Простой расчет необходимой мощности светового потока LED-ламп
В этой статье мы рассматриваем замену ламп накаливания с цоколями Е27 и Е14.
Формула пересчета: для простого расчета необходимой мощности светодиодной лампы нужно мощность лампы накаливания разделить на 6,5.
То есть, для замены лампы накаливания мощностью 60 Вт на светодиодную мощность можно рассчитать по формуле: 60/6,5=9. Нам нужна светодиодная лампа мощностью 9 Вт. А у некоторых производителей качественных ламп хватит и 7 Вт.
В этой формуле есть погрешность, но в первом приближении она даст вам примерную информацию, какой мощности светодиодная лампочка вам нужна. Дочитав статью до конца, вы поймете, с чем связана эта погрешность, и почему любой пересчет будет приблизительным.
1. Мощность светового потока – измеряется в люменах (Лм). Эта величина обозначает, насколько ярко светит лампочка.
2. Потребляемая мощность – измеряется в ваттах (Вт). Эта величина означает, сколько электроэнергии лампочка потребляет из сети.
При замене лампочек накаливания на светодиодные выбирается лампа с примерно такой же мощностью светового потока (в люменах, Лм), чтобы уровень освещенности после замены не ухудшился. А потребляемая из розетки электрическая мощность (в ваттах, Вт) при этом станет в несколько раз ниже.
Факторы, из-за которых пересчет будет неточным:
1. Мощность светового потока у близких по характеристикам моделей ламп накаливания и светодиодных всегда отличается друг от друга, в большую или меньшую сторону.
2. Показатели световой мощности или светового потока, указанные в характеристиках светодиодных ламп, верны только для качественных лампочек. У дешевой низкокачественной продукции эти цифры далеки от реальности.
Сравнение ламп
Вот данные световой отдачи разных источников освещения:
лампочка накаливания – от 10 до 12 Люмен/Ватт
люминесцентные лампы (но только у качественных производителей) – от 50 до 80 Люмен/Ватт
НЛ натриевая газоразрядная лампа, имеет очень хороший показатель – около 200Люмен/Вт
светодиоды – рекордсмены эффективности – до 300 Люмен/Ватт
Правда 300Лм/Вт это всего лишь пока лабораторное достижение, а не массовый продукт.
Световая отдача в энергосбережении является самым существенным параметром. И вся эволюция развития светильников — это по факту достижение его предельных теоретических значений в 683 Лм/Вт.
Хотя если быть реалистом, даже значения в 500 Лм/Вт на сегодняшний день просто физически не достижимы.
Расчет резистора для светодиода
Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:
где:
- V — напряжение источника питания
- VLED — напряжение падения на светодиоде
- I – рабочий ток светодиода
Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:
Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.
Давайте, на примере выполним расчет сопротивления резистора для светодиода.
Мы имеем:
Инвертор 12 В/ 220 В
Инвертор с чистой синусоидой, может обеспечивать питание переменно…
Подробнее
- источник питания: 12 вольт
- напряжение светодиода: 2 вольта
- рабочий ток светодиода: 30 мА
Рассчитаем токоограничивающий резистор, используя формулу:
Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).
Устройство LED-диодов
Устройство светодиодной лампы на 220 вольт не отличается большой сложностью и вполне может быть рассмотрено даже на любительском уровне. Классическая светодиодная лампа на 220 вольт включает в свой состав следующие обязательные элементы:
- Несущий корпус с цоколем;
- Специальную рассеивающую линзу;
- Отводящий тепло радиатор;
- Модуль светодиодов LED;
- Драйверы светодиодной лампы;
- Блок питания.
Ознакомиться со строением LED-лампы на 220 вольт (технология СОВ) можно на размещённом ниже рисунке.
Строение светодиодного осветителя
Этот светодиодный прибор изготавливается как единое целое и содержит в своей конструкции большое количество однородных кристаллов, распаиваемых при сборке с образованием многочисленных контактов. Для его подключения к драйверу достаточно присоединить всего одну из контактных пар (остальные кристаллы подключены параллельно).
По своей форме эти изделия могут быть круглыми и цилиндрическими, а к сети они подсоединяются посредством специального резьбового или штырькового цоколя. Для светодиодной системы общего пользования, как правило, выбираются светильники, показатель цветовой температуры которых составляет 2700К, 3500К или 5000К (при этом градации спектра могут принимать любые значения). Такие приборы довольно часто применяются в декоративных целях и для освещения рекламных баннеров и щитов.
Рассмотрим отдельные модули светодиодной лампы более подробно.
Драйвер
В упрощённом виде схема драйвера, используемого для питания лампы от сети 220 Вольт, выглядит, как это изображено на рисунке ниже.
Схема простейшего драйвера
Количество деталей в этом устройстве, выполняющем согласовательную функцию, относительно невелико, что объясняется особенностями схемного решения. Его электрическая схема содержит в своём составе два гасящих резистора R1, R2 и подключённые к ним по встречно-параллельному принципу светодиоды HL1и HL2.
Дополнительная информация. Такое включение ограничительных элементов обеспечивает защищённость схемы от обратных выбросов напряжения питания. Помимо этого, в результате такого включения частота поступающего на лампы сигнала возрастает вдвое (до 100 Гц).
Сетевое напряжение питания с действующим значением 220 Вольт подаётся в схему через ограничительный конденсатор С1, с которого оно поступает на выпрямительный мостик, а затем – непосредственно на лампу.
Источник питания
Типовая схема источника питания LED-лампы изображена на рисунке, представленном ниже.
Схема модуля питания с драйвером
Эта часть осветительного прибора выполнена в виде отдельного блока и поэтому может свободно извлекаться из корпуса (с целью её ремонта своими руками, например). На входе схемы имеется выпрямительный электролит (конденсатор), после которого пульсации с частотой 100 Герц частично исчезают.
Резистор R1 необходим для образования цепочки разряда конденсатора при отключении схемы от источника питания.
Выбор качественного светильника
Поэтому большинство производителей в конкурентной борьбе выбирают экономию. Монтируют меньше светодиодов, и в итоге мы имеем в светильнике максимально от 80 до 90 Лм/Вт.
Показатели от 100 Лм/Вт и выше являются очень хорошими данными и свидетельствуют о качественном светильнике.
Как показывает практика, в конечном итоге дешевле применять дорогие светодиоды, как бы это абсурдно и не звучало.
Величина «денежной отдачи»: Люмен (световой поток )/ рубль (цена светодиода) это хорошо подтверждает.
очень сильный нагрев
из-за нагрева нужно увеличивать площадь радиаторов охлаждения
ну и само собой – меньший световой поток
И это все при одинаковой мощности у качественного и дешевого изделия.
Не все производители указывают данные светоотдачи в параметрах своих светильников. Чтобы сделать расчет самостоятельно, просто возьмите из паспорта или посмотрите на упаковке 2 величины:
световой поток (в люменах)
мощность (в ваттах)
и разделите эти параметры.
После чего достаточно сравнить ту или иную покупку и делать соответствующий выбор.
Немного о световой отдаче светильников
Световая отдача показывает, насколько хорошо потребляемая прибором электрическая энергия преобразуется в световой поток. То есть по сути — и это хорошо видно из её размерности (Лм/Вт) — сколько люменов светового потока светильника получается из одного ватта потреблённой им энергии.
Хорошие современные светильники имеют световую отдачу свыше 140 Лм/Вт. Здесь стоит однако отметить, что некоторые производители «хитрят» и предлагают в качестве светового потока прибора значение суммарного светового потока от всех используемых в нём светодиодов. Это неправильно. Например, даже при отсутствии вторичной оптики невозможно добиться абсолютной прозрачности защитного стекла. Этот и подобные ему факторы неизбежно вносят в итоговое значение потери, которые на практике могут достигать 10-15%%. Конечно, мы не можем измерить световой поток каждого светильника из нашего ассортимента, поэтому используем те цифры, которые предлагают заводы-изготовители. Ну а корректность этих значений оставим на их совести.
Описанный выше вариант — далеко не единственный способ жульничества со стороны производителя, связанный со светоотдачей. Ещё один момент — возможно даже более серьёзный для покупателя — это преднамеренное завышение рабочих токов в цепях светильника. Световой поток светодиода находится в зависимости от протекающего через него тока. В общем случае можно сказать, что чем больше ток — тем больше света способен отдавать светодиод. То есть можно взять меньше светодиодов и получить больше света — выгода на лицо. Но здесь есть несколько нюансов. Во-первых, зависимость эта не линейная и чем больше увеличивается ток, тем меньший получается прирост светового потока. Во-вторых, при увеличении токов растёт и количество тепла, выделяемого светодиодом. А это в свою очередь поспособствует более быстрой деградации светильника и снижению его светового потока с течением времени. Самое интересное, что светоотдача при этом тоже падает — т.е. прирост количества света не может компенсировать рост электрической мощности прибора. Стало быть высокую светоотдачу можно и в этом вопросе считать положительным фактором.
Не смотря на приведённую здесь математику и физику, сегодняшний «хит-парад» — это не серьёзное научное исследование, а скорее способ показать, зачем же мы добавили световую отдачу в качестве параметра отбора и что она может дать покупателю.
Светоотдача светодиодных ламп
Эту важную техническую характеристику я не внес в общий список и специально оставил напоследок, во-первых, потому, что она относится не к каждой конкретной лампе, а ко всему классу. А, во-вторых, разобравшись со светоотдачей, ты сможешь понять, насколько эффективен тот или иной тип осветительных приборов. Светоотдача представляет собой отношение светового потока к потребляемой мощности светильника и обозначается как лм/Вт. Этот параметр в буквальном смысле показывает, насколько эффективно прибор преобразует электрическую энергию в световую.
Что касается светодиодных источников света, то на сегодня их светоотдача составляет 60-120 лм/Вт, причем по мере совершенствования технологий этот показатель продолжает расти. Предположим, количество люмен у светодиода мощностью 1 ватт – 100. Это много или мало? Взгляни на сравнительную таблицу:
Сравнительная таблица энергоэффективности ламп разных типов
Светодиодные 120
Люминесцентные трубчатые 80
Люминесцентные компактные (энергосберегающие) 70
Галогенные 20
Накаливания 15
Как видно из таблички, хорошо знакомая тебе компактная люминесцентная лампа («энергосберегайка»), к примеру, при той же мощности будет светить почти в 2 раза слабее, чем ее полупроводниковый собрат. Про лампу накаливания и говорить неловко. 8 из 10 ватт, которые светодиодный прибор преобразовал бы в световой поток, лампа Ильича превращает в тепло. Эффективность же диодного светильника благодаря светоотдаче на сегодняшний день самая высокая.
Но вернемся к нашим светодиодам. Можно ли выбирать такие лампы не по световому потоку, а по потребляемой мощности? Поскольку ты знаешь, какое количество люмен производит светодиод одним ваттом электроэнергии, то понимаешь: конечно, можно. Чтобы получить световой поток, достаточно умножить мощность лампы на 80. Точной цифры ты, конечно, не получишь, поскольку реальная светоотдача зависит от многих факторов, включая технологию производства, материалы, тип и количество используемых светодиодов. Но полученный результат вполне сгодится для бытового использования.
Для тех, кто не любит умножать, я приведу табличку зависимости светового потока от мощности лампы для приборов различного типа:
QX5241
QX5241 — это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку «5241a» (см. фото). В одном известном магазине их продают чуть ли не на вес (10 штук за 90 руб).
Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.
Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06, IRF7413, IPD090N03L, IRF7201. Вообще, чем ниже будет напряжение открытия, тем лучше.
Вот некоторые ключевые характеристики LED-драйвера на QX5241:
- максимальный выходной ток — 2.5 А;
- КПД до 96%;
- максимальная частота диммирования — 5 кГц;
- максимальная рабочая частота преобразователя — 1 МГц;
- точность стабилизации тока через светодиоды — 1%;
- напряжение питания — 5.5 — 36 Вольт (нормально работает и при 38!);
- выходной ток рассчитывается по формуле: R = 0.2 / ILED
Более подробно читайте в спецификации (на инглише).
Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:
Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.
Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше — то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.
Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).
ZXLD1350
Не смотря на то, что эта микросхема является очередным клоном , некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга.
Вот главные отличия:
- микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
- максимальный ток нагрузки — 350 мА;
- сопротивление выходного ключа в открытом состоянии — 1.5 — 2 Ома;
- изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
- если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;
Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:
R = 0.1 / ILED
Минимальное сопротивление резистора — 0.27 Ом.
Типовая схема включения ничем не отличается от своих собратьев:
Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае — мгновенно выйдет из строя.
Более подробные характеристики ZXLD1350 можно найти в даташите на эту микросхему.
Стоимость микросхемы неоправданно высокая (посмотреть), при том, что выходной ток довольно небольшой. В общем, сильно на любителя. Я б не связывался.
Светодиодные лампы: основные характеристики, мощность, световой поток
Светодиодные осветительные приборы, появившиеся относительно недавно, уже успели завоевать большую популярность, но споры относительно их эффективности и не думают утихать. Одни напирают на исключительно высокую светоотдачу, приводя в качестве аргументов всевозможные таблицы световых потоков светодиодных ламп, другие – на высокую стоимость, забыв про долговечность этих приборов. Так что собой представляют светодиодные лампы, какими характеристиками обладают, и имеет ли смысл менять старые добрые лампы накаливания на светодиодные? Давай попробуем вместе разобраться в данном вопросе, чтобы, наконец, закрыть эту бесконечную тему.
AL9910
Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).
Вот ее основные характеристики:
- входное напряжение — до 500В (до 277В для переменки);
- встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
- возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
- встроенная защита от перегрева (срабатывает при 150°С);
- рабочая частота (25-300 кГц) задается внешним резистором;
- для работы необходим внешний полевой транзистор;
- выпускается в восьминогих корпусах SO-8 и SO-8EP.
Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.
Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.
Стоимость микросхем — около 60 руб/шт.
Типовая схема включения (без диммирования) выглядит так:
Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:
Rsense = 0.25 / (ILED + 0.15⋅ILED)
Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.
Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:
fosc = 25 / (Rosc + 22), где Rosc — сопротивление в килоомах (обычно от 75 до 1000 кОм).
Резистор включается между 8-ой ногой микросхемы и «землей» (или выводом GATE).
Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:
L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)
Пример расчета
Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).
Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:
Rosc = 25/fosc — 22 = 25/0.24 — 22 = 82 кОм
Идем дальше. Номинальный ток светодиодов — 3А, рабочее напряжение — 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:
L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн
Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.
Осталось рассчитать Rsense:
Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом
В качестве мощного выходного MOSFET’а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).
И вот, собственно, какая схема у нас получилась:
Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема — это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.
Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.
В статье были использованы следующие радиодетали:
Светодиоды | ||
---|---|---|
Cree XM-L T6 (10Вт, 3А) | 135 руб/шт. | |
Cree XM-L2 T6 (10Вт, 3А, медь) | 360 руб/шт. | |
Транзисторы | ||
40N06 | 11 руб/шт. | |
IRF7413 | 14 руб/шт. | |
IPD090N03L | 14 руб/шт. | |
IRF7201 | 17 руб/шт. | |
50N06 | 12 руб/шт. | |
Диоды Шоттки | ||
STPS2H100A (2А, 100В) | 15 руб/шт. | |
SS34 (3А, 40В) | 90 коп/шт. | |
SS56 (5А, 60В) | 3.5 руб/шт. |
Понятие освещенности и светового потока
Освещенность рассчитывается как соотношение светового потока к площади поверхности, на которую он направлен, и измеряется в люксах. Один люкс равен одному люмену на квадратный метр (если до поверхности дошел весь световой луч).
Однако при расчетах необходимо учитывать некоторые нюансы:
- уровень освещенности снижается обратно пропорционально квадрату расстояния от лампочки до освещаемого предмета;
- освещенность уменьшается, если световой поток падает под углом более 90 градусов;
- освещенность прямо пропорциональна силе света (мощности источника).
В помещении с чистым воздухом для расчета освещенности используется формула: Е = I / S2, где:
- I – сила светового луча,
- S – расстояние от лампы до предмета.
Световой поток характеризует общее количество света, выделяемого прибором. Но и тут есть нюансы. Если световой луч рассеивается под разным углом, значение меняется. Лампа накаливания со световым потоком 1000 лм распределяет его почти на 360 градусов, освещая не только пол, но и стены, потолок. На пол попадает всего 600-700 лм. Если сравнивать с Led лампочкой со световым лучом 1000 лм и углом излучения 180 градусов, на пол попадет почти 1000 лм. Это значит, что при одинаковом световом потоке светодиодная лампочка эффективнее, если нужно осветить пол.
Это неверный подход. Световой поток действительно зависит от мощности, но не у светодиодных ламп. Диоды с одинаковой мощностью, изготовленные разными производителями, по световому потоку отличаются.
Примеры можно посмотреть в таблице:
Бренд | Мощность (Вт) | Заявленный световой поток (лм) | Действительный световой поток (лм) |
GE | 4 | 215 | 230 |
Panasonic | 4 | 215 | 210 |
Philips | 4 | 215 | 347 |
Philips | 6 | 430 | 364 |
Panasonic | 6 | 430 | 491 |
V-light | 7 | 430 | 369 |
Airam | 8 | 430 | 617 |
GE | 8 | 430 | 488 |
Verbatim | 9 | 430 | 443 |
V-light | 10 | 730 | 679 |
Megaman | 10 | 730 | 680 |
Verbatim | 10 | 730 | 906 |
Megaman | 11 | 960 | 858 |
При покупке светодиодных ламп следует ориентироваться на производителя, световой поток (люмены) и угол излучения. У ведущих производителей эти данные видны на упаковках. Если информации нет, изделие не стоит покупать.
Какие бывают светодиоды
Светодиод (обозначается СД, СИД, LED в англ.) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.
Светодиоды вполне могут заменить обычные лампы накаливания
Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.
Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).
В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.
Применение светодиодной подсветки в интерьере кухни
Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве светодиодных ламп с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.