Что такое резистор, классификация резисторов и их обозначения на схемах

Что такое резистор, виды и роль в электроцепи, проверка мультиметром

Что такое резистор

Резистор — это электронная деталь (условно относящаяся к классу проводников), обладающая сопротивление электрическому току.

В электронной технике очень часто надо внести в электрическую цепь не просто сопротивление, но сопротивление определенной величины.

Чем больше сопротивление электрической цепи, тем меньше соответствии с законом Ома ток в ней  при том же напряжении:

I = U/R, где I – электрический ток, U – напряжение, R – сопротивление

Ток (сила тока) измеряется в амперах, напряжение — в вольтах, сопротивление – в омах.

Все эти единицы названы в честь физиков Анри-Мари Ампера, Алессандро Вольты и Георга Ома.

Резисторы могут иметь сопротивление от долей Ома до десятков и сотен Мегом (миллионов Ом). Электрическая лампочка накаливания – это, по существу, также резистор, обладающий сопротивлением в несколько десятков или сотен Ом (в зависимости от мощности лампы).

По назначению

Рассмотрим несколько типов резисторов по их прямому назначению. У них есть общее и специальное назначение. Резисторы общего назначения имеют следующие параметры:

  • номинальное от 1 Ом до 10 МОм,
  • мощность от 0,125Вт до 100Вт,
  • допуск точности не менее 20%, 10%, 5%, 2% или 1%.

Они подходят для работы в сетях с напряжением не более 1000 В. Используются как ограничители тока или как нагрузки для активных элементов схемы. Резисторы специального назначения превосходят «обычные» по одной или нескольким характеристикам. К ним относятся:

  • Изготовлен с высокой точностью (ПДК — 1%), с высокой стабильностью параметров. Их называют точностью и сверхточностью.
  • Высокая частота. У них очень небольшая собственная емкость, из-за чего они используются в высокочастотных цепях.
  • Высокое напряжение (для сетей с напряжением выше 1000 В).
  • Высокая стойкость. Номинальное значение более 100 МОм и напряжение не менее 400 В.
    Виды резисторов по назначению

Для ремонта бытовой техники достаточно элементов с обычными характеристиками. В общем, при замене необходимо соблюдать правило: вставляйте одноименный элемент и с такими же характеристиками. Если базовый элемент старый и трудно найти точно такой же экземпляр или стоит непропорционально дорого, ищем аналог. При подборе аналогов номинал выбирается «один к одному», а характеристики могут быть немного лучше. Ничего хуже не переносите, так как это может привести к неисправности устройств.

Параллельное и последовательное соединение резисторов

Резисторы нужны в схеме, чтобы упрявлять токами и напряжениями. Но сначала нужно разобраться, как они взаимодействуют между собой и с другими элементами схемы.

Если соединить несколько резисторов последовательно, через каждый из них будет течь одинаковый ток. Это логично: сколько зарядов вошло в цепь, столько же должно выйти на другом конце, закон сохранения заряда. А вот напряжение (потенциал) распределяется по-разному. Чем выше сопротивление резистора, тем больше на нём падение напряжения — нужно большее усилие, чтобы протолкнуть через большое сопротивление заряды.

При этом, если просуммировать потенциал на всех резисторах, сумма будет равна напряжению, приложенному к концам цепи. Отсюда выводится формула суммарного сопротивления цепочки из последовательных резисторов: оно равно сумме сопротивлений всех резисторов.

Последовательное соединение резисторов

При параллельном соединении резисторов картина иная. Здесь фиксировано напряжение — оно одинаковое на каждом резисторе. А вот ток будет разный — он потечёт туда, где ему легче пройти. Опять же, применяя несложные рассуждения и используя закон Ома, выводится формула общего сопротивления параллельно соединённых резисторов.

Параллельное соединение резисторов

Более сложные, смешанные соединения резисторов разбиваются на небольшие блоки, и так последовательно, от меньших к большим блокам считается общее сопротивление:

Сложное соединение резисторов. Сначала считаем блок R1,R2 (параллельные), потом к этому блоку добавляем последовательно R3, наконец, считаем параллельно R1,R2,R3 и R4. Если каждое сопротивление по 10 Ом, общее сопротивление получается 6 Ом.

Нужно добавить, что иногда разбить на блоки невозможно. В этом случаи применяются более сложный метод расчёта — правила Кирхгофа.

Классификация резисторов

Резисторы отличаются не только возможностью регулировать сопротивление. Они могут изготавливаться из разных резистивных материалов, иметь различное количество контактов и иметь другие особенности.

По типу резистивного материала

Элементы могут быть проволочными, непроволочными или металлофольговыми. Высокоомная проволока является признаком проволочного элемента, для ее изготовления используют такие сплавы, как нихром, константан или никелин. Пленки с повышенным удельным сопротивлением являются основой непроволочных элементов. В металлофольговых используется специальная фольга. Теперь выясним из чего состоят резисторы.

Конструкция полупроводника

Непроволочные делятся на тонкослойные и композиционные, толщина первых измеряется в нанометрах, а вторых – в долях миллиметра. Тонкослойные делятся на:

  • металлоокисные;
  • металлизированные;
  • бороуглеродистые;
  • металлодиэлектрические;
  • углеродистые.

Композиционные в свою очередь подразделяются на объемные и пленочные. Последние могут быть с органическим или неорганическим диэлектриком. Чтобы понять есть ли полярность у резистора следует знать, что стороны у них идентичны.

По назначению сопротивления

Постоянные и переменные полупроводники также имеют некоторые различия в характеристиках. Постоянные делятся на проводники общего и специального назначения. Последние могут быть:

  • высокочастотными;
  • высоковольтными;
  • высокомегаомными;
  • прецизионными.

Такие детали используются в точных измерительных приборах, они выделяются особой стабильностью.

Переменные резисторы можно разделить на подстроечные и регулировочные. Последние могут быть с линейной или нелинейной функциональной характеристикой.

По количеству контактов

В зависимости от назначения резистора у него может быть один, два и более контактов. Сами контакты также отличаются, например, у SMD-резисторов это контактная площадка, у проволочных – особого состава проволока. Есть резисторы металлопленочные, с квантовыми точечными контактами, а в переменных они подвижные.

Разное количество контактов на элементах

Другие

Отличаются резисторы формой и типом сопротивления, а также характером зависимости величины сопротивления от напряжения. Описание зависимости величины может быть линейной или нелинейной. Использование элемента простое, емкость указывается на корпусе, минус и плюс не отличаются.

Резисторы могут быть защищены от влаги или нет, корпус может быть лакированным, вакуумным, герметичным, впрессованным в пластик или компаундированным. Нелинейные подразделяются на:

  • варисторы;
  • магниторезисторы;
  • фоторезисторы;
  • позисторы;
  • тензорезисторы;
  • терморезисторы.

Все они выполняют свою определенную функцию, одни меняют сопротивление от температуры, другие от напряжения, третьи от лучистой энергии.

SMD резисторы


Если вы посмотрите на материнскую плату компьютера, вы можете увидеть другую конструкцию резисторов (и других частей тоже). Это устройство для поверхностного монтажа (SMD), предназначенное для установки на поверхность платы.

Через отверстие монтируется традиционный резистор с проволочной обмоткой).

В этом случае резисторы SMD выглядят как «кирпичи» разного размера без проводов. Кабели в данном случае представляют собой концы кирпича, покрытые сваркой.

При использовании SMD компонентов увеличивается плотность монтажа, уменьшаются размеры изделий, отпадает необходимость сверлить в плате сотни отверстий.

Кроме того, из-за отсутствия длинных кабелей паразитная емкость и индуктивность резистора уменьшаются, что улучшает характеристики устройства в целом.


Выбор SMD требуемого типоразмера осуществляется исходя из требуемой рассеиваемой мощности. Здесь применима та же физика: чем больше размер, тем большую мощность может рассеять резистор. Размеры резисторов SMD и рассеиваемая мощность приведены в таблице.

Конструктивно резистор SMD представляет собой кусок той же керамики в форме параллелепипеда с нанесенной на его поверхность резистивной пленкой. Толщина и состав резистивных пленок могут быть разными.

Резистивный слой сверху защищен защитным слоем с нанесенной на него маркировкой.

В качестве перемычек используются SMD-резисторы с нулевым сопротивлением.

Применение резисторов в схемах

Итак, как же с помощью резисторов управляют напряжениями и токами? Допустим, стоит задача ограничить напряжение на нагрузке. Под «нагрузкой» здесь может пониматься любой элемент или узел схемы, на котором мы хотим получить заданное напряжение или заданный ток.  Это могут быть и лампочка, и светодиод, и следующий каскад усилителя и т. д.

Самое простое — поставить последовательно с нагрузкой гасящий резистор. Как мы обсуждали выше, в этом случае напряжение распределится между элементами в соответствии с сопротивлением каждого. То есть, получается делитель напряжения.

Схема делителя напряжения, когда нагрузка является элементом делителя.

А что делать, если сопротивление нагрузки очень велико или не постоянно? В этом случае ставят два последовательных резистора, образующих плечи делителя. А нагрузка снимает напряжение с одного из них. Подчеркну, что всегда нужно помнить про сопротивление нагрузки. Оно должно быть достаточно большим, чтобы им можно было пренебречь при расчёте делителя.

Схема делителя напряжения, когда нагрузка подключена параллельно нижнему плечу делителя

Если последовательное соединение резисторов является делителем напряжения, нетрудно догадаться, что паралелльное соединение — делитель тока. На рисунке приведён способ ограничить ток через нагрузку — поставить параллельно ей резистор, так называемый шунт. Который будет отвевлять на себя часть тока, обратно пропорциональную его сопротивлению.

Схема делителя тока

Принцип работы

Резистор устанавливается в электрической цепи для ограничения тока, протекающего через цепь. Величина напряжения, которая на нем упадет, рассчитывается просто – по закону Ома:

U=IR

Падением напряжения называется то количество Вольт, которые появляются на выводах резистора, когда через него протекает ток. Соответственно, если на резисторе у нас упало напряжение, и через него протекает ток – значит на нём выделяется в тепло определенная мощность. В физике есть известная всем формула для нахождения мощности:

P=UI

Или для ускорения расчетов иногда удобно пользоваться формулой мощности через сопротивление:

P=U2/R=I2R

Как работает резистор? У каждого проводника есть определенная внутренняя структура. При протекании электрического тока электроны (носители зарядов) сталкиваются с различными неоднородностями структуры вещества и теряют энергию, она то и выделяется в виде тепла. Если вам сложно понять, то принцип работы сопротивления простыми словами можно сказать так:

Это величина, которая показывает насколько сложно протекать электрическому току через вещество. Она зависит от самого вещества – его удельного сопротивления.

Где: р – удельное сопротивление, l – длина проводника, S – площадь поперечного сечения.

SMD-резисторы

SMD-резисторы (Surface Mount Device) – это электронные резисторы, которые могут быть установлены на поверхность печатной платы, в отличие от традиционных проволочных резисторов, которые устанавливаются в отверстия на печатной плате. SMD-резисторы имеют маленький размер и вес, что делает их идеальными для использования в небольших и компактных электронных устройствах.

SMD-резисторы также имеют различные значения сопротивления и точности, как и традиционные резисторы. Они могут быть изготовлены из различных материалов, включая уголь, металлопленку и металлооксид, и могут иметь мощности от нескольких милливатт до нескольких ватт.

Форм факторы SMD резисторов

SMD-резисторы производятся в различных форм-факторах, которые определяют их размеры и форму. Наиболее распространенными форм-факторами SMD-резисторов являются:

  1. 0603: Размеры 0,06 дюйма x 0,03 дюйма (1,6 мм x 0,8 мм). Это один из самых маленьких SMD-резисторов, который обычно используется в небольших электронных устройствах.
  2. 0805: Размеры 0,08 дюйма x 0,05 дюйма (2 мм x 1,25 мм). Это один из самых распространенных форм-факторов SMD-резисторов и используется в большинстве электронных устройств.
  3. 1206: Размеры 0,12 дюйма x 0,06 дюйма (3,2 мм x 1,6 мм). Этот форм-фактор SMD-резистора немного больше, чем 0805, и обычно используется в более крупных электронных устройствах, таких как компьютеры и телевизоры.
  4. 1210: Размеры 0,12 дюйма x 0,10 дюйма (3,2 мм x 2,5 мм). Этот форм-фактор SMD-резистора больше, чем 1206, и используется в электронных устройствах с более высокой мощностью.
  5. 2010: Размеры 0,20 дюйма x 0,10 дюйма (5 мм x 2,5 мм). Этот форм-фактор SMD-резистора больше, чем 1210, и используется в электронных устройствах, требующих более высоких мощностей.
  6. 2512: Размеры 0,25 дюйма x 0,12 дюйма (6,3 мм x 3,1 мм). Этот форм-фактор SMD-резистора самый большой и обычно используется в электронных устройствах, которые требуют очень высоких мощностей.

Для своей работы Вы можете использовать наш онлайн калькулятор расчета типоразмеров SMD резисторов.

Для работы в своей мастерской мы использовали специальные наборы резисторов в виде книги.

Книга с SMD резисторами

Маркировка SMD резисторов

Маркировка SMD резисторов может различаться в зависимости от производителя, но обычно она состоит из трех или четырех цифр и/или букв, которые указывают на номинальное сопротивление, точность и размер резистора.

В этом примере “102” означает, что номинальное сопротивление резистора равно 1 кОм. “F” указывает на точность ±1%.

Другие обозначения, которые могут использоваться в маркировке SMD резисторов, включают температурный коэффициент сопротивления (TCR), максимальную мощность, максимальное рабочее напряжение и т.д.

В таблице ниже приведены основные обозначения, используемые в маркировке SMD резисторов:

Обозначение Значение
10 1 Ом
100 10 Ом
101 100 Ом
102 1 кОм
103 10 кОм
104 100 кОм
105 1 МОм
R Сопротивление (когда цифры не могут быть использованы)
M Мега (миллион)
K Кило (тысяча)
% Процент точности
P Максимальная мощность (обычно в Вт)
N Нормальный температурный коэффициент сопротивления
R Обратный температурный коэффициент сопротивления
S Узкий температурный диапазон сопротивления
H Высокая стабильность
L Низкая стабильность
C Конденсатор (используется для обозначения резисторов-термисторов)

Например, маркировка “220R” означает, что резистор имеет номинальное сопротивление 220 Ом, а маркировка “102K” означает, что резистор имеет номинальное сопротивление 1 кОм и максимальную мощность 10 Вт.

Также следует учитывать, что маркировка SMD резисторов может немного отличаться в зависимости от производителя и серии резисторов, поэтому перед использованием резистора необходимо обязательно проверять маркировку и сравнивать ее с требованиями электрической схемы.

Сокращения и условные обозначения резисторов

Условные обозначения и сокращения наносимые на резистор позволяют понять какой тип резистора перед нами, из чего он сделан и какое имеет сопротивление.

Для определения типа резистора на него наносят следующее обозначение:

  • Первый элемент, обозначает тип резистора: Р — постоянный резистор, РП — переменный резистор, НР — набор резисторов, ВР — варистор постоянный, ВРП — варистор переменный, ТР — терморезистор с отрицательным ТКС, ТРП — терморезистор с положительным ТКС.
  • Второй элемент, обозначает материал из которого сделан резистор: 1 — непроволочный регистор, 2 — проволочный или металлофольговый резистор.
  • Третий элемент, обозначает номер разработки резистора

Например, обозначение РП1-68, обозначает, что это переменный резистор непроволочный, разработанный под номером 68.

После условного обозначения типа резистора на него наносят сокращённое обозначение некоторых параметров:

  • Первым в обозначении параметров идет значение сопротивления в Омах, согласно номинальным рядам сопротивлений (Е6, Е12, Е24, Е48, Е96, Е192).
  • Вторым элементом в сокращённом обозначении параметров является буква, которая определяет множитель на который надо умножить первый элемент чтобы получить номинальное сопротивление:
    • R(E) = 1
    • K(K) = 103
    • M(M) = 106
    • G(Г) = 109
    • T(T) = 1012

    если же сопротивление выражено дробным числом, то данную букву ставят на место запятой;

  • Последним элементом является буква, которая указывает величина допуска в процентах:
    • E = ±0,001
    • L = ±0,002
    • R = ±0,005
    • P = ±0,01
    • U = ±0,02
    • В(Ж) = ±0,1
    • С(У) = ±0,25
    • D(Д) = ±0,5
    • F(З) = ±1
    • G(Л) = ±2
    • J(И) = ±5
    • K(C) = ±10
    • M(B) = ±20
    • N(Ф) = ±30

Таким образом, если на резистор нанесено обозначение 3K6J, то сопротивление данного резистора 3,6 кОм и величина допуска ±5%, а если обозначение 10ED, то данный резистор имеет сопротивление 10 Ом и возможное отклоненние от номинального значения ±0,5%

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ

Переменный резистор.

Переменный резистор – это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.

Переменные резисторы, их также называют реостатами или потенциометрами, предназначены для постепенного регулирования силы тока и напряжения.

Разница в том, что реостат регулирует силу тока в электрической цепи, а потенциометр – напряжение. На радиосхемах переменные резисторы обозначаются прямоугольником с пририсованной к их корпусу стрелочкой.

На схемах цифрами от 1 до 3 указывается расположение выходов резистора.

Регулировать мощность сопротивления переменных резисторов можно с помощью вращения специальной ручки. Те из резисторов, у которых регулировка сопротивления резистора может осуществляться только с помощью отвертки или специального ключа-шестигранника, называются подстроечными переменными резисторами. Выглядят они так:

Материалы, из которых изготавливаются резисторы

В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.

Проволочные резисторы

Рисунок 9 – Проволочные резисторы

Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.

Металлопленочные резисторы

Рисунок 10 – Металлопленочные резисторы

Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

Рисунок 11 – Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.

Фольговые резисторы

Рисунок 12 – Фольговые резисторы

Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).

Углеродные композиционные резисторы

Рисунок 13 – Углеродные композиционные резисторы

До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.

Особенности применения резисторов в схемах

Резисторы можно соединять последовательно и параллельно.

[Сопротивление последовательно соединенных резисторов] = [Сопротивление R1] + [Сопротивление R2]

[Сопротивление параллельно соединенных резисторов] = 1 / (1 / [Сопротивление R1] + 1 / [Сопротивление R2])

На рисунке приведены типовые схемы на резисторах. (А) — ‘Преобразователь тока в напряжение’. Напряжение на резисторе равно его сопротивлению, умноженному на ток. (Б) — ‘Преобразователь напряжения в ток’. Ток через резистор равен напряжению на нем, деленному на его сопротивление. (В), (Г) — Делитель напряжения. Напряжение на выходе делителя равно напряжению на входе, умноженному на сопротивление нижнего резистора, деленное на сумму сопротивлений обоих резисторов. Схема (Г) — регулируемый делитель, образуемый двумя половинками переменного резистора. С помощью него можно механически регулировать уровень выходного напряжения. (Д) — источник тока. Резистор хорошо справляется с функцией источника тока, если к нему приложено фиксированное напряжение. Да, в изображенной схеме и верхний, и нижний резисторы являются источниками тока, а вовсе не делителем напряжения, как может показаться на первый взгляд. Дело в том, что падение напряжения между базой и эмиттером транзистора мало зависит от тока. Так что и нижний резистор и верхний работают в условиях фиксированного напряжения. Напряжение на нижнем резисторе равно напряжению насыщения база — эмиттер, а напряжение на верхнем резисторе равно напряжению питания минус напряжение насыщения база — эмиттер.

(читать дальше…) :: (в начало статьи)

 1   2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Еще статьи

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Проверка резисторов, конденсаторов, диодов, выпрямительных мостов. Про…
Как проверить резистор, конденсатор, диод, мост. Методика испытаний….

Делитель напряжения. Схема, расчет, формула. Рассчитать. Применение. О…
Делитель напряжения. Онлайн расчет. Применение на примере осциллографа…

Онлайн расчет схемы защиты (активного ограничителя) силового ключа от …
Проектирование защитной схемы силового транзистора импульсного источника питания…

Электронный цифровой термометр своими руками. Схема, конструкция, опис…
Как сделать простой цифровой измеритель температуры…

Перемножение сигналов. Умножение, деление напряжения. Перемножить, раз…
Схемы для перемножения сигналов, деления друг на друга, извлечения корня, возвед…

Понижающий импульсный преобразователь напряжения. Выбор силового ключа…
Как сконструировать понижающий импульсный источник питания. Шаг 2. Как выбрать м…

Прямоходовый импульсный преобразователь напряжения, источник питания


Как выбрать частоту работы контроллера и скважность для однотактного прямоходово..

Регулируемые резисторы

Регулируемые резисторы — резисторы, сопротивление которых можно изменять в определенных пределах, применяют в качестве регуляторов усиления, громкости, тембра и т. д. Общее обозначение такого резистора состоит из базового символа и знака регулирования, причем независимо от положения символа на схеме стрелку, обозначающую регулирование, проводят в направлении снизу вверх под углом 45 градусов.

Регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Кому из владельцев радиоприемника или магнитофона не приходилось после двух-трех лет эксплуатации слышать шорохи п треоки из громкоговорителя при регулировании громкости.

Причина этого неприятного явления — в нарушении контакта щетки с токопроводящим слоем или износ последнего. Поэтому, если основным требованием к переменному резистору является повышенная надежность, применяют резисторы со ступенчатым регулированием.

Такой резистор может быть выполнен на базе переключателя на несколько положений, к контактам которого подключены ре-, зисторы постоянного сопротивления. На схемах эти подробности не показывают, ограничиваясь изображением символа регулируемого резистора со знаком ступенчатого регулирования, а если необходимо, указывают и число ступеней (рис. 8).

Рис. 8. Изображение символа регулируемого резистора со знаком ступенчатого регулирования.

Некоторые переменные резисторы изготовляют с одним, двумя и даже с тремя отводами. Такие резисторы применяют, например, в тонкомпенсиро-ванных регуляторах громкости, используемых в высококачественной звуковоспроизводящей аппаратуре. Отводы изображают в виде линий, отходящих от длинной стороны основного символа (рис. 9).

Рис. 9. Обозначение переменного резистора с отводами.

Для регулирования громкости, тембра, уровня записи в стереофонической аппаратуре, частоты в измерительных генераторах сигналов и т. д. применяют сдвоенные переменные резисторы, сопротивления которых изменяются одновременно при повороте общей оси (или перемещении движка). На схемах символы входящих в них резисторов стараются расположить возможно ближе друг к другу, а механическую связь показывают либо двумя сплошными линиями, либо одной штриховой (рис. 10,а).

   Рис. 10. Внешний вид и обозначение блоков с переменными резисторами.

Если же сделать этого не удается, т. е. символы резисторов оказываются на большом удалении один от другого, механическую связь изображают отрезками штриховой линии (рис. 10,6). Принадлежность резисторов к одному сдвоенному блоку показывают в этом случае и в позиционном обозначении (R1.1—первый — по схеме — резистор сдвоенного переменного резистора R1, R1.2 — второй).

Встречаются и такие сдвоенные переменные резисторы, в которых каждым резистором можно управлять отдельно (ось одного проходит внутри трубчатой оси другого). Механической связи, обеспечивающей одновременное изменение сопротивлений обоих резисторов, в этом случае нет, поэтому и на схемах ее не показывают (принадлежность к сдвоенному резистору указывают только в позиционном обозначении).

В бытовой радиоаппаратуре часто применяют переменные резисторы, объединенные с одним или двумя выключателями. Символы их контактов размещают на схемах рядом с обозначением переменного резистора и соединяют штриховой линией с жирной точкой, которую изображают с той стороны прямоугольника, при перемещении к которой узел щеточного контакта (движок) воздействует на выключатель (рис. 11,а).

Рис. 11. Обозначение переменного резистора совмещенного с переключателем.

При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней. В случае, если символы резистора и выключателя удалены один от другого, механическую связь показывают отрезками штриховых линий (рис. 11,6).

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: