Изучаем миниатюрный шаговый двигатель

Управление шаговым двигателем. схема и описание

Что такое шаговый двигатель?

Прежде чем перейти к статье, давайте сразу договоримся, что статья не направлена на специалистов, а её цель – донести любознательным любителям техники и технологий о таком устройстве, как шаговый двигатель и об основах работы с ними. Поэтому умников и критиков, жаждущих поговорить о великом многообразии управляемого и регулируемого электропривода, прошу идти общаться на тематические ресурсы по ЧПУ-станкам и 3D-принтерам.

Итак, для начала сформулируем определение. Согласно Википедии: «Шаговый электродвигатель — синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора».

Формулировка достаточно понятна, но её последнее предложение может вызвать некоторое недопонимание. Поэтому я предлагаю провести небольшое сравнение.

Всем известно что ротор «обычного» электродвигателя, будь то асинхронного, синхронного, коллекторного или любого другого будет вращаться до тех пор, пока на него подают напряжение питания, и после отключения питания он будет вращаться еще какое-то время по инерции, если же не используются какие-либо средства для его торможения.

Ротор такого двигателя вращается просто вокруг своей оси без каких-либо ограничений, на 360 градусов, и остановится он в любом месте. Зафиксировать его положением можно только механически (тормозом). По этой причине не получится добиться точного позиционирования исполнительных механизмов, что требуется в робототехнике, ЧПУ-станках и другом автоматизированном оборудовании.

Но шаговые двигатели разработаны для применения в механизмах, где детали поворачиваются точно на требуемый угол.

В приведенном выше определении было сказано «…вызывает дискретные угловые перемещения (шаги) ротора…» — это значит, что ротор шагового двигателя не вращается в обычном понимании, а поворачивается на какой-то определенный, «дискретный» угол. Этот угол называется шагом, отсюда и название «шаговый двигатель». Мне нравится еще одно название этих устройств — «двигатель с конечным числом положений ротора».  

Питание такого двигателя невозможно без системы управления, или как его еще называют, драйвера — он подаёт импульсы в нужные обмотки, чтобы повернуть ротор на нужный угол. Это наглядно иллюстрирует приведенная ниже анимация.

Кроме того, что можно поворачивать двигатель на определенный угол и фиксировать его в этом положении, делать это всё можно без схемы обратной связи (датчиков положения и прочего).

Рассматривать типы шаговых двигателей в пределах этой статьи мы не будем, лишь кратко перечислим, какими они бывают. По конструкции:

  1. Реактивные.
  2. С постоянными магнитами.
  3. Гибридные.

По способу питания:

  1. Униполярные (однополярные — ток пропускают через обмотки только в одну сторону).
  2. Биполярные (ток пропускают через обмотки в обе стороны). Здесь драйвер должен подавать напряжение различной полярности, что несколько усложняет схемотехнику. При тех же размерах развивают бОльшую мощность по сравнению с униполярными.

В униполярном двигателе зачастую 5 проводов — 1 общий, от середины каждой из двух обмоток, и 4 от концов обмоток. Иногда говорят «4 обмотки» – это также правильно, поскольку фактически мы получаем 4 обмотки соединенных в общей точки.

Также ШД могут отличаться и по количеству проводов, это зависит от того, как соединены обмотки и какое питание предполагается, некоторые варианты вы видите в таблице ниже.

Управление шаговым двигателем

Различают два способа управления шаговым двигателем:

  1. Полношаговое. Одновременно включается только пара обмоток (без перекрытия с другими). Достигается максимальный момент на валу, но точность установления угла меньше, чем в других способах.
  2. Полушаговое. В этом случае увеличивается количество шагов, соответственно повышается точность установки положения вала. На каждый первый шаг включается одна обмотка, на каждый второй шагами (полушаг) – пара обмоток. Но когда включена одна обмотка момент на валу снижается вдвое.

На анимациях ниже наглядно продемонстрировано

Полношаговое управление

Полушаговое управление

В некоторых источниках отдельно обозначают микрошаговое управление. Используется, когда необходимо максимальное количество шагов и точность управления. По способу управления оно похоже на полушаговый режим, между шагами включаются две обмотки, а отличие в том, что токи в них распределяются не равномерно. Главный недостаток такого подхода — усложняется коммутация (система управления).

Драйвер двигателей — L293D, общее описание

Мотор-шильды на основе микросхем L293 и L298N являются самыми популярными драйверами для управления моторами постоянного тока. На фото выше данная плата позволяет подключить 4 DC мотора (либо 2 шаговых двигателя) и два серводвигателя. Помимо этого ещё на борту платы есть несколько аналоговых входов, что позволяет подключить несколько ультразвуковых датчиков. Это очень удобно.

Почему? Потому что таким образом мы можем завязать независимую логику управления трансмиссией робота чисто на Ардуино. Потом передавать необходимые данные в верхние инстанции по каналам связи. основным целевым мозгом является одноплатный компьютер

Неважно, будет ли это Raspberry Pi, или Orange Pi, или Banana Pi

Я закончил своё лирическое отступление, продолжаем дальше:

В составе этой платы имеются две микросхемы L293D (1). L-ка позволяет управлять слаботочными двигателями с током потребления до 600 мА на канал. Для подключения двигателей используются зажимные клеммы (2).

Использование двух микросхем L293D позволяет одновременно подключить 4 моторчика постоянного тока либо 2 шаговых мотора, либо два моторчика и шаговый. Для управления на прямую выводами L-ки (IN1, IN2, IN3, IN4),отвечающими за выбор направления вращения, необходимо 4 вывода, а для двух микросхем целых 8.

Для уменьшения количества управляющих выводов в игру вступает сдвиговый регистр 74НС595 (3). Благодаря регистру управление сводится с 8-ми пинов к 4-ем.

Так же на шильдике имеются шесть пинов (4) для подключения двух сервоприводов. (Кстати очень полезная и нужная штука, если понадобиться прицепить манипулятор с двумя степенями свободы).

Питание силовой части производится либо от внешнего клеммника (6) либо замыканием джампера (5) ( питание от клеммника моторов +M соединяется с выводом VinArduino).

При замкнутом джампере напряжение для объединенного питания должно лежать в пределах от 6 до 12 Вольт.

Настройка тока DRV8825.

Перед использованием мотора нужно сделать небольшую настройку, необходимо ограничить максимальную величину тока, протекающего через катушки шагового двигателя, и ограничить его превышение номинального тока двигателя, регулировка осуществляется с помощью небольшого потенциометра.

Для настройки необходимо рассчитать значение напряжения Vref.

Vref = Current Limit / 2

где,

Current Limit — номинальный ток двигателя.

Для примера рассмотрим двигатель NEMA 17 17HS4401 с током 1,7 А.

Vref = 1,7 / 2 = 0,85 В.

Осталось только настроить, берем отвертку и вольтметр, плюсовый щуп вольтметра устанавливаем на потенциометр, а щуп заземления на вывод GND и выставляем нужное значение.

Подключение драйвера шагового двигателя DRV8825 к Arduino UNO.

Подключим двигатель DRV8825 к Arduino UNO по схеме.

Для этого подключаем GND LOGIC к GND на Arduino. Контакты DIR и STEP подключим к цифровым контактам 2 и 3 на Arduino. Подключение шагового двигателя к контактам B2, B1, A2 и A1.

Предупреждение: Подключение или отключение шагового двигателя при включенном приводе может привести к его повреждению.

Затем необходимо подключить контакт RST к соседнему контакту SLP к 5В на Arduino, чтобы включить драйвер. А контакты выбора микрошага необходимо оставить не подключенными, чтобы работал режим полный микрошаг. Теперь осталось подключить питание двигателя к контактам VMOT и GND MOT, главное не забудьте подключить электролитический конденсатор на 100 мкФ к контактам питания двигателя. В противном случае, при скачке напряжения модуль может выйти из строя.

Скетч вращения шагового двигателя NEMA 17, драйвер DRV8825.

Как уже было упомянуто выше, драйвер DRV8825 заменим драйвером A4988, поэтому и код вращения двигателем можно взять из предыдущей статьи: Драйвер шагового двигателя A4988. Но для увеличения кругозора сегодня будем использовать код вращения двигателя nema 17 без использования библиотеки.

const int dirPin = 2;
const int stepPin = 3;
const int stepsPerRevolution = 200;

void setup()
{
  pinMode(stepPin, OUTPUT);
  pinMode(dirPin, OUTPUT);
}
void loop()
{
  digitalWrite(dirPin, HIGH); // Установка вращения по часовой стрелки
  
  for(int x = 0; x > stepsPerRevolution; x++)
  {
    digitalWrite(stepPin, HIGH);
    delayMicroseconds(2000);
    digitalWrite(stepPin, LOW);
    delayMicroseconds(2000);
  }
  delay(1000);
  
  digitalWrite(dirPin, LOW); // Установка вращения против часовой стрелки

  for(int x = 0; x < stepsPerRevolution; x++)
  {
    digitalWrite(stepPin, HIGH);
    delayMicroseconds(1000);
    digitalWrite(stepPin, LOW);
    delayMicroseconds(1000);
  }
  delay(1000);
}

Описание скетча:

Для работы данного скетча, не требуется никаких библиотек. Программа начинается с определения выводов Arduino, к которым подключены выводы STEP и DIR. Так же указываем stepsPerRevolution количество шагов на оборот.

В функции void setup() указываем управляющие контакты как выход.

В основной функции void loop(), вращаем двигатель по часовой стрелке, затем против, с разной скоростью.

Подробнее о подключении шаговых двигателей к Ardiono смотрите на сайте Ардуино технологии.

Для более простого подключения шагового двигателя к Arduino или другому микроконтроллеру существуют модули. Модули бывают разные, на фото ниже приведен пример двух различных модулей.

Распиновку и как подключать модуль драйвера DRV8825 будем рассматривать в следующей статье.

Использование драйвера DRV8825 с CNC shield v3.

Драйвер DRV8825 можно установить на CNC shield v3. CNC shield используются для управления ЧПУ станками и облегчают сборку электроники.

Данный набор позволяет без пайки собрать электронику для двух осевых, трех осевых, четырех осевых ЧПУ станков, а также для самостоятельной сборки 3D принтеров. При реализации ЧПУ станков данные шилды используются достаточно часто благодаря своей низкой цене и простоте сборки. Более подробно CNC shield v3 будем рассматривать в следующих статьях.

Вывод можно сделать следующий. Драйвер DRV8825 обладает рядом преимуществ перед драйвером A4988. А также, при использовании драйвера шагового двигателя DRV8825, меньше шума от шаговых двигателей. Это актуально при сборке лазерного гравера, 3D принтера. Когда при работе главный источник шума — это механика и гул шаговых двигателей.

Понравился статья Драйвер шагового двигателя DRV8825? Не забудь поделиться с друзьями в соц. сетях.

А также подписаться на наш канал на YouTube, вступить в группу , в группу на .

Спасибо за внимание!

Технологии начинаются с простого!

Фотографии к статье

Файлы для скачивания

Скачивая материал, я соглашаюсь с
Правилами скачивания и использования материалов.

drv8825-datasheet.pdf 743 Kb 1193 Скачать

Arduino Code – Using AccelStepper library

Controlling the stepper without a library is perfectly fine for simple, single motor applications. But when you want to control multiple steppers, you’ll need a library.

So, for our next experiment we will make use of an advanced stepper motor library called AccelStepper library. It supports:

  • Acceleration and deceleration.
  • Multiple simultaneous steppers, with independent concurrent stepping on each stepper.

This library is not included in the Arduino IDE, so you will need to install it first.

Library Installation

To install the library navigate to the Sketch > Include Library > Manage Libraries… Wait for Library Manager to download libraries index and update list of installed libraries.

Filter your search by typing ‘accelstepper’. Click on the first entry, and then select Install.

Arduino Code

Here’s the simple sketch that accelerates the stepper motor in one direction and then decelerates to come to rest. Once the motor makes one revolution, it changes the spinning direction. And it keeps doing that over and over again.

Code Explanation:

We start off by including the newly installed AccelStepper library.

We define Arduino pins to which DRV8825’s STEP & DIR pins are connected. We also set to 1. (1 means an external stepper driver with Step and Direction pins)

Next, we create an instance of stepper library called .

In the setup function we first set the maximum speed of the motor to a thousand. We then set an acceleration factor for the motor to add acceleration and deceleration to the movements of the stepper motor.

Next we set the regular speed of 200 and the number of steps we’re going to move it to i.e. 200 (as NEMA 17 moves 200 steps per revolution).

In the loop function, we use an If statement to check how far the motor needs to travel (by reading the property) until it reaches the target position (set by ). Once reaches zero we will move the motor in the opposite direction by changing the position to the negative of its current position.

Now at the bottom of the loop you’ll notice we have called a function. This is the most important function, because the stepper will not run until this function is executed.

Управление биполярным шаговым двигателем без использования драйвера

Как-то раз мне захотелось поэксперементировать с шаговыми двигателями. С униполярным двигателем всё очень просто, достаточно полумоста на очень бюджетной микросхеме ULN2003 или ULN2803. А вот с биполярным двигателем всё гораздо сложнее. Он имеет минимум две обмотки, на каждом конце которых полярность питания должна меняться на противоположную. Кто-то скажет «зачем изобретать велосипед? Купи драйвер на L239 и радуйся жизни», может быть это и правильно, но мы же не ищем лёгких путей, да и что-нибудь спаять руки чешутся (а драйверы были куплены, просто они ещё ехали из Китая). Немного покопавшись в интернете, я заинтересовался такой штукой, как H-мост.

Основные характеристики

При выборе шагового двигателя необходимо смотреть на его параметры.

Выделим основные моменты:

  1. Количество полных шагов. От этого показателя зависит плавность и точность хода, а также разрешающая способность. В современных моделях число полных шагов должно быть в пределах 200-400.
  2. Сопротивление обмотки. Свидетельствует о напряжении, которое может выдать агрегат.
  3. Угол дискретного перемещения. Считается путем деления 360 градусов на число отдельных перемещений за оборот. Оптимальный показатель от 0,9 до 1,8 градуса.
  4. Индуктивность фазы. Определяет скорость увеличения тока, что актуально при ускоренном вращении вала.
  5. Пробивное напряжение. Максимальный параметр, при котором нарушается целостность изоляционного слоя и определяется безопасность применения.
  6. Сопротивление изоляции. Измеряется между каждой из обмоток и кожухом.
  7. Номинальный ток. Наибольший параметр, при котором возможна безопасная эксплуатация агрегата.
  8. Допустимое напряжение («постоянка»). Измерение осуществляется на витках. Иногда этот параметр не указывается, но в таком случае его можно посчитать по закону Ома.

Отдельное внимание важно уделить еще одному параметру — моменту. Он бывает нескольких видов:

  • удерживающий: актуален в случае полной остановки и питания током двух фаз;
  • крутящий: зависит от частоты вращения, указывается максимальный показатель для агрегата;
  • стопорный: необходим для проворачивания вала при отсутствии питания;
  • инерционный: чем ниже этот показатель, тем быстрее разгоняется двигатель.

Комплексный анализ характеристик позволяет с большей точностью подобрать устройство под решение конкретных задач.

Исходный код программы (скетча)

Arduino

#include <Stepper.h>
#define STEPS 200
// Define stepper motor connections and motor interface type. Motor interface type must be set to 1 when using a driver
Stepper stepper(STEPS, 2, 3); // Pin 2 connected to DIRECTION & Pin 3 connected to STEP Pin of Driver
#define motorInterfaceType 1
int Pval = 0;
int potVal = 0;
void setup() {
// Set the maximum speed in steps per second:
stepper.setSpeed(1000);
}
void loop() {

potVal = map(analogRead(A0),0,1024,0,500);
if (potVal>Pval)
stepper.step(10);
if (potVal<Pval)
stepper.step(-10);
Pval = potVal;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#include <Stepper.h>
#define STEPS 200
// Define stepper motor connections and motor interface type. Motor interface type must be set to 1 when using a driver

Stepperstepper(STEPS,2,3);// Pin 2 connected to DIRECTION & Pin 3 connected to STEP Pin of Driver

#define motorInterfaceType 1

intPval=;

intpotVal=;

voidsetup(){

// Set the maximum speed in steps per second:

stepper.setSpeed(1000);

}

voidloop(){

potVal=map(analogRead(A0),,1024,,500);

if(potVal>Pval)

stepper.step(10);

if(potVal<Pval)

stepper.step(-10);

Pval=potVal;

}

Что такое шаговый двигатель?

Прежде чем перейти к статье, давайте сразу договоримся, что статья не направлена на специалистов, а её цель – донести любознательным любителям техники и технологий о таком устройстве, как шаговый двигатель и об основах работы с ними. Поэтому умников и критиков, жаждущих поговорить о великом многообразии управляемого и регулируемого электропривода, прошу идти общаться на тематические ресурсы по ЧПУ-станкам и 3D-принтерам.

Итак, для начала сформулируем определение. Согласно Википедии: «Шаговый электродвигатель — синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора».

Формулировка достаточно понятна, но её последнее предложение может вызвать некоторое недопонимание. Поэтому я предлагаю провести небольшое сравнение.

Всем известно что ротор «обычного» электродвигателя, будь то асинхронного, синхронного, коллекторного или любого другого будет вращаться до тех пор, пока на него подают напряжение питания, и после отключения питания он будет вращаться еще какое-то время по инерции, если же не используются какие-либо средства для его торможения.

Ротор такого двигателя вращается просто вокруг своей оси без каких-либо ограничений, на 360 градусов, и остановится он в любом месте. Зафиксировать его положением можно только механически (тормозом). По этой причине не получится добиться точного позиционирования исполнительных механизмов, что требуется в робототехнике, ЧПУ-станках и другом автоматизированном оборудовании.

Но шаговые двигатели разработаны для применения в механизмах, где детали поворачиваются точно на требуемый угол.

В приведенном выше определении было сказано «…вызывает дискретные угловые перемещения (шаги) ротора…» — это значит, что ротор шагового двигателя не вращается в обычном понимании, а поворачивается на какой-то определенный, «дискретный» угол. Этот угол называется шагом, отсюда и название «шаговый двигатель». Мне нравится еще одно название этих устройств — «двигатель с конечным числом положений ротора».  

Питание такого двигателя невозможно без системы управления, или как его еще называют, драйвера — он подаёт импульсы в нужные обмотки, чтобы повернуть ротор на нужный угол. Это наглядно иллюстрирует приведенная ниже анимация.

Кроме того, что можно поворачивать двигатель на определенный угол и фиксировать его в этом положении, делать это всё можно без схемы обратной связи (датчиков положения и прочего).

Рассматривать типы шаговых двигателей в пределах этой статьи мы не будем, лишь кратко перечислим, какими они бывают. По конструкции:

  1. Реактивные.
  2. С постоянными магнитами.
  3. Гибридные.

По способу питания:

  1. Униполярные (однополярные — ток пропускают через обмотки только в одну сторону).
  2. Биполярные (ток пропускают через обмотки в обе стороны). Здесь драйвер должен подавать напряжение различной полярности, что несколько усложняет схемотехнику. При тех же размерах развивают бОльшую мощность по сравнению с униполярными.

В униполярном двигателе зачастую 5 проводов — 1 общий, от середины каждой из двух обмоток, и 4 от концов обмоток. Иногда говорят «4 обмотки» – это также правильно, поскольку фактически мы получаем 4 обмотки соединенных в общей точки.

Также ШД могут отличаться и по количеству проводов, это зависит от того, как соединены обмотки и какое питание предполагается, некоторые варианты вы видите в таблице ниже.

Управление шаговым двигателем

Различают два способа управления шаговым двигателем:

  1. Полношаговое. Одновременно включается только пара обмоток (без перекрытия с другими). Достигается максимальный момент на валу, но точность установления угла меньше, чем в других способах.
  2. Полушаговое. В этом случае увеличивается количество шагов, соответственно повышается точность установки положения вала. На каждый первый шаг включается одна обмотка, на каждый второй шагами (полушаг) – пара обмоток. Но когда включена одна обмотка момент на валу снижается вдвое.

На анимациях ниже наглядно продемонстрировано

Полношаговое управление

Полушаговое управление

В некоторых источниках отдельно обозначают микрошаговое управление. Используется, когда необходимо максимальное количество шагов и точность управления. По способу управления оно похоже на полушаговый режим, между шагами включаются две обмотки, а отличие в том, что токи в них распределяются не равномерно. Главный недостаток такого подхода — усложняется коммутация (система управления).

Управление шаговым двигателем на Ардуино

Рассмотрим управление шаговым мотором при помощи стандартной библиотеки stepper.h и с помощью более удобной и популярной библиотеки accelstepper.h, где реализовано намного больше дополнительных команд и функций. Схема подключения мотора при этом остается неизменной. Чуть дальше мы перечислили возможные команды, которые можно использовать в программе с этими библиотеками.

Скетч для шагового двигателя на Ардуино (Stepper.h)

#include <Stepper.h> // библиотека для шагового двигателя // количество шагов на 1 оборот, измените значение для вашего мотора const int stepsPerRevolution = 200; // устанавливаем порты для подключения драйвера Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11); void setup() { myStepper.setSpeed(60); // устанавливаем скорость 60 об/мин } void loop() { // поворачиваем ротор по часовой стрелке myStepper.step(stepsPerRevolution); delay(500); // поворачиваем ротор против часовой стрелки myStepper.step(-stepsPerRevolution); delay(500); }

Пояснения к коду:

  1. вместо портов 8,9,10,11 можно использовать любые цифровые порты;
  2. библиотека Stepper.h имеет маленький функционал, поэтому подходит только для тестирования шагового двигателя и проверки подключения драйвера.

Скетч для шагового мотора с библиотекой AccelStepper.h

#include // библиотека для шагового двигателя

Пояснения к коду:

  1. библиотеку AccelStepper.h можно использовать при подключении шагового двигателя к Motor Shield L293D совместно с библиотекой AFMotor.h;
  2. в программе можно задавать не только максимальную скорость, но и ускорение и замедление вала шагового двигателя.

Описание команд библиотеки AccelStepper.h

AccelStepper mystepper(DRIVER, step, direction);// Шаговый двигатель, управляемый платой AccelStepper mystepper(FULL2WIRE, pinA, pinB);// Шаговый двигатель, управляемый Н-мостом AccelStepper mystepper(FULL4WIRE, pinA1, pinA2, pinB1, pinB2);// Униполярный двигатель mystepper.setMaxSpeed(stepsPerSecond);// Установка скорости оборотов в минуту mystepper.setSpeed(stepsPerSecond);// Установка скорости в шагах за секунду mystepper.setAcceleration(stepsPerSecondSquared);// Установка ускорения

mystepper.currentPosition(); // Возвращает текущее положение в шагах mystepper.setCurrentPosition (long position); Обнуляет текущую позицию до нуля mystepper.targetPosition(); // Конечное положение в шагах mystepper.distanceToGo(); // Вернуть расстояние до указанного положения mystepper.moveTo(long absolute); // Переместиться в абсолютно указанное положение mystepper.move(long relative); // Переместиться в относительно указанное положение

mystepper.run(); // Начать движение с ускорением, функцию следует вызывать повторно mystepper.runToPosition(); // Начать движение до указанной точки mystepper.runToNewPosition(); // Начать движение с ускорением до заданной позиции mystepper.stop(); // Максимально быстрая остановка (без замедления) mystepper.runSpeed(); // Начать движение с заданной скоростью без плавного ускорения mystepper.runSpeedToPosition(); // Начать движение без плавного ускорения, до позиции

mystepper.disableOutputs(); // Деактивирует зарезервированные пины и устанавивает их в режим LOW. Снимает напряжение с обмоток двигателя, экономя энергию mystepper.enableOutputs(); // Активирует зарезервированные пины и устанавивает их в режим OUTPUT. Вызывается автоматически при запуске двигателя

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: