ЭДС индукции
\(~E_i = -\frac {\Delta \Phi}{\Delta t},\)
где Ei – ЭДС индукции, возникающая в контуре при равномерном изменении магнитного потока (В); ΔΦ = Φ2 — Φ1 – изменение магнитного потока от Φ1 до Φ2 (Вб); Δt – время изменения магнитного потока (с); ΔΦ/Δt – скорость изменения магнитного потока (Вб/с или В).
- Эту формулу можно применять только при равномерном изменении магнитного потока.
- При увеличении магнитного потока (ΔΦ > 0), ЭДС отрицательная (ℰi < 0), т.е. индукционный ток имеет такое направление, что вектор магнитной индукции индукционного магнитного поля направлен против вектора магнитной индукции внешнего (изменяющегося) магнитного поля (рис. 2 а).
- При уменьшении магнитного потока (ΔΦ < 0), ЭДС положительная (Ei > 0), т.е. индукционный ток имеет такое направление, что вектор магнитной индукции индукционного магнитного поля направлен в одну и ту же сторону с вектором магнитной индукции внешнего (изменяющегося) магнитного поля (рис. 2 б).
- Знак «–» в формуле будем учитывать в задачах, где указано как изменяется (увеличивается или уменьшается) магнитный поток.
Рис. 2
Так как магнитный поток равен \(~\Phi = B \cdot S \cdot \cos \alpha\) , то он может изменяться:
- или только за счет изменения магнитной индукции поля, тогда
-
\(~\Delta \Phi = (B_2 — B_1) \cdot S \cdot \cos \alpha\) ;
-
- или только за счет изменения площади контура, тогда
-
\(~\Delta \Phi = B \cdot (S_2 — S_1) \cdot \cos \alpha\) ;
-
- или только за счет поворота контура в магнитном поле, тогда
-
\(~\Delta \Phi = B \cdot S \cdot (\cos \alpha_2 — \cos \alpha_1)\) ;
-
- или одновременно за счет изменения нескольких параметров, тогда
-
\(~\Delta \Phi = B_2 \cdot S_2 \cdot \cos \alpha_2 — B_1 \cdot S_1 \cdot \cos \alpha_1\) .
-
При любом способе изменения магнитного потока в контуре возникает ЭДС индукции.
Индукционный ток
\(~I_i = -\frac {E_i}{R},\)
где Ii – индукционный ток в контуре (А), Ei – ЭДС индукции (В), R – сопротивление контура (Ом).
План определения направления индукционного тока:
- Установите направление вектора магнитной индукции внешнего поля (\(~\vec B\)).
- Выясните, как изменяется (увеличивается или уменьшается) поток магнитной индукции этого поля через поверхность контура.
- Используя правило Ленца, установите направление вектора магнитной индукции индукционного магнитного поля (\(~\vec B_i\)) :
- если поток магнитной индукции через контур увеличивается, то вектор магнитной индукции индукционного магнитного поля (\(~\vec B_i\)) направлен в противоположную сторону вектора магнитной индукции внешнего поля (\(~\vec B\)) ;
- если поток магнитной индукции через контур уменьшается, то вектор магнитной индукции индукционного магнитного поля (\(~\vec B_i\)) направлен в ту же сторону, что и вектор магнитной индукции внешнего поля (\(~\vec B\)) .
- Используя правило правой руки, по направлению вектора магнитной индукции индукционного магнитного поля (\(~\vec B_i\)) найдите направление индукционного тока.
ЭДС индукции движущегося проводника
Индукционный ток в проводниках, движущихся в магнитном поле, возникает за счет действия на свободные заряды проводника силы Лоренца. Поэтому направление индукционного тока в проводнике будет совпадать с направлением составляющей силы Лоренца на этот проводник.
С учетом этого можно сформулировать следующее правило левой руки для определения направления индукционного тока в движущемся проводнике: нужно расположить левую руку так, чтобы вектор магнитной индукции входил в ладонь, четыре пальца совпадали с направлением движения проводника, тогда отставленный на 90° большой палец укажет направление индукционного тока (рис. 3).
Рис. 3
- Если проводник движется вдоль вектора магнитной индукции, то индукционного тока не будет (сила Лоренца равна нулю).
- Ток не может идти поперек проводника (заряды под действием силы Лоренца смещаются к стенкам проводника и создавать ток не будут) (рис. 4).
Рис. 4
\(~E_i = B \cdot \upsilon \cdot l \cdot \cos \alpha ,\)
где Ei – ЭДС индукции движущегося проводника (В); υ – скорость движения проводника (м/с); В – модуль вектора магнитной индукции (Тл); l – длина проводника (м); α – угол между направлением движения проводника и вектором магнитной индукции.
Назначение
Чтобы после запуска силовой установки восстановить заряд аккумулятора, а также обеспечить энергией все остальные электроприборы, используется генератор. Этот электрический элемент, в отличие от аккумулятора вырабатывает электричество, при этом делать он это может постоянно. Но для выработки электротока необходима механическая работа – вращение одной из составляющих частей генератора – ротора.
Генератор – этот тот же электродвигатель, но работа его выполняется с точностью до наоборот. Если в эл. двигатель подается энергия, чтобы получить механическое действие – вращение ротора, то у генератора – вращение обеспечивает выработку электрической энергии.
Если по-простому, то принцип действия генератора таков: при вращении ротора он образует магнитное поле, воздействующее на обмотку статора, из-за чего в ней появляется электрический ток, который и используется для питания бортовой сети.
Но имеются и определенные нюансы в работе данного элемента бортовой сети. Современный автомобильный генератор является трехфазным и обеспечивает на выходе переменный ток, который не подходит для электрообеспечения бортовой сети авто, поскольку в ней используется постоянный ток. К тому же, генератор должен вырабатывать электроэнергию с определенными показателями, чтобы не нанести вред потребителям. Поэтому в данный прибор включен ряд элементов дополнительного оснащения.
Параметры генератора
Работу генератора оценивают по нескольким параметрам:
- номинальный ток и номинальное напряжение;
- номинальная частота возбуждения;
- частота самовозбуждения;
- коэффициент полезного действия (КПД).
Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.
Характеристика генератора
Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.
Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.
На картинке ниже показана подробная схема подключения генератора в автомобиле.
Схема подключения генератора
Для чего в генераторе регулятор напряжения?
При изменении частоты оборотов коленчатого вала и соответственно ротора в бортовой сети могут возникнуть скачки напряжения, которые негативно сказываются на работе потребителей. Скачки устраняются за счет ограничения тока возбуждения, передаваемого через щетки с регулятора напряжения на ротор. Управление осуществляется путем изменения времени подключения обмотки якоря в зависимости от нагрузки на бортовую сеть.
Неисправность генератора можно определить по индикатору на панели приборов. Горение лампочки заряда аккумулятора после запуска говорит о недостаточном напряжении в сети, а мигание указывает на превышение.
Установка бензинового генератора
Процедура не вызовет сложности и не потребует особых условий. Для качественной установки бензинового генератора необходимо соблюдать основные правила безопасности:
- Обеспечить свободный доступ к установке.
- Не размещать прибор в домах, высота потолка в которых ниже 2,5 м.
- Соорудить специальную выхлопную трубу для моделей, которые имеют воздушную систему охлаждения.
- Не устанавливать прибор в места, куда проникают прямые солнечные лучи. Это может спровоцировать перегрев бензинового генератора и его скорейший выход из строя.
- Обеспечить хорошую вентиляцию в доме, где находится установка. Есть риск того, что выхлопные газы провоцируют взрыв.
- Защитить установку от попадания влаги и пыли.
https://youtube.com/watch?v=xlfOz-jbKaE%250D
Электродвижущая сила индукции
Когда контур движется внутри не изменяющегося магнитного поля или когда неподвижный контур находится рядом с движущимся (обычно вращающимся) магнитом, возникает сила, которая называется электродвижущая сила (ЭДС) индукции. ЭДС, в свою очередь, определяется величиной магнитного потока, от него не зависящим: кратко говоря, чем больше силовых линий пронизывает контур, тем больше индукционная электродвижущая сила.
Магнитный поток через контур
Но для возникновения данной силы необходим именно замкнутый контур, так как для возникновения электрического поля необходимо обеспечить замкнутое движение электрических зарядов.
Устройство генератора переменного тока[править | править код]
Схематическое устройство однофазного генератора переменного тока. Генератор с вращающимися магнитными полюсами и неподвижным статором. Автомобильный генератор переменного тока в разрезе. Видны полюсные наконечники. К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой»), нейтральный провод отсутствует.По конструкции можно выделить:
- генераторы с неподвижными магнитными полюсами и вращающимся якорем;
- генераторы с вращающимися магнитными полюсами и неподвижным статором.
Последние получили большее распространение, так как благодаря неподвижности статорной обмотки отпадает необходимость снимать с ротора большой ток высокого напряжения с использованием скользящих контактов (щёток) и контактных колец.
Подвижная часть генератора называется ротор, а неподвижная — статор.
Статор собирается из отдельных железных листов, изолированных друг от друга. На внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора.
Ротор изготавливается, обычно, из сплошного железа, полюсные наконечники магнитных полюсов ротора собираются из листового железа. При вращении между статором и полюсными наконечниками ротора присутствует минимальный зазор, для создания максимально возможной магнитной индукции. Геометрическая форма полюсных наконечников подбирается такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному.
На сердечники полюсов посажены катушки возбуждения, питаемые постоянным током. Постоянный ток подводится с помощью щёток к контактным кольцам, расположенным на валу генератора.
По способу возбуждения генераторы переменного тока делятся на:
- генераторы, обмотки возбуждения которых питаются постоянным током от постороннего источника электрической энергии, например от аккумуляторной батареи (генераторы с независимым возбуждением ).
- генераторы, обмотки возбуждения которых питаются от постороннего генератора постоянного тока малой мощности (возбудителя ), сидящего на одном валу с обслуживаемым им генератором.
- генераторы, обмотки возбуждения которых питаются выпрямленным током самих же генераторов (генераторы с самовозбуждением ).См также бесщёточный синхронный генератор.
- генераторы с возбуждением от постоянных магнитов.
Конструктивно можно выделить:
- генераторы с явно выраженными полюсами;
- генераторы с неявно выраженными полюсами.
По количеству фаз можно выделить:
- Однофазные генераторы. См. также конденсаторный двигатель, однофазный двигатель .
- Двухфазные генераторы. См. также двухфазная электрическая сеть, двухфазный двигатель .
- Трёхфазные генераторы. См. также трёхфазная система электроснабжения, трёхфазный двигатель .
По соединению фазных обмоток трёхфазного генератора:
- шестипроводная система Тесла (практического значения не имеет);
- соединение «звездой»;
- соединение «треугольником»;
- соединение «Славянка», сочетающее шесть обмоток в виде одной «звезды» и одного «треугольника» на одном статоре.
Наиболее распространено соединение «звездой» с нейтральным проводом (четырёхпроводная схема), позволяющее легко компенсировать фазовые перекосы и исключающее появление постоянной составляющей и паразитных кольцевых токов в обмотках генератора, приводящих к потерям энергии и перегреву.
Так как на практике в электросетях с множеством мелких потребителей нагрузка на разные фазы не является симметричной (подключается разная электрическая мощность, или например, активная нагрузка на одной фазе, а на другой индуктивная или ёмкостная, то при соединении «треугольником» или «звездой» без нейтрального провода можно получить такое неприятное явление как «перекос фаз», например, лампы накаливания, подключенные к одной из фаз, слабо светятся, а на другие фазы подаётся чрезмерно большое электрическое напряжение и включенные приборы благополучно «сгорают».
К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой») с нейтральным проводом.
К трёхфазному генератору (соединение «треугольником») подключена активная нагрузка (соединение «треугольником»).
Принцип работы автомобильного генератора
Автомобильный генератор предназначен для преобразования энергии вращения двигателя в электрический ток, который используется для зарядки аккумулятора и питания электрооборудования машины. Устройство приводится в действие от коленчатого вала ременной передачей. К его главным параметрам относят номинальную силу тока и напряжение, номинальную частоту вращения и самовозбуждения, а также КПД.
При включенном замке зажигания ток с аккумулятора через щетки идет на обмотки возбуждения, создавая там магнитное поле. Ротор начинает одновременное вращение с коленвалом двигателя, и его магнитное поле пронизывает обмотки статора, создавая переменное напряжение. Выпрямительный блок преобразует ток в постоянный, который питает аккумуляторную батарею и бортовую сеть.
При изменении нагрузки в сети и частоты вращения двигателя начинает работать регулятор напряжения, контролируя время включения обмотки возбуждения. Если в автомобиле потребляемый ток превышает значение, вырабатываемое генератором, недостаток электричества компенсирует аккумуляторная батарея, о чем свидетельствует загоревшаяся на контрольной панели лампа заряда.
Принцип работы генератора
Пришло время рассмотреть устройство генератора перемененного тока и принцип его действия. Он заключается в том, что в электроустановке используют специальную систему, которая при функционировании производит магнитный поток большой мощности.
За основу взято два сердечника, изготовленных из электротехнической стали. Пазы одного сердечника предполагают размещение обмотки, которая отвечает за генерацию потока магнитных волн. Второй же используется для индукции электродвижущей силы.
Обычно сердечник, который расположен внутри, находится в горизонтальном или вертикальном положении и вращается по соответствующим орбитам. Его называют ротором. Второй же сердечник, называемый статором, как понятно из его названия, остается в неподвижном состоянии. Чем меньшее расстояние будет между этими элементами, тем больше вырастет индуктивность магнитного потока. Далее рассмотрены назначение устройства и работа генератора переменного тока.
Рассмотрение строения электрогенератора на практике
С ростом научного прогресса и получением электрического тока, являющимся одним из основных видов энергии, жизнь человека стала намного комфортнее. Ведь благодаря ему, а точнее, его работе, приводятся в движение различные механизмы, освещаются и обогреваются помещения и так далее.
Ток в проводнике появляется за счёт электродвижущей силы (ЭДС), заставляющей перемещаться частицы, несущие заряд в проводнике. Если проводник испытывает воздействие магнитного поля, то это явление называется электромагнитной индукцией.
Иными словами, если соблюдается следующее условие: двигается проводник в магнитном поле или электромагнитное поле совершает движение вокруг проводника, то в последнем появляется электрический ток. В результате этого явления были созданы трансформаторы, электродвигатели и генераторы.
Генератор тока является электрической машиной, преобразующей механическую энергию в электрическую. Это примитивное устройство, состоящее из проводника, представляющего замкнутый контур и вращающийся между полюсами магнита.
В современных генераторах этот контур содержит минимум три обмотки, необходимые для создания большей ЭДС. Для чёткого понимания предназначения и процессов, протекающих при преобразовании электроэнергии, нужно ознакомиться с устройством и принципом действия генератора (ЭГ).
Какой ток выдает генератор автомобиля?
На генераторах имеется заводская маркировочная табличка, указывающая предельный ток, который может выдать устройство. Для замера реального тока используется мультиметр и специальные клещи, надеваемые на проводку генератора. Клещи позволяют с высокой точностью определить силу тока в проводнике без разрушения изоляционного слоя.
После установки измерителя двигатель запускается и выводится на высокие обороты, обеспечивающие максимальную отдачу генератора. Затем требуется включать потребители и отслеживать изменение тока в проводке. Эти же потребители включаются одновременно, при этом отмечается изменение параметров тока в цепи. Результат не может быть меньше суммы, полученной при раздельном подключении устройств.
Замер тока, необходимого для работы обмоток самовозбуждения, производится на проводе, идущем к этим обмоткам. Измерение ведется при высоких оборотах коленчатого вала. Нормой считается ток в пределах 3-7 А.
Теоретическая часть
Основной принцип работы альтернатора
Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.
Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.
Базовые принципы
Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.
- Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
- Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.
Строение простейшего электромагнитного генератора
Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.
Генератор переменного тока — как устроен
- Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
- Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
- Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
- Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.
Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.
Переменный ток
В его честь была названа частота тока
Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.
Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.
Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.
Мощнейшие генераторы, установленные на Пушкинской ГЭС
Что такое генератор в машине
Итак, зачем нужен генератор в машину?
Генератор использовался практически с самого зарождения автомобилестроения. Однако в то время инженерам были доступны только генераторы постоянного тока. Устройство генератора автомобиля такого типа отличалось нестабильностью работы и совсем небольшим объемом мощности.
Все изменилось в 60-х годах ХХ века. На рынке появились селеновые и кремниевые полупроводники, которые позволили инженерам создать новое изобретение ‒ генераторы переменного тока. Новое устройство обладало меньшим весом (в несколько раз). Еще одним преимуществом стала эффективность. При одинаковой нагрузке работа генератора автомобиля переменного тока более стабильно вырабатывала электроэнергию и распределяла между бортовой сетью и аккумулятором. За несколько лет устройство кардинально поменялось. Оборудование стало мощнее, надежнее и стабильнее.
Устройство автомобильного генератора
Автогенератор включает в себя несколько составляющих:
- Ротор.
- Статор.
- Блок щеток.
- Регулятор напряжения.
- Выпрямительный блок (диодный мост).
1 — задний подшипник; 2 — выпрямительный блок; 3 — контактные кольца; 4 — щетка; 5 — щеткодержатель; 6 — кожух; 7 — диод; 8 — втулка подшипника; 9 — винт; 10 — задняя крышка; 11 — крыльчатка; 12 — винт; 13 — ротор; 14 — обмотка ротора; 15 — передняя крышка; 16 — вал ротора; 17 — шайба; 18 — гайка; 19 — шкив; 20 — передний подшипник; 21 — обмотка ротора; 22 — статор.
Ротор
Ротором (от англ. rotation — вращение) называется подвижная часть автогенератора. Она представляет собой вал с расположенной на ней обмоткой возбуждения, находящейся между двумя полюсными половинками. Последние изготавливаются штамповкой, на каждой из них имеется шесть выступов в форме клюва, расположенных сверху обмотки. Эти половинки образуют систему полюсов и контактные кольца. Задача колец заключается в подаче электротока на обмотку через ее выводы.
Обмотка возбуждения предназначена для создания магнитного поля. Для решения этой задачи на нее должен быть подан слабый электроток. До запуска силового агрегата подачу тока для образования магнитного поля осуществляет АКБ. Когда ДВС заработает, и число оборотов достигнет нужной величины, подача тока на обмотку возбуждения будет производиться генератором
На роторе, кроме того, размещены:
- Приводной шкив.
- Подшипники качения.
- Охлаждающее устройство (вентилятор).
Ротор располагается внутри статора, зажатого между крышками корпусной части. Крышки снабжены посадочными местами, в которых помещаются роторные подшипники. Кроме того, в крышке, расположенной со стороны приводного шкива, имеются отверстия для вентиляции.
Схема вентиляции генераторов
Статор
Этот элемент, в отличие от вышеописанного, неподвижен (статичен), из-за чего и получил свое название. Его задача заключается в получении электротока переменной величины, возникающего под влиянием магнитного поля ротора. Статор состоит из обмоток и сердечника. Последний изготавливается из листовой стали и имеет пазы для укладки трех обмоток (по количеству фаз). Обмотки могут укладываться одним из двух способов: петлевым или волновым. Схема их соединения также может быть разной – в форме звезды или треугольника.
1 — сердечник; 2 — обмотка; 3 — пазовый клин; 4 — паз; 5 — вывод для соединения с выпрямителем.
При подключении по схеме «звезда» все обмотки соединяются вместе одним из концов в общей точке. Их вторые концы выполняют роль выводов. Схема «треугольник» предусматривает соединение обмоток по другому принципу: 1-я со 2-й, 2-я – с 3-ей, а 3-я, в свою очередь – с 1-й. В этом случае функцию выводов выполняют точки соединения. Наглядно обе схемы показаны на рисунке.
Схема «звезда» и «треугольник»
Блок щеток
Задача этой составляющей генератора заключается в передаче электричества на обмотку возбуждения. Конструктивно блок представляет собой корпус с расположенной в нем парой подпружиненных графитных щеток. Последние прижимаются с помощью пружин к контактным кольцам, но жестко с ними не скреплены.
Регулятор напряжения
Регулятор нужен для того, чтобы поддерживать величину напряжения на выходе в установленных пределах. Это необходимо, поскольку количество тока, как и его параметры, зависит от числа оборотов двигателя, а долговечность аккумулятора напрямую связана с подаваемой разностью потенциалов. Недостаточное напряжение приведет к «хроническому» недозаряду АКБ, а избыточное – к перезаряду. Как в первом, так и во втором случае срок службы батареи заметно снизится. Современные автомобили комплектуются электронными полупроводниковыми регуляторами.
Регулятор напряжения
Диодный мост (выпрямительный блок)
Задача этого элемента заключается в том, чтобы преобразовывать переменный ток, поступающий на него, в постоянный, необходимый для питания бортовой сети. Конструктивно он состоит из теплоотводящих пластин, в которые вмонтированы диоды в количестве 6 штук – по 2 на каждую статорную обмотку (на «+» и на «-») .
Виды и их особенности
Современные модели бытовых электрогенераторов классифицируются по 3-м признакам:
- Синхронности.
- Типу используемого топлива.
- Назначению.
Бытовой переносной газовый электрогенератор мощностью 2 кВтИсточник alicdn.com
Разберем их особенности более подробно.
Синхронные и асинхронные
В зависимости от того, какой принцип лежит в работе, агрегаты разделяются на 2 вида:
Синхронные.
Главная специфика генераторов данного типа – прямая зависимость характеристик вырабатываемого тока от скорости вращения якоря. Благодаря этому возникает возможность точно задавать параметры выдаваемого электричества.
Работает по алгоритму:
- Ротор вращается от любого двигателя, например, турбины.
- На его обмотку подается постоянный ток.
- Возникающая при этом ЭДС генерирует переменное магнитное поле.
- Под его действием в статорной обмотке возникает ток.
Именно такого рода электрогенераторами оснащается большая часть электростанций.
Асинхронные.
Асинхронный генератор переменного тока – это, по сути, асинхронный электродвигатель, так как оба относятся к однотипным статорно-роторным устройствам. При этом чтобы мотор заработал в качестве электрогенератора, потребуется увеличить скорость вращения якоря до нужного значения.
Асинхронный двигатель легко переделывается в электрогенераторИсточник ytimg.com
Недостатки данного типа агрегатов выражаются в необходимости возбуждать обмотку после подключения реактивной нагрузки – ввиду роста стартовой нагрузки и последующего провала мощности. Кроме того, требуется точно подобранный конденсатор. В противном случае ток будет меньше, чем необходим или установка будет перегреваться.
Вид топлива
Для получения вращающего момента применяется ДВС. В нем тепловая энергия от сжигания топлива превращается в механическую энергию, которая в свою очередь передается на вращение вала ротора. Для этой цели применяются следующие виды энергоресурса:
Газ.
Особенности газовых агрегатов проявляются в следующем:
- Отсутствие загрязняющих окружающую среду выхлопов.
- Доступность и дешевизна топлива.
- Автоматическая подача и контроль уровня газа.
Недостаток выражается в необходимости обустройства отдельного теплого помещения под контролирующую аппаратуру. Более того, к газовому хранилищу предъявляются особые требования безопасности.
Автономная газовая электростанция для питания приборов частного домаИсточник ytimg.com
Простейшие дизельные генераторы переменного тока имеют следующий ряд плюсов:
- Доступность и дешевизна энергоресурса.
- Пожаро-взрывобезопасность, что особенно актуально в сравнении с газовыми моделями.
- Длительная работа без остановок и аварий с одного запуска.
- Возможность оснащения автозапуском.
- Долговечность.
Проблема дизельных агрегатов выражается в затрудненном запуске на морозе.
Бензин.
Преимущества бензиновых моделей выражаются в следующем:
- Малые размеры и вес установок.
- Доступность эксплуатации, обслуживания и ремонта.
- Оснащенность автоматической защитой.
- Минимальный уровень рабочего шума.
- Возможность использования в помещении.
Видео о том, что такое генератор и как он работает:
Главный минус проявляется в высокой цене топлива.
Назначение
По назначению электрогенераторы разделяются на 3 вида:
- Бытовые. В зависимости от цели использования в быту применяются установки мощностью от 0,6 до 25-27 кВт. Ими снабжаются приборы, работающие в доме, гараже, придомовых постройках и на участке. Такие модели также берутся и на стройплощадку, и на отдых на природе.
- Профессиональные. Мощность установок ограничивается номиналом в 100 кВт. Агрегат может использоваться на объектах как временно, так и постоянно.
- Промышленные. Для питания мощного цехового оборудования применяются агрегаты мощностью более 100 кВт. Характеризуются большими габаритами, весом и сложностью в обслуживании.
Видео-пример изготовления генератора из асинхронного двигателя:
Коротко о главном
Электрогенератор работает по закону электромагнитной индукции – когда при пропускании переменного магнитного поля через неподвижный проводник возникает ток. Состоит агрегат из вращающегося от внешнего привода ротора и неподвижного статора в виде обмотки, с контактов которой в итоге снимается электроток.
Применяются электрогенераторы в различных сферах – и в быту, и в промышленности. Подключаться они могут вручную, автоматически и синхронно. Классифицируются по нескольким признакам:
- Асинхронные и синхронные.
- Газовые, дизельные и бензиновые.
- Бытовые, профессиональные, промышленные.
Применение в быту
На основе ЭДС функционируют даже электрические счётчики, внутри которых в качестве контура вращается алюминиевый диск. Более того, явление электромагнитной индукции используется не только для работы специализированной техники и производств, но и в обычных бытовых предметах, таких как пылесос, миксер, фен.
Любой электродвигатель тоже функционирует благодаря явлению электромагнитной индукции. Об этом подробнее я рассказывал тут.
Возникновение индуктивности применяется в микрофонах, которые преобразуют механические колебания в электрические. Благодаря этому закону физики функционирует электрическая цепь, являющаяся основой работы радиотехники. Так, электромагнитная индукция – это физическое явление, которое находит применение в бытовых электромашинах.
Не забывайте подписываться на телегу проекта и искать авторские статьи .