Измерение электрических величин: единицы и средства, методы измерения

Пуэ 7. глава 1.6. измерения электрических величин

Ватт, киловатт и киловатт-час

Единица измерения ватт получила свое название в честь ученого Джеймса Ватта, который занимался изучением электричества в позапрошлом веке. Именно ему приписывают изобретение универсальной паровой машины.

В ваттах сегодня измеряется любая мощность, а не только электрическая. Например, для измерения мощности двигателя автомобиля наряду с лошадиными силами также применяется ватт. Однако чаще всего используется не сама единица «ватт», а производная от нее — киловатт (кВт). По аналогии с метром и километром, а также с граммом и килограммом один киловатт равен тысяче ватт.

Нередко также подсчет энергии ведется и в других единицах, кратных ватту. Например, для измерения большой мощности удобно применять мегаватт — единицу, которая соответствует миллиону ватт. Также можно использовать и другие префиксы международной системы единиц, в том числе и те, которые соответствуют десятым, сотым, тысячным долям.

  • дециватт — это десятая часть ватта;
  • сантиватт — его сотая часть;
  • милливатт — это тысячная часть ватта.

Мощность электротока, которая потребляется обычными бытовыми приборами, такими как светильники, холодильник, телевизор лучше всего измеряется в кВт. Если ватт и производные единицы внесены в систему СИ, то киловатт-час там отсутствует. КВт·ч — это единица для измерения, которая внесистемная. Она была создана только для того, чтобы вести учет производящейся или, наоборот, использующейся электрической энергии.

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 — аналоговые электромагнитные электроизмерительные приборы — предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 — аналоговые электромагнитные электроизмерительные приборы — предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной — на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) — амперметр; (~) — переменный ток в пределах от 0 до 50А; () — вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной — И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле — на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения — отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Электроизмерительные приборы: виды и особенности

Измерение основных электрических величин требует большого разнообразия приборов. В зависимости от физического принципа, положенного в основу их работы, все они делятся на следующие группы:

  • Электромеханические приборы обязательно имеют в конструкции подвижную часть. К этой большой группе измерительных средств относятся электродинамические, ферродинамические, магнитоэлектрические, электромагнитные, электростатические, индукционные приборы. Например, магнитоэлектрический принцип, применяющийся очень широко, может быть положен в основу таких устройств, как вольтметры, амперметры, омметры, гальванометры. На индукционном принципе основаны счетчики электроэнергии, частотомеры и т. д.
  • Электронные приборы отличаются наличием дополнительных блоков: преобразователей физических величин, усилителей, преобразователей и пр. Как правило, в приборах этого типа измеряемая величина преобразуется в напряжение, и конструктивной основой их служит вольтметр. Электронные измерительные приборы применяются в качестве частотомеров, измерителей емкости, сопротивления, индуктивности, осциллографов.
  • Термоэлектрические приборы сочетают в своей конструкции измерительное устройство магнитоэлектрического типа и термопреобразователь, образуемый термопарой и нагревателем, через который протекает измеряемый ток. Приборы этого типа используются в основном при измерениях высокочастотных токов.
  • Электрохимические. Принцип их работы базируется на процессах, которые протекают на электродах либо в исследуемой среде в межэлектродном пространстве. Применяются приборы этого типа для измерения электропроводности, количества электричества и некоторых неэлектрических величин.

По функциональным особенностям различают следующие виды приборов для измерения электрических величин:

  • Показывающие (сигнализирующие) – это устройства, позволяющие производить только непосредственное считывание измерительной информации, такие как ваттметры или амперметры.
  • Регистрирующие – приборы, допускающие возможность регистрации показаний, например, электронные осциллографы.

По типу сигнала приборы делятся на аналоговые и цифровые. Если устройство вырабатывает сигнал, представляющий собой непрерывную функцию измеряемой величины, оно является аналоговым, например, вольтметр, показания которого выдаются при помощи шкалы со стрелкой. В том случае, если в устройстве автоматически вырабатывается сигнал в виде потока дискретных значений, поступающий на дисплей в численной форме, говорят о цифровом измерительном средстве.

Цифровые приборы имеют некоторые недостатки по сравнению с аналоговыми: меньшая надежность, потребность в источнике питания, более высокая стоимость. Однако их отличают и существенные преимущества, в целом делающие применение цифровых устройств более предпочтительным: удобство эксплуатации, высокая точность и помехоустойчивость, возможность универсализации, сочетания с ЭВМ и дистанционной передачи сигнала без потери точности.

В каким материалах возникает ток?

Процессы образования электрического тока в различных средах имеют свои особенности:

  1. В металлах заряд перемещают свободные отрицательно заряженные частицы – электроны. Переноса самого вещества не происходит – ионы металла остаются в своих узлах кристаллической решетки. При нагревании хаотичные колебания ионов близ положения равновесия усиливаются, что мешает упорядоченному движению электронов, — проводимость металла уменьшается.
  2. В жидкостях (электролитах) носителями заряда являются ионы – заряженные атомы и распавшиеся молекулы, образование которых вызвано электролитической диссоциацией. Упорядоченное движение в этом случае представляет собой их перемещение к противоположно заряженным электродам, на которых они нейтрализуются и оседают.

Источник



Измерение мощности

1.6.13. Измерение мощности должно производиться в цепях:

1) генераторов — активной и реактивной мощности.

При установке на генераторах мощностью 100 МВт и более щитовых показывающих приборов их класс точности должен быть не хуже 1,0.

На электростанциях мощностью 200 МВт и более должна также измеряться суммарная активная мощность.

Рекомендуется измерять суммарную активную мощность электростанций мощностью менее 200 МВт при необходимости автоматической передачи этого параметра на вышестоящий уровень оперативного управления;

2) конденсаторных батарей мощностью 25 Мвар и более и синхронных компенсаторов — реактивной мощности;

3) трансформаторов и линий, питающих СН напряжением 6 кВ и выше тепловых электростанций, — активной мощности;

4) повышающих двухобмоточных трансформаторов электростанций — активной и реактивной мощности. В цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки низшего напряжения) измерение активной и реактивной мощности должно производиться со стороны среднего и низшего напряжений.

Для трансформатора, работающего в блоке с генератором, измерение мощности со стороны низшего напряжения следует производить в цепи генератора;

5) понижающих трансформаторов 220 кВ и выше — активной и реактивной, напряжением 110-150 кВ — активной мощности.

В цепях понижающих двухобмоточных трансформаторов измерение мощности должно производиться со стороны низшего напряжения, а в цепях понижающих трехобмоточных трансформаторов — со стороны среднего и низшего напряжений.

На подстанциях 110-220 кВ без выключателей на стороне высшего напряжения измерение мощности допускается не выполнять. При этом должны предусматриваться места для присоединения контрольных показывающих или регистрирующих приборов;

6) линий напряжением 110 кВ и выше с двусторонним питанием, а также обходных выключателей — активной и реактивной мощности;

7) на других элементах подстанций, где для периодического контроля режимов сети необходимы измерения перетоков активной и реактивной мощности, должна предусматриваться возможность присоединения контрольных переносных приборов.

1.6.14. При установке щитовых показывающих приборов в цепях, в которых направление мощности может изменяться, эти приборы должны иметь двустороннюю шкалу.

1.6.15. Должна производиться регистрация:

1) активной мощности турбогенераторов (мощностью 60 МВт и более);

2) суммарной мощности электростанций (мощностью 200 МВт и более).

3.6. ИНДУКЦИОННАЯ СИСТЕМА

Приборы индукционной системы получили широкое распространение для измерения
электрической энергии. Принципиальная схема прибора приведена на рис.
3.6.1. Электрический счетчик содержит магнитопровод — 1 сложной конфигурации,
на котором размещены две катушки; напряжения — 2 и тока — 3. Между полюсами
электромагнита помещен алюминиевый диск — 4 с осью вращения — 5. Принцип
действия индукционной системы основан на взаимодействии магнитных потоков,
создаваемых катушками тока и напряжения с вихревыми токами, наводимыми
магнитным полем в алюминиевом диске.

Вращающий момент, действующий на диск, определяется выражением:

где ФU — часть магнитного потока, созданного обмоткой напряжения
и проходящего через диск счетчика; ФI — магнитный поток,
созданный обмоткой тока; — угол сдвига между ФU и ФI.
Магнитный поток ФU пропорционален напряжению
Магнитный поток ФI пропорционален току:
Для того чтобы счетчик реагировал на активную энергию, необходимо выполнить
условие:

В этом случае

т.е. вращающий момент пропорционален активной мощности нагрузки.
Противодействующий момент создается тормозным магнитом — 6 и пропорционален
скорости вращения диска:

В установившемся режиме
и диск вращается с постоянной скоростью. Приравнивая два последних уравнения
и решив полученное уравнение относительно угла поворота диска

Таким образом, угол поворота диска счетчика пропорционален активной
энергии. Следовательно, число оборотов диска n тоже пропорционально
активной энергии.

Учебные материалы

Электрическим измерением называют нахождение значений физических величин в электронике и электротехнике опытным путем с помощью специальных технических средств (например, с помощью электроизмерительных приборов).

Устройства, воспроизводящие единицу измерения, с которой сравнивается измеряемая величина, называются мерами. В зависимости от степени точности и области применения меры подразделяют на эталоны, образцовые и рабочие.

Эталоны обеспечивают воспроизведение и хранение единицы физической величины с наивысшей для данного уровня техники точностью.

Образцовые меры служат для поверки и градуировки рабочих мер и измерительных приборов.

Рабочие меры используют для поверки измерительных приборов и для непосредственных измерений в научных организациях и на промышленных предприятиях.

В зависимости от способа получения результатов измерения делят на два вида: прямые и косвенные.

Прямыми называют измерения, при которых искомое значение физической величины определяют непосредственно по показанию прибора. К ним относятся: измерение тока амперметром, электроэнергии — счетчиком, напряжения — вольтметром и др.

Косвенными называют измерения, при которых искомое значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, полученными в результате прямых измерений (определение электрического сопротивления R по показаниям амперметра и вольтметра, т. е. R = U/I).

В зависимости от приемов использования принципов измерений и измерительных приборов все методы измерения делятся на методы непосредственной оценки и методы сравнения.

Под методом непосредственной оценки понимают метод, при котором значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора (значение тока — по амперметру, значение напряжения — по вольтметру и др.).

Метод непосредственной оценки прост, но отличается сравнительно невысокой точностью.

Методом сравнения называют метод, при котором измеряемая величина в измерительной цепи сравнивается с величиной, воспроизводимой мерой. Методы сравнения подразделяют на нулевой, дифференциальный и замещения.

Нулевой метод — это метод сравнения измеряемой величины с мерой, в котором результирующий эффект воздействия сравниваемых величин на прибор доводят до нуля (измерение электрического сопротивления с помощью уравновешенного моста).

Дифференциальный метод — это метод сравнения, в котором на измерительный прибор воздействует разность измеряемой величины и величины, воспроизводимой мерой (измерение электрического сопротивления с помощью неуравновешенного моста).

Метод замещения — это метод сравнения, в котором измеряемую величину в измерительной цепи замещают известной величиной, воспроизводимой мерой.

Источник

Анализ простых схем с помощью закона Ома

Давайте посмотрим, как эти формулы работают, чтобы помочь нам анализировать простые схемы:


Рисунок 1 – Пример простой схемы

В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа). Это позволяет очень легко применить закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы вычислим величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):


Рисунок 2 – Пример 1. Известны напряжение источника и сопротивление лампы

Какая величина тока (I) в этой цепи?

Во втором примере мы вычислим величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):


Рисунок 3 – Пример 2. Известны напряжение источника и ток в цепи

Какое сопротивление (R) оказывает лампа?

В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):


Рисунок 4 – Пример 3. Известны ток в цепи и сопротивление лампы

Какое напряжение обеспечивает батарея?

Основные электрические величины

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

Величина Единица измерения в СИ Название электрической величины
q Кл — кулон заряд
R Ом – ом сопротивление
U В – вольт напряжение
I А – ампер Сила тока (электрический ток)
C Ф – фарад Емкость
L Гн — генри Индуктивность
sigma См — сименс Удельная электрическая проводимость
e0 8,85418781762039*10 -12 Ф/м Электрическая постоянная
φ В – вольт Потенциал точки электрического поля
P Вт – ватт Мощность активная
Q Вар – вольт-ампер-реактивный Мощность реактивная
S Ва – вольт-ампер Мощность полная
f Гц — герц Частота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множитель Произношение Обозначение (русское/международное)
10 -30 куэкто q
10 -27 ронто r
10 -24 иокто и/y
10 -21 зепто з/z
10 -18 атто a
10 -15 фемто ф/f
10 -12 пико п/p
10 -9 нано н/n
10 -6 микро мк/μ
10 -3 милли м/m
10 -2 санти c
10 -1 деци д/d
10 1 дека да/da
10 2 гекто г/h
10 3 кило к/k
10 6 мега M
10 9 гига Г/G
10 12 тера T
10 15 пета П/P
10 18 экза Э/E
10 21 зета З/Z
10 24 йотта И/Y
10 27 ронна R
10 30 куэкка Q

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

В практике встречаются

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

В практике встречаются

Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

Электропроводность измеряется в сименсах.

Источник

Основные электрические величины и единицы их измерения

Чаще всего электрические измерения связаны со следующим набором величин:

Сила тока (или просто ток) I. Данной величиной обозначается количество электрического заряда, проходящего через сечение проводника за 1 секунду. Измерение величины электрического тока проводится в амперах (A) при помощи амперметров, авометров (тестеров, так называемых «цешек»), цифровых мультиметров, измерительных трансформаторов.
Количество электричества (заряд) q. Эта величина определяет, в какой мере то или иное физическое тело может являться источником электромагнитного поля. Электрический заряд измеряется в кулонах (Кл). 1 Кл (ампер-секунда) = 1 А ∙ 1 с. Приборами для измерения служат электрометры либо электронные зарядометры (кулон-метры).
Напряжение U. Выражает разность потенциалов (энергии зарядов), существующую между двумя различными точками электрического поля. Для данной электрической величины единицей измерения служит вольт (В). Если для того, чтобы из одной точки переместить в другую заряд в 1 кулон, поле совершает работу в 1 джоуль (то есть затрачивается соответствующая энергия), то разность потенциалов – напряжение – между этими точками составляет 1 вольт: 1 В = 1 Дж/1 Кл. Измерение величины электрического напряжения производится посредством вольтметров, цифровых либо аналоговых (тестеры) мультиметров.
Сопротивление R. Характеризует способность проводника препятствовать прохождению через него электрического тока. Единица сопротивления – ом. 1 Ом – это сопротивление проводника, имеющего напряжение на концах в 1 вольт, к току величиной в 1 ампер: 1 Ом = 1 В/1 А. Сопротивление прямо пропорционально сечению и длине проводника. Для измерения его используются омметры, авометры, мультиметры.
Электропроводность (проводимость) G – величина, обратная сопротивлению. Измеряется в сименсах (См): 1 См = 1 Ом-1.
Емкость C – это мера способности проводника накапливать заряд, также одна из основных электрических величин. Единицей измерения ее служит фарад (Ф). Для конденсатора эта величина определяется как взаимная емкость обкладок и равна отношению накопленного заряда к разности потенциалов на обкладках. Емкость плоского конденсатора растет с увеличением площади обкладок и с уменьшением расстояния между ними. Если при заряде в 1 кулон на обкладках создается напряжение величиной 1 вольт, то емкость такого конденсатора будет равна 1 фараду: 1 Ф = 1 Кл/1 В. Измерение производят при помощи специальных приборов – измерителей емкости или цифровых мультиметров.
Мощность P – величина, отражающая скорость, с которой осуществляется передача (преобразование) электрической энергии. В качестве системной единицы мощности принят ватт (Вт; 1 Вт = 1Дж/с). Эта величина также может быть выражена через произведение напряжения и силы тока: 1 Вт = 1 В ∙ 1 А. Для цепей переменного тока различают активную (потребляемую) мощность Pa, реактивную Pra (не принимает участия в работе тока) и полную мощность P. При измерениях для них используют следующие единицы: ватт, вар (расшифровывается как «вольт-ампер реактивный») и, соответственно, вольт-ампер В∙А. Размерность их одинакова, и служат они для различения указанных величин. Приборы для измерения мощности – аналоговые или цифровые ваттметры. Косвенные измерения (например, с помощью амперметра) применимы далеко не всегда

Для определения такой важной величины, как коэффициент мощности (выражается через угол фазового сдвига) применяют приборы, называемые фазометрами.
Частота f. Это характеристика переменного тока, показывающая количество циклов изменения его величины и направления (в общем случае) за период в 1 секунду. За единицу частоты принята обратная секунда, или герц (Гц): 1 Гц = 1 с-1

Измеряют данную величину посредством обширного класса приборов, называемых частотомерами.

За единицу частоты принята обратная секунда, или герц (Гц): 1 Гц = 1 с-1. Измеряют данную величину посредством обширного класса приборов, называемых частотомерами.

Измерение мощности

1.6.13. Измерение мощности должно производиться в цепях:

1) генераторов — активной и реактивной мощности.

При установке на генераторах мощностью 100 МВт и более щитовых показывающих приборов их класс точности должен быть не хуже 1,0.

На электростанциях мощностью 200 МВт и более должна также измеряться суммарная активная мощность.

Рекомендуется измерять суммарную активную мощность электростанций мощностью менее 200 МВт при необходимости автоматической передачи этого параметра на вышестоящий уровень оперативного управления;

2) конденсаторных батарей мощностью 25 Мвар и более и синхронных компенсаторов — реактивной мощности;

3) трансформаторов и линий, питающих СН напряжением 6 кВ и выше тепловых электростанций, — активной мощности;

4) повышающих двухобмоточных трансформаторов электростанций — активной и реактивной мощности. В цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки низшего напряжения) измерение активной и реактивной мощности должно производиться со стороны среднего и низшего напряжений.

Для трансформатора, работающего в блоке с генератором, измерение мощности со стороны низшего напряжения следует производить в цепи генератора;

5) понижающих трансформаторов 220 кВ и выше — активной и реактивной, напряжением 110-150 кВ — активной мощности.

В цепях понижающих двухобмоточных трансформаторов измерение мощности должно производиться со стороны низшего напряжения, а в цепях понижающих трехобмоточных трансформаторов со стороны среднего и низшего напряжений.

На подстанциях 110-220 кВ без выключателей на стороне высшего напряжения измерение мощности допускается не выполнять. При этом должны предусматриваться места для присоединения контрольных показывающих или регистрирующих приборов;

6) линий напряжением 110 кВ и выше с двусторонним питанием, а также обходных выключателей — активной и реактивной мощности;

7) на других элементах подстанций, где для периодического контроля режимов сети необходимы измерения перетоков активной и реактивной мощности, должна предусматриваться возможность присоединения контрольных переносных приборов.

1.6.14. При установке щитовых показывающих приборов в цепях, в которых направление мощности может изменяться, эти приборы должны иметь двустороннюю шкалу.

1.6.15. Должна производиться регистрация:

1) активной мощности турбогенераторов (мощностью 60 МВт и более);

2) суммарной мощности электростанций (мощностью 200 МВт и более).

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: