий, пропадания фаз. Преобразователи также обеспечивают перезапуск при возобновлении подачи электроэнергии после ее отключения.

Возможность бесступенчатой точной регулировки частоты вращения без потерь мощности, что невозможно при использовании редукторов. 

7) Снижение уровня шума работающего двигателя.

Возможность замены двигателей постоянного тока асинхронными электрическими машинами с частотными регуляторами. Для оборудования, требующего регулировки момента и скорости вращения, часто используются двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Такие электрические машины стоят дороже асинхронных и требуют дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные электромашины с частотным управлением дает хороший экономический эффект.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин. Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов.Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Возможно, вам также будет интересно

Современные системы управления дверями лифта, как правило, включают специализированные частотные преобразователи (контроллеры привода двери) и синхронные электродвигатели, обеспечивающие работу лифта в энергоэффективном режиме. Один из таких контроллеров отечественного производства — EC-LD-180, оснащенный электродвигателем ДСМГ-0,18-500-1-ДУ3, — рассмотрен в статье.

Эффективное управление данными при проектировании позволяет сэкономить время и финансовые затраты на этапе разработки проекта. Новые цифровые технологии значительно упрощают управление данными, относящимися к продукции и решениям компании HARTING.

С середины 1990-х гг. компания Microsoft является активным участником рынка технологий разработки встраиваемого ПО для специализированных интеллектуальных устройств. Эти технологии интегрированы в платформу Windows Embedded, которая на сегодня включает в себя пять семейств ОС — Compact, Standard, POSReady, Server и Enterprise. ОС Windows Embedded Compact и Windows Embedded Standard служат основ…

Возможно, вам также будет интересно

Анатолий Коршунов Невозможность асинхронного пуска вследствие отсутствия обмоток на роторе синхронного двигателя (СД) вызывает интерес к частотному синхронному пуску. Он осуществляется при питании статорной обмотки от автономного инвертора путем плавного повышения частоты. Очевидно, при слишком быстром повышении частоты синхронного двигателя будет выпадать из синхронизма, что делает невозможным его пуск. Слишком медленное повышение частоты снижает быстродействие

Опыт моделирования систем силовой электроники в среде OrCAD 9.2 Часть I Опыт моделирования систем силовой электроники в среде OrCAD 9.2 Часть II Опыт моделирования систем силовой электроники в среде OrCAD 9.2 Часть III Опыт моделирования систем силовой электроники в среде ORCAD 9.2. Часть IV Опыт моделирования систем силовой электроники в среде OrCAD 9.2 Часть V

При разработке специализированных силовых модулей для транспортных средств с электроприводам и гибридным электроприводом (автомобилей, грузовиков, автобусов) необходимо применять уникальные технологии и инновационные конструкторские решения. Противоречивые требования увеличения плотности мощности, расширения температурного диапазона и, в то же время, повышения надежности и снижения габаритов не могут быть удовлетворены только за счет правильного выбора полупроводниковых компонентов. Для создания силового модуля, отвечающего современным запросам рынка, нужны как оптимизация тепловых и электрических характеристик, так и использование принципиально новых подходов к способам проектирования. Примером удачного решения, соответствующего практически всем указанным требованиям, стала новая серия силовых модулей SKiM 63/93 , разработанных компанией SEMIKRON специально для применения на электротранспорте. В предлагаемой вниманию читателей статье обсуждаются основные концепции и технологические приемы, используемые при разработке силовых ключей для предельно тяжелых условий эксплуатации.

Что нужно для качественной установки преобразователя?

Устанавливают частотники в специальный шкаф управления насосами (шун) с частотным преобразователем или в любое другое место, где будут соблюдены основные требования для их нормального функционирования.

Чтобы была произведена правильная установка частотного преобразователя, необходимо учесть следующие нюансы:

Порядок подключения частотного преобразователя

  • В месте расположения частотника необходимо обеспечить хорошую вентиляцию.
  • Температура окружающей среды не должна быть ниже 10˚C и выше 45˚C.
  • Должна соблюдаться относительная влажность менее 90%, на установленное оборудование не должна попадать вода.
  • В непосредственной близости с частотным преобразователем должны отсутствовать пожароопасные и легковоспламеняющиеся материалы и жидкости.
  • На устройство не должны попадать прямые солнечные лучи.
  • Нельзя допускать наличие поблизости капель масла, пыли или стальной стружки.
  • Размещать его необходимо в месте, с полностью отсутствующими вибрациями.
  • Установка должна производиться на устойчивую поверхность без наклонов.
  • Нельзя устанавливать оборудование в зоне электромагнитных помех.

Используя представленные рекомендации, вы сможете подобрать такой частотный преобразователь для насосов, который отлично подойдет для организации работы вашего водонасосного оборудования. Различные модели прекрасно подходят как для оборудования скважинных, так и для фонтанных и других компрессоров, которые используются в жилых и частных домах.

Преимущества применения частотных преобразователей

Плавное регулирование скорости вращения электродвигателя позволяет в большинстве случаев отказаться от использования редукторов, вариаторов, дросселей и другой регулирующей аппаратуры, что значительно упрощает управляемую механическую (технологическую) систему, повышает ее надежность и снижает эксплуатационные расходы
Частотный пуск управляемого двигателя обеспечивает его плавный без повышенных пусковых токов и механических ударов разгон, что снижает нагрузку на двигатель и связанные с ним передаточные механизмы, увеличивает срок их эксплуатации. При этом появляется возможность по условиям пуска снижения мощности приводных двигателей нагруженных механизмов.
Встроенный микропроцессорный ПИД-регулятор позволяет реализовать системы регулирования скорости управляемых двигателей и связанных с ним технологических процессов.
Применение обратной связи системы с частотным преобразователем обеспечивает качественное поддержание скорости двигателя или регулируемого технологического параметра при переменных нагрузках и других возмущающих воздействиях.
Преобразователи частоты в комплекте с асинхронным электродвигателем может применяться для замены приводов постоянного тока.
Преобразователь частоты в комплекте с программируемым микропроцессорным контроллером может применяться для создания многофункциональных систем управления электроприводами, в том числе с резервированием механических агрегатов.
Применение регулируемого частотного электропривода позволяет сберегать электроэнергию устранением неоправданных ее затрат, которые имеют место при альтернативных методах регулирования с технологических потоков дросселированием, с помощью гидромуфт и других механических регулирующих устройств.

Экономия электроэнергии при использовании регулируемого электропривода для насосов в среднем составляет 50-75 % от мощности, потребляемой насосами при дроссельном регулировании. Это определило повсеместное внедрение в промышленно развитых странах регулируемого привода насосных агрегатов. При этом фирмы предлагают различные типы преобразователей частоты для асинхронных двигателей насосов.

Применение устройств плавного регулирования частоты вращения двигателей в насосных агрегатах, помимо экономии электроэнергии, дает ряд дополнительных преимуществ, а именно:

плавный пуск и останов двигателя исключает вредное воздействие переходных процессов (типа гидравлический удар) в напорных трубопроводах и технологическом оборудовании;

пуск двигателя осуществляется при токах, ограниченных на уровне номинального значения, что повышает долговечность двигателя, снижает требования к мощности питающей сети и мощности коммутирующей аппаратуры;

возможна модернизация действующих технологических агрегатов без замены насосного оборудования и практически без перерывов в его работе.

Основные возможности

Частотные преобразователи позволяют регулировать частоту трехфазного напряжения питания управляемого двигателя в пределах от нуля до 400 Гц.

Разгон и торможение двигателя осуществляется плавно, при необходимости по линейному закону от времени. Время разгона и (или) время торможения от 0,01 с до 50 мин.

Реверс двигателя, при необходимости с плавным торможением и плавным разгоном до заданной скорости противоположного направления.

При разгоне частотные преобразователи могут обеспечивать до 150 % увеличение пусковых и динамических моментов.

В преобразователях предусмотрены настраиваемые электронные самозащиты и защиты двигателей от перегрузки по току, перегревах, утечках на землю и обрывах линий питания двигателей.

Частотные преобразователи позволяют отслеживать с отображением на цифровом индикаторе и формированием соответствующего выходного сигнала о заданном основном параметре системы — частоте питающего двигатель напряжения, скорости двигателя, ток или напряжение двигателя, состояние преобразователя и т.п.

В зависимости от вида нагрузки двигателей в преобразователях можно формировать требуемые вольт-частотные выходные характеристики.

В наиболее совершенных преобразователях реализовано векторное управление, позволяющее работать с полным моментом двигателя в области нулевых частот, поддерживать скорость при переменной нагрузке без датчиков обратной связи, точно контролировать момент на валу двигателя.

Методы частотного управления двигателем

Различают 2 типа управления частотно-регулируемым электроприводом: векторный и скалярный. Во втором случае поддерживается постоянное отношение U/f (напряжение/частота) независимо от скорости вращения вала.

При этом на малых скоростях требуется компенсировать падение напряжения на обмотках статора. Скалярное управление используется в приводах вентиляторов, насосов, станков и оборудования, где не требуется точное регулирование момента и одновременное управление моментом и скоростью.

К достоинствам способа относят:

  • Возможность управления несколькими двигателями одним преобразователем частоты.
  • Простая аппаратная реализация.
  • Относительно невысокая стоимость.

К недостаткам относят невозможность управления моментом, применения с синхронными двигателями на постоянных магнитах, относительно небольшой диапазон регулирования скорости.

Векторное управление заключается в регулировании величины, частоты и фазы питающего напряжения. Метод позволяет практически безынерционно изменять скорость вращения и момент.

Область применения приводов с векторным управлением – оборудование с высокодинамичной нагрузкой, установки, где необходимо точное регулирование скорости и момента.

Метод имеет следующие преимущества:

  • Быстрый отклик при изменении нагрузки.
  • Высокая точность регулирования угловой скорости и момента на валу.
  • Увеличенный КПД в сравнении со скалярным способом.
  • Более широкий диапазон скоростей.

К недостаткам относят высокую стоимость, значительные колебания частоты вращения при неменяющейся нагрузки.

Принцип работы частотно регулируемого привода

Асинхронные двигатели широко применяются в промышленности и на транспорте, являясь основной движущей силой узлов, машин и механизмов. Они отличаются высокой надежностью и сравнительно легко поддаются ремонту.

Однако данные устройства могут вращаться только на одной частоте, которую имеет питающая сеть переменного тока. Для работы в различных диапазонах используются специальные устройства частотные преобразователи, выполняющие регулировку частот до требуемых параметров.

Работа преобразователей тесно связана с принципом действия асинхронного двигателя. Его статор состоит из трех обмоток к каждой из которых подведен электрический ток, создающий переменное магнитное поле. Под действием этого поля в роторе индуцируется ток, который также приводит к возникновению магнитного поля. В результате взаимодействия полей статора и ротора, начинается вращение ротора.

Когда асинхронный двигатель запускается, происходит значительное потребление тока от питающей сети. Из-за этого привод механизма испытывает значительную перегрузку. Наблюдается скачкообразное стремление двигателя достичь номинальных оборотов. В результате, снижается срок службы не только самого агрегата, но и тех устройств, которые он приводит в действие.

Данная проблема успешно решается путем использования частотно регулируемого привода, позволяющего изменять частоту напряжения, питающего двигатель. Применение современных электронных компонентов делает эти устройства малогабаритными и высокоэффективными.

Принцип работы частотного преобразователя достаточно простой. Вначале осуществляется подача сетевого напряжения к выпрямителю, где происходит его трансформация в постоянный ток. Затем он сглаживается конденсаторами и поступает на транзисторный преобразователь. Его транзисторы в открытом состоянии обладают крайне малым сопротивлением. Их открытие и закрытие происходит в определенное время при помощи электронного управления. Происходит формирование напряжения, аналогичного трехфазному, когда фазы смещаются относительно друг друга. Импульсы имеют прямоугольную форму, однако это совершенно не влияет на работу двигателя.

Частотные преобразователи имеют большое значение при работе трехфазного электродвигателя в однофазной сети. При такой схеме подключения необходимо использование фазосдвигающего конденсатора для создания вращающего момента. Эффективность агрегата заметно падает, однако частотный преобразователь увеличить его производительность.

Таким образом, применение частотно регулируемого электропривода делает управление трехфазными двигателями переменного тока более эффективным. В результате, улучшаются производственные технологические процессы, а энергоресурсы используются более рационально.

регулируемый электропривод — это… Что такое регулируемый электропривод?

3.6 регулируемый электропривод: Электропривод, обеспечивающий управляемое изменение координат движения исполнительного органа рабочей машины.

19 регулируемый электропривод: Электропривод, обеспечивающий управляемое изменение координат движения исполнительного органа рабочей машины

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • регулируемый уплотнитель
  • регулирующая арматура

Смотреть что такое «регулируемый электропривод» в других словарях:

  • регулируемый электропривод — Электропривод, обеспечивающий управляемое изменение координат движения исполнительного органа рабочей машины. регулируемый электропривод Электропривод, параметры которого изменяются под воздействием управляющего устройства [ГОСТ …   Справочник технического переводчика

  • частотно-регулируемый электропривод — — Тематики электротехника, основные понятия EN adjustable frequency electric drive …   Справочник технического переводчика

  • электропривод с общим суммирующим усилителем — Регулируемый электропривод, в преобразовательном информационном устройстве которого сигналы управляющего воздействия и обратных связей по регулируемым координатам электропривода суммируются на одном общем усилителе. Тематики… …   Справочник технического переводчика

  • электропривод с подчиненным регулированием координат — Регулируемый электропривод, в управляющем устройстве которого регуляторы по числу регулируемых координат электропривода соединяются последовательно, образуя систему замкнутых контуров регулирования, в которой выходной сигнал регулятора внешнего… …   Справочник технического переводчика

  • электропривод — 1 электропривод: Электромеханическая система, состоящая в общем случае из взаимодействующих преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с… …   Словарь-справочник терминов нормативно-технической документации

  • электропривод с общим суммирующим усилителем — 48 электропривод с общим суммирующим усилителем: Регулируемый электропривод, в преобразовательном информационном устройстве которого сигналы управляющего воздействия и обратных связей по регулируемым координатам электропривода суммируются на… …   Словарь-справочник терминов нормативно-технической документации

  • электропривод с подчиненным регулированием координат — 49 электропривод с подчиненным регулированием координат: Регулируемый электропривод, в управляющем устройстве которого регуляторы по числу регулируемых координат электропривода соединяются последовательно, образуя систему замкнутых контуров… …   Словарь-справочник терминов нормативно-технической документации

  • Электропривод — Электрический привод (сокращённо электропривод) это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса. Современный… …   Википедия

  • КАСКАДНЫЙ ЭЛЕКТРОПРИВОД — регулируемый электропривод, содержащий асинхронный электродвигатель с фазным ротором, питаемый одновременно от двух источников энергии: непосредственно от сети (питает статор) и от дополнит. регулируемого источника, обеспечивающего плавное… …   Большой энциклопедический политехнический словарь

  • Частотно регулируемый привод — (частотно управляемый привод, ЧУП, Variable Frequency Drive, VFD) система управления скоростью вращения асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя. Частотный преобразователь… …   Википедия

Книги

  • Регулируемый асинхронный электропривод. Учебное пособие, Фролов Юрий Михайлович, Шелякин Валерий Петрович. Рекомендовано УМО вузов РФ по агроинженерному образованию в качестве учебного пособия для студентов, осваивающих образовательные программы бакалавриата по направлению подготовки… Подробнее  Купить за 3069 руб
  • Регулируемый асинхронный электропривод. Учебное пособие, Фролов Ю., Шелякин В.. Изложены сведения об асинхронном электроприводе, включая конструктивные особенности, физические процессы в асинхронном двигателе, его механические и электромеханические характеристики в… Подробнее  Купить за 1786 руб
  • Регулируемый асинхронный электропривод. Учебное пособие, Фролов Юрий Михайлович, Шелякин Валерий Петрович. Рекомендовано УМО вузов РФ по агроинженерному образованию в качестве учебного пособия для студентов, осваивающих образовательные программы бакалавриата по направлению подготовки… Подробнее  Купить за 1755 грн (только Украина)

Область применения

Производителями предлагается широкий ассортимент приводов, используемых в областях, где задействованы электродвигатели. Идеальное решение для всех видов нагрузки, и вентиляторов. Системы среднего класса используются на угольных электростанциях, в горнодобывающей промышленности, на мельницах, в жилищно-коммунальном хозяйстве и т. д. Диапазон номиналов выглядит таким образом: 3 кВ, 3.3 кВ, 4.16 кВ, 6 кВ, 6.6 кВ, 10 кВ и 11 кВ.

С появлением регулируемого электропривода контроль давления воды у конечного потребителя не вызывает проблем. Интерфейс с продуманной структурой сценариев отлично подходит для управления насосным оборудованием. Благодаря компактной конструкции, привод может быть установлен в шкаф различного исполнения. Продукты нового поколения обладают свойствами передовой техники:

  • высокая скорость и точность управления в векторном режиме;
  • существенная экономия электроэнергии;
  • быстрые динамические характеристики;
  • большой низкочастотный вращающий момент;
  • двойное торможение и т. д.

Заключение

Что такое ЧРП? Это мотор-контроллер, который управляет электродвигателем за счет регулировки частоты входной сети, и одновременно защищает агрегат от различных неисправностей (токовой перегрузки, токов КЗ).

Электрические приводы (выполняющие три функции, связанные со скоростью, управлением и торможением) являются незаменимым устройством для работы электродвигателей и других вращающихся машин. Системы активно применяются во многих сферах производства: в нефтегазовой отрасли, атомной энергетике, деревообработке и др.

Созданный в конце XIX столетия, трёхфазный асинхронный двигатель стал незаменимой составляющей современного промышленного производства.

Для плавного пуска и остановки такого оборудования требуется специальное устройство – преобразователь частоты. Особо актуально наличие преобразователя для крупных двигателей с большой мощностью. С помощью этого дополнительного устройства можно регулировать пусковые токи, то есть, контролировать и ограничивать их величину.

Если регулировать пусковой ток исключительно механическим способом, не удастся избежать энергетических потерь и уменьшения срока службы оборудования. Показатели этого тока в пять-семь раз превышают номинальное напряжение, что недопустимо для нормальной работы оборудования.

Принцип работы современного преобразователя частоты подразумевает использование электронного управления. Они не только обеспечивают мягкий пуск, но и плавно регулируют работу привода, придерживаясь соотношения между напряжением и частотой строго по заданной формуле.

Основное преимущество устройства – экономия в потреблении электроэнергии, составляющая в среднем 50%. А также возможность регулировки с учётом потребностей конкретного производства.

Устройство функционирует по принципу двойного преобразования напряжения.

  1. выпрямляется и фильтруется системой конденсаторов.
  2. Затем в работу вступает электронное управление – образуется ток с указанной (запрограммированной) частотой.

На выходе выдаются прямоугольные импульсы, которые под воздействием обмотки статора двигателя (её индуктивности) становятся близкими к синусоиде.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: