Конструкция и детали.
Из-за простоты устройства печатная плата не разрабатывалась, все элементы распаиваются на выводах переключателей и разъёмов. Всю конструкцию можно собрать в корпусе небольшого размера, всё будет зависеть от габаритов применённого трансформатора и переключателей.
При испытании мощных биполярных транзисторов на больших токах (100мА и 500мА) их необходимо закрепить на радиаторе! Если пластинчатый радиатор смонтировать на одной из стенок прибора или сам радиатор использовать в качестве стенки прибора, то это сделает пользование устройством более удобным. Радиатор, который всегда с собой! Это существенно ускорит процесс испытания мощных транзисторов в корпусах ТО220, ТО126, ТОР3, ТО247 и аналогичных.
Микросхему стабилизатора блока питания также необходимо установить на небольшой радиатор. Диодный мост подойдёт любой на ток 1А и выше. В качестве трансформатора можно использовать подходящий малогабаритный, мощностью от 10Вт с напряжением вторичной обмотки 10-14В.
Опционально: в приборе для проверки транзисторов предусмотрены гнёзда для подключения второго мультиметра (включенного в режим измерения постоянного напряжения на предел 2-3В). Подсмотрел эту идею на одном из форумов. Это позволяет измерить Uбэ транзистора (при необходимости вычислить крутизну). Данная функция очень удобна при подборе биполярных транзисторов одной структуры для ПАРАЛЛЕЛЬНОГО включения в одном плече выходного каскада усилителя. Если при одном и том же токе напряжения Uэб отличаются не более чем на 60мВ, то такие транзисторы можно включать параллельно БЕЗ эмиттерных токовыравнивающих резисторов. Теперь вы понимаете, почему усилители фирмы Accuphase, где в выходном каскаде в каждом плече включено параллельно до 16 транзисторов, стоят таких денег?
Перечень используемых элементов:
Резисторы:
R3 — 820 Ом, 0,25Вт,
R4 — 1к2, 0,25Вт,
R5 — 510 Ом, 0,25 Вт,
R6 — 260 Ом, 0,25Вт
R7 — 5,1 Ом, 5Вт (лучше больше),
R8 — 26 Ом, 1 Вт,
R9 — 51 Ом, 0,5Вт,
R10 — 1к8, 0,25 Вт.
Конденсаторы:
С1 — 100nF, 63V,
C2 — 1000uF, 35V,
C3 — 470uF, 25V
Коммутация:
S1 — переключатель типа П2К или галетный на три положения с двумя группами контактов на замыкание,
S2 — переключатель типа П2К, тумблер или галетный с одной группой контактов на переключение,
S3 — переключатель типа П2К или галетный на два положения с четырьмя группами контактов на переключение,
S4 — кнопка без фиксации,
S5 — сетевой выключатель
Активные элементы:
T3 — транзистор типа КТ3102 или любой маломощный n-p-n типа с высоким коэффициентом усиления,
D3 — TL431,
VR1 — интегральный стабилизатор 7812 (КР142ЕН8Б),
LED1 — светодиод зелёного цвета,
BR1 — диодный мост на ток 1А.
Разное:
Tr1 — трансформатор мощностью от 10Вт, с напряжением вторичной обмотки 10-14В,
F1 — предохранитель на 100mA…250mA,
клеммы (подходящие доступные) для подключения измерительных приборов и испытуемого транзистора.
Особенности устройства
Полупроводниковые приборы – это группа элементов, которые имеют удельные сопротивления больше, нежели у проводников, но меньше, чем у диэлектриков. Их характерной особенностью является уменьшение этого параметра с увеличением температуры.
Полупроводник – это материал, из которого делают прибор. К нему присоединяются контакты из металла, похожие на ножки, которые присутствуют в корпусе устройства любого типа
Важно понять, из чего делают и как работает транзистор
Транзистор на схеме выглядит как последовательное соединение элементов Н, П, Н типов. А чтобы полупроводниковое устройство пропускало через себя ток, на его базу постоянно должен подаваться сигнал.
Встречаются разные типы транзисторов – в зависимости от того, какое назначение они имеют:
Для усиления силы тока. Если между коллектором и эмиттером течет сильный ток, так называемый ток коллектора, то он будет меняться в зависимости от маленького тока базы.
В качестве электронного переключателя. Радиоприбор может включать и выключать ток. Если на входе он имеет маленькую величину, то на выходе эта величина увеличивается. В том случае, когда по проводникам течет ток большой величины, его можно плавно регулировать с помощью угла поворота рукоятки.
Подав управляющий сигнал на базу, можно включить полупроводниковый элемент, и через него потечет ток. Также его можно выключить. Работа транзистора в качестве электронного переключателя называется «ключевой режим».
Транзистор имеет 3 вывода. Они называются по-разному, если виды транзисторов различаются. У биполярных электрических приборов существуют следующие слои:
- эмиттер – область, в которую входят отрицательно заряженные частицы;
- коллектор – выход электронов;
- база, которая расположена по центру и управляет током в проводнике.
Полевые радиоэлектронные приборы имеют другие названия «ножек»:
- затвор – это управляющий контакт;
- сток;
- исток.
Биполярный транзистор — принцип работы
Принцип действия биполярного транзистора представлен ниже.
Когда транзистор включают в режиме усиления, открывается эммитерный переход, и закрывается переход коллектора. Это происходит в результате подключения источников питания.
Из-за того, что переход эммитера находится в открытом положении, через него происходит переход эммитерного тока, он образуется в результате перехода дырок из базового слоя транзистора в эммитер и аналогичного перехода электронов из эммитера в базовый слой.
В результате этого эммитерный ток состоит из двух основных частей – дырочной и электронной.
Чтобы определить коэффициент инжекции, следует разобраться с уровнем эффективности эммитера.
Инжекция зарядов – это перемещение элементов, содержащих в себе заряд из зоны, где они играли основную роль, в зону, где они стали неосновными.
В базовом слое транзистора происходит рекомбинация электронов, а восполнение их концентрации происходит за счёт плюса источника ЭГ. В итоге электрическая цепь базового слоя биполярного транзистора содержит в себе достаточно слабый ток.
А те электроны, которые попросту не успели поддаться процессу рекомбинации в базовом слое, с помощью разгоняющего воздействия закрытого коллекторного перехода перемещаются в него, и происходит образование коллекторного тока. В результате этого наблюдается экстракция электрических зарядов (переход элементов, которые содержат в себе заряд из зоны, где они играли второстепенную роль в зону, где они играют главную роль).
Вот и весь принцип работы биполярного транзистора.
PNP-транзистор
Впервые биполярный транзистор изготовили, вплавляя в кристалл германия (материал n-типа) капли индия. Индий (In) – трехвалентный металл, материал p-типа. Поэтому такой транзистор назвали диффузным (сплавным), имеющим структуру p-n-p (или pnp). Биполярный транзистор на рисунке ниже изготовлен в 1965 году. Его корпус обрезан для наглядности.
Кристалл германия в центре называется базой, а вплавленные в него капли индия – эмиттером и коллектором. Можно рассматривать переходы ЭБ (эмиттерный) и КБ (коллекторный) как обычные диоды, но переход КЭ (коллектор-эмиттерный) имеет особое свойство. Поэтому невозможно изготовить биполярный транзистор из двух отдельных диодов.
Между током коллектора и эмиттера имеется соотношение:
Обычно α лежит в пределах 0,85-0,999 и обратно зависит от толщины базы. Эта величина называется коэффициент передачи тока эмиттера. На практике чаще используют обратную величину (также обозначается как h21e):
Это коэффициент передачи тока базы, один из самых важных параметров биполярного транзистора. Он чаще определяет усилительные свойства на практике.
Транзистор pnp называют транзистором прямой проводимости. Но бывает и другой тип транзистора, структура которого отлично дополняет pnp в схемотехнике.
Особенности конструкции
Устройство биполярного транзистора состоит из трёх по-разному легированных полупроводниковых областей:
- области эмиттера;
- области базы;
- области коллектора.
Этими областями являются соответственно p-тип, n-тип и p-тип в транзисторе PNP и n-тип, p-тип и n-тип в NPN-транзисторе.
Каждая полупроводниковая область соединена с выводом, который имеет соответствующее обозначение: эмиттер (E), основание (B) и коллектор (C).
Основание расположено между излучателем и коллектором. Оно изготовлено из легированного легкого материала с высоким удельным сопротивлением. Коллектор окружает область эмиттера, что делает практически невозможным выход электронов, инжектированных в базовую область, без сбора. Это делает результирующее значение α очень близким к единице, таким образом давая транзистору большой коэффициент усиления тока (β). Вид в поперечном сечении биполярного транзистора указывает на то, что переход коллектор-база имеет гораздо большую площадь, нежели переход эмиттер-база.
Схемы подключения
Существует несколько схем включения биполярных транзисторов.
Их конструкция зависит от общего вывода, и делятся они на 3 группы:
- с общей базой;
- с общим эмиттером;
- с общим коллектором.
Схема включения с общей базой:
В функции эмиттера входит инжекция (поставка) основных носителей на базу. Как пример – электроны. Источники должны быть согласованы с условием E2 >> E1. За ограничение тока открытого перехода p-n отвечает резистор Rэ.
Электрический ток будет небольшим при условии E1 = 0. Также он является начальным коллекторным током (I к 0). Если E1 > 0 электроны смогут попасть в базу, так как проходят через p-n-переход.
У базы должно быть довольно большое удельное сопротивления, что делает в ней концентрацию ней дырок низкой. В связи с этим некоторые электроны, которые достигли базы, проходят процесс рекомбинации с дырками. Так, получается базовый электрический ток Iб. В это же время с областью E2 воздействует гораздо большее поле, по сравнению с переходом эмиттера. Это и заводит электроны в сам коллектор. Именно это и обуславливает достижение коллектора большей частью электронов.
Схема включения биполярного транзистора с общим эмиттером:
Схема включения с общим коллектором. А – принципиальная схема, б – эквивалентная.
Биполярные транзисторы: принцип работы, характеристики и параметры
Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда.
В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки.
Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.
Особенности устройства биполярного транзистора
Биполярный транзистор включает в себя три области:
- эмиттер;
- базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
- коллектор – его область больше по размерам, чем область эмиттера.
К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.
Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.
Принцип работы биполярного транзистора
Этот тип транзистора имеет два перехода:
- электронно-дырочный между эмиттером и базой – эмиттерный;
- между коллектором и базой – коллекторный.
Дистанция между переходами маленькая. Для высокочастотных деталей она составляет менее 10 мкм, для низкочастотных – до 50 мкм. Для активации прибора на него подают напряжение от стороннего ИП. Принцип действия биполярных транзисторов с p-n-p и n-p-n переходами одинаков. Переходы могут функционировать в прямом и обратном направлениях, что определяется полярностью подаваемого напряжения.
Режим отсечки
Переходы закрыты, прибор не работает. Этот режим получают при обратном подключении к внешним источникам. Через оба перехода протекают обратные малые коллекторные и эмиттерные токи. Часто считается, что прибор в этом режиме разрывает цепь.
Активный инверсный режим
Является промежуточным. Переход Б-К открыт, а эмиттер-база – закрыт. Ток базы в этом случае значительно меньше токов Э и К. Усиливающие характеристики биполярного транзистора в этом случае отсутствуют. Этот режим востребован мало.
Режим насыщения
Прибор полностью открыт. Оба перехода подключаются к источникам тока в прямом направлении. При этом снижается потенциальный барьер, ограничивающий проникновение носителей заряда. Через эмиттер и коллектор начинают проходить токи, которые называют «токами насыщения».
С общим эмиттером
Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.
С общей базой
Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.
С общим коллектором
Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.
Какие параметры учитывают при выборе биполярного транзистора?
- Материал, из которого он изготовлен, – арсенид галлия или кремний.
- Частоту. Она может быть – сверхвысокая (более 300 МГц), высокая (30-300 МГц), средняя – (3-30 МГц), низкая (менее 3 МГц).
- Максимальную рассеиваемую мощность.
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Область применения и основной принципы функционирования
В состоянии покоя между коллекторами транзистора нет электрического тока. Его прохождению мешает сопротивляемость переходника, которая возникает из-за одновременной работы двух слоев транзистора. Включить элемент просто: необходимо подать любое напряжение на него. Управление базой и ее токами будет напрямую переключать режимы работы транзистора с «включенного» на «выключенный».
Если же направить сигнал от аналогового источника, то он будет взаимодействовать с выходными токами путем передачи им своей амплитуды. Иначе говоря, электрический сигнал, который поступил на выходы, будет усилен. Полупроводниковые управляющие триоды вполне могут активно работать как электронные ключи или усилители электронных сигналов входа.
Простейшие схемы подключения транзисторов
Помогла ли вам статья?
ДаНе особо
Биполярные транзисторы
Определение “биполярный” указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух типов – электроны и дырки.
Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В транзисторе используются оба типа носителей – основные и неосновные, поэтому его называют биполярным.
Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и коллектора.
- Э – эмиттер,
- Б – база,
- К – коллектор,
- ЭП – эмиттерный переход,
- КП – коллекторный переход,
- W – толщина базы.
Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:
- Режим отсечки – оба p-n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток
- Режим насыщения – оба p-n перехода открыты
- Активный режим – один из p-n переходов открыт, а другой закрыт
В режиме отсечки и режиме насыщения управление транзистором невозможно. Эффективное управление транзистором осуществляется только в активном режиме. Этот режим является основным. Если на эмиттерном переходе напряжение прямое, а на коллекторном – обратное, то включение транзистора считают нормальным, при противоположной полярности – инверсным.
В нормальном режиме коллекторный p-n переход закрыт, эмиттерный – открыт. Ток коллектора пропорционален току базы.
Движение носителей заряда в транзисторе n-p-n типа показано на рисунке:
При подключении эмиттера к отрицательному зажиму источника питания возникает эмиттерный ток Iэ. Так как внешнее напряжение приложено к эмиттерному переходу в прямом направлении, электроны преодолевают переход и попадают в область базы. База выполнена из p-полупроводника, поэтому электроны являются для неё неосновными носителями заряда.
Электроны, попавшие в область базы, частично рекомбинируют с дырками базы. Однако базу обычно выполняют очень тонкой из p-проводника с большим удельным сопротивлением (малым содержанием примеси), поэтому концентрация дырок в базе низкая и лишь немногие электроны, попавшие в базу, рекомбинируют с её дырками, образуя базовый ток Iб. Большинство же электронов вследствие теплового движения (диффузия) и под действием поля коллектора (дрейф) достигают коллектора, образуя составляющую коллекторного тока Iк.
Связь между приращениями эмиттерного и коллекторного токов характеризуется коэффициентом передачи тока
Как следует из качественного рассмотрения процессов, происходящих в биполярном транзисторе, коэффициент передачи тока всегда меньше единицы. Для современных биполярных транзисторов α = 0,9 ÷ 0,95
При Iэ ≠ 0 ток коллектора транзистора равен:
В рассмотренной схеме включения базовый электрод является общим для эмиттерной и коллекторной цепей. Такую схему включения биполярного транзистора называют схемой с общей базой, при этом эмиттерную цепь называют входной, а коллекторную – выходной. Однако такую схему включения биполярного транзистора применяют очень редко.
Какие есть виды
Среди наиболее популярных встречается два типа биполярных резисторов – NPN и PNP.
Транзистор NPN
Это один из двух типов биполярных транзисторов, состоящих из слоя p-легированного полупроводника между двумя n-легированными слоями.
Небольшое количество тока, поступающего в базу, усиливается для того, чтобы увеличить ток коллектора и эмиттера. То есть когда есть положительная разность потенциалов, измеренная от базы NPN-транзистора к его эмиттеру (то есть когда база выше касательно эмиттера), а также положительная разность потенциалов, измеренная от коллектора к эмиттеру, транзистор становится активным. В этом «включенном» режиме ток течет от коллектора к эмиттеру транзистора. Большая часть тока переносится электронами, которые идут от эмиттера к коллектору в качестве неосновных носителей в базовой области p-типа.
Чтобы обеспечить больший ток и более быструю работу, большинство биполярных транзисторов, используемых сегодня, являются NPN. Это связано с тем, что у них подвижность электронов выше, чем подвижность дырок.
Транзистор PNP
Он состоит из слоя n-легированного слоя полупроводника между двумя p-легированными.
Когда небольшой ток покидает базу, то он усиливается на выходе коллектора. То есть транзистор PNP включен, когда его основание опущено относительно эмиттера. В PNP-транзисторе область эмиттер-база смещена вперед. В связи с этим отверстия вводятся в базу в качестве миноритарных носителей. Основание очень тонкое, и большинство отверстий пересекают обратное смещение соединения база-коллектор с коллектором.
Стрелки на символах транзистора NPN и PNP указывают на PN-соединение между базой и эмиттером. Когда устройство находится в прямом активном или прямом насыщенном режиме, стрелка, расположенная на ножке эмиттера, указывает в направлении обычного тока.
Биполярные транзисторы можно классифицировать по другим характеристикам.
Наибольшая распространяемая мощность:
- 0-0,3 Вт;
- 0,3-3 Вт;
- выше 3 Вт.
Материал производства:
- кремний;
- арсенид галия.
Размер частот:
- низкая (до 3 мГц);
- средняя (до 30 мГц);
- высокая (до 300 мГц)
- сверхвысокая (свыше 300 мГц).
Биполярный СВЧ-транзистор
Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую). По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт). Выпускается большое число узкоспециализированных типов БТ СВЧ.
Биполярный СВЧ-транзистор КТ3109А (PNP)
Как работает транзисторный ключ
В данной статье мы рассмотрим, как работает транзисторный ключ на биполярном транзисторе. Такие полупроводниковые элементы производятся двух типов – n-p-n и p-n-p структуры, которые различаются типом применяемого полупроводника (в p-полупроводнике преобладают положительные заряды – «дырки»; в n-полупроводнике – отрицательные заряды – электроны).
Выводы БТ называются база, коллектор и эмиттер, которые имеет графическое обозначение на чертежах электрических схем, как показано на рисунке.
С целью понимания принципа работы и отдельных процессов, протекающих в биполярных транзисторах, их изображают в виде двух последовательно и встречно соединенных диодов.
Наиболее распространенная схема БТ, работающего в ключевом режиме, приведена ниже.
Чтобы открыть транзисторный ключ нужно подвести потенциалы определенного знака к обеим pn-переходам. Переход коллектор-база должен быть смещен в обратном направлении, а переход база-эмиттер – в прямом. Для этого электроды источника питания UКЭ подсоединяют к выводам базы и коллектора через нагрузочный резистор RК
Обратите внимание, положительный потенциал UКЭ посредством RК подается на коллектор, а отрицательный потенциал – на эмиттер. Для полупроводника p-n-p структуры полярность подключения источника питания UКЭ изменяется на противоположную
Резистор в цепи коллектора RК служит нагрузкой, которая одновременно защищает биполярный транзистор от короткого замыкания.
Команда на открытие БТ подается управляющим напряжением UБЭ, которое подается на выводы базы и эмиттера через токоограничивающий резистор RБ. Величина UБЭ должна быть не меньше 0,6 В, иначе эмиттерный переход полностью не откроется, что вызовет дополнительные потери энергии в полупроводниковом элементе.
Чтобы не спутать полярность подключения напряжения питания UКЭ и управляющего сигнала UБЭ БТ разной полупроводниковой структуры, обратите внимание на направление эмиттерной стрелки. Стрелка обращена в сторону протекания электрического тока
Ориентируясь на направление стрелки достаточно просто расположить правильным образом источники напряжения.
Применение транзисторного ключа в связке с МК
Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:
В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.
Условия для работы транзисторного ключа
Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:
1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.
2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.
Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.
Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.
Биполярный транзистор принцип работы
При включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Подробнее
Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу. Таким образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера. Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными.
В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток. Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов.
Блок питания 0…30В/3A
Набор для сборки регулируемого блока питания…
Подробнее
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Принцип действия транзистора
В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку.
В npn транзисторе электроны, основные носители тока в эмиттере проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер.
Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк=α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер.
В широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β=α/(1-α)=(10-1000). Т.о. изменяя малый ток базы можно управлять значительно большим током коллектора.
Биполярный транзистор – электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для усиления, преобразования и генерации электрических сигналов. Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности.
Средняя область называется базой, одна из крайних областей – эмиттером, другая – коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный – между базой и эмиттером и коллекторный – между базой и коллектором.
Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора. Транзистор работает в трех режимах в зависимости от напряжения на его переходах.
При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном – обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.
Типы биполярных транзисторов.