История изобретения
В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель. В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.
В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.
Определение
Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.
Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.
Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.
Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.
В зависимости от сферы применения и схемы подключения диодные мосты бывают:
- однофазные;
- трёхфазные.
Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.
Принцип действия
Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.
Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.
Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:
- На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или ~).
- Каждая из полуволн синусоидального напряжения (рисунок ниже) пропускается парой вентилей, расположенных на схеме по диагонали.
Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.
Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.
Выпрямительные схемы
Выпрямление электрических колебаний, это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.
Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.
Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны, кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.
Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.
Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.
Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно
Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .
В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.
Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).
Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.
Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.
В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает.
При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученого на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.
Технические параметры выпрямителя:
— Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.
— Коэффициент использования трансформатора в выпрямительной схеме, определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.
— Коэффициент полезного действия, это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.
—
Частотная пульсация выпрямителя, это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.
1.1.4 Стабилизаторы напряжения
В процессе работы ИВЭП напряжение на выходе сглаживающего фильтра может изменяться из-за колебаний сопротивления нагрузки, напряжения первичного источника и других факторов. Если отклонения напряжения превышают допустимую величину, в схему ИВЭП вводят стабилизаторы – устройства, обеспечивающее малые изменения выходного напряжения.
Существуют два типа стабилизаторов: параметрические и компенсационные. В параметрических стабилизаторах напряжения используют нелинейные элементы, имеющие участок ВАХ, на котором напряжение остается неизменным при изменении тока. Такой участок имеет обратная ветвь ВАХ стабилитрона.
Схема параметрического стабилизатора напряжения на кремниевом стабилитроне показана на рис. 1.1.9.
Рис. 1.1.9
Схема представляет делитель напряжения, состоящий из резистора и стабилитрона VD. Нагрузочный резистор включен параллельно стабилитрону. Поэтому в режиме стабилизации, когда напряжение стабилитрона почти постоянно, постоянным будет и напряжение на нагрузке.
Найдем напряжение и ток стабилитрона графическим способом. ВАХ стабилитрона и линейной части цепи показаны на рис. 1.1.10. Поскольку , обратная ветвь ВАХ стабилитрона расположена в первом квадранте. Нагрузочная характеристика линейной подсхемы представляет прямую, проходящую через точки, соответствующие режимам холостого хода
и короткого замыкания . Здесь . Точка пересечения нагрузочной прямой и ВАХ стабилитрона (точка А на рис. 1.1.10) является рабочей точкой и определяет ток и напряжение стабилитрона. Если входное напряжение изменится, нагрузочная прямая переместится параллельно самой себе. Изменятся и координаты рабочей точки (точка В
на рис. 1.1.10). При этом изменения выходного напряжения будут невелики до тех пор, пока рабочая точка находится на крутом участке ВАХ стабилитрона.
Рис. 1.1.10
Для поддержания режима стабилизации сопротивление рассчитывают так, чтобы рабочая точка располагалась посередине рабочего участка ВАХ. Если входное напряжение изменяется от до ,
то можно найти по формуле
. (1.1.2)
Здесь:
- – среднее значение напряжения на входе стабилизатора;
- – средний ток стабилитрона;
- – ток нагрузки.
Если входное напряжение будет изменяться, то будет изменяться и ток стабилитрона, однако напряжение стабилитрона, а следовательно, и напряжение нагрузки будут почти постоянными.
Основными параметрами, характеризующими качество стабилизатора, являются коэффициент стабилизации , выходное сопротивление , коэффициент полезного действия .
Коэффициент стабилизации – это отношение относительного изменения входного напряжения к относительному изменению напряжения на выходе:.
Коэффициент стабилизации параметрического стабилизатора можно определить по приближенной формуле
. (1.1.3)
В последнем выражении:
—
динамическое сопротивление стабилитрона на участке пробоя.
Поскольку , выходное сопротивление параметрического стабилитрона
.
Коэффициент полезного действия стабилизатора равен отношению мощности, отдаваемой в нагрузку, к мощности, потребляемой от входного источника.
Однополупериодный выпрямитель.
Схема однополупериодного выпрямителя выглядит следующим образом:
Пусть на входе у нас переменное напряжение, меняющееся по синусоидальному закону:
Резистор же R_н играет роль нагрузки. То есть мы должны обеспечить протекание через него постоянного тока. Давайте разберемся как эта простейшая схема сможет решить нашу задачу!
Итак, диод D_1 пропускает ток только в одном направлении, в те моменты, когда к нему приложено прямое смещение, что соответствует положительным полупериодам (U_{вх}\gt0) входного сигнала. Когда к диоду будет приложено обратное смещение (отрицательные полупериоды), он будет закрыт и по цепи будет протекать только незначительный обратный ток. И в результате сигнал на нагрузке будет выглядеть так:
Обратным током обычно можно пренебречь, поэтому в итоге мы получаем, что ток через нагрузку протекает только в одном направлении. Но назвать его постоянным не представляется возможным Ток через нагрузку хоть и является выпрямленным (протекает только в одном направлении), но носит пульсирующий характер.
Для сглаживания этих пульсаций в схему выпрямителя тока обычно добавляется конденсатор:
Идея заключается в том, что во время положительного полупериода, конденсатор заряжается (запасает энергию). А во время отрицательного полупериода конденсатор, напротив, разряжается (отдает энергию в нагрузку).
Таким образом, за счет накопленной энергии конденсатор обеспечивает протекание тока через нагрузку и в отрицательные полупериоды входного сигнала. При этом емкость конденсатора должна быть достаточной для того, чтобы он не успевал разряжаться за время, равное половине периода.
Проверяем напряжение на нагрузке для этой схемы:
В точке 1 конденсатор заряжен до напряжения U_1. Далее входное напряжение понижается, а конденсатор, в свою очередь, начинает разряжаться на нагрузку. Поэтому выходное напряжение не падает до нуля вслед за входным.
В точке 2 конденсатор успел разрядиться до напряжения U_2. В то же время значение входного сигнала также становится равным этой же величине, поэтому конденсатор снова начинает заряжаться. И эти процессы в дальнейшем циклически повторяются.
А теперь поэкспериментируем и используем в схеме однополупериодного выпрямителя конденсатор меньшей емкости:
И здесь мы видим, что конденсатор из-за меньшей емкости успевает разрядиться гораздо сильнее, и это приводит к увеличению пульсаций, а следовательно к ухудшению работы всей схемы.
На промышленных частотах 50 – 60 Гц однополупериодный выпрямитель практически не применяется из-за того, что для таких частот потребуются конденсаторы с очень большой емкостью (а значит и внушительными габаритами).
Смотрите сами, чем ниже частота, тем больше период сигнала (а вместе с тем, и длительности положительного и отрицательного полупериодов). А чем больше длительность отрицательного полупериода, тем дольше конденсатор должен быть способен разряжаться на нагрузку. А это уже требует большей емкости.
Таким образом, на более низких частотах в силу своих ограничений эта схема не нашла широкого применения. Однако, на частотах в несколько десятков КГц однополупериодный выпрямитель используется вполне успешно.
Рассмотрим преимущества и недостатки однополупериодного выпрямителя:
- К основным достоинствам схемы, в первую очередь, конечно же, можно отнести простоту и, соответственно, небольшую себестоимость – используется всего один диод.
- Кроме того, снижено падение напряжения. , при протекании тока через диод на нем самом падает определенное напряжение. По сравнению с мостовой схемой (которую мы разберем в следующей статье), ток протекает только через один диод (а не через два), а значит и падение напряжения меньше.
Основных недостатков также можно выделить несколько:
- Схема использует энергию только положительного полупериода входного сигнала. То есть половина полезной энергии, которую также можно было бы использовать, уходит просто в никуда. В связи с этим КПД выпрямителя крайне низок.
- И даже с использованием сглаживающих конденсаторов величина пульсаций довольно-таки значительна, что также является очень серьезным недостатком.
Итак, давайте резюмируем! Мы разобрали схему и принцип работы однофазного однополупериодного выпрямителя тока, а в следующей статье перейдем к более сложным схемам выпрямителей, не пропустите!
Однополупериодный выпрямитель
Схема однополупериодный выпрямитель
Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:
Выпрямленный ток после однополупериодного выпрямителя
На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:
Электролитический конденсатор большой емкости
Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад
В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно
На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.
Выпрямленный ток в однополупериодном выпрямителе после конденсатора
| DevXplained
Он используется во многих продуктах и фактически является стандартным выпрямителем: двухполупериодным мостовым выпрямителем. Давайте узнаем, как это работает.
Двухполупериодный мостовой выпрямитель
Двухполупериодный мостовой выпрямитель фактически является стандартной схемой выпрямителя. Это позволяет нам использовать как отрицательную, так и положительную полуволну сигнала переменного тока. Как это возможно? Давай выясним!
ПРЕДУПРЕЖДЕНИЕ Эксперименты в этом руководстве проводились с генератором сигналов при размахе напряжения 9 В.V. При проведении экспериментов используйте напряжения ниже 24 В переменного тока.
Эксперименты с сетевым напряжением могут привести к серьезным травмам или смерти.
Схема выпрямителя
Стандартный двухполупериодный выпрямитель состоит из четырех диодов, которые используются в мостовой конфигурации: два одинаковых плеча с двумя диодами в каждом соединены нагрузкой между ними.
- Макет
- Схема
Во время положительной полуволны диоды D1 и D3 проводят ток и питают нагрузку.
Во время отрицательной полуволны два других диода проводят ток. D2 подводит положительное напряжение от нижнего рельса к положительному полюсу нагрузки, а D4 соединяет отрицательный полюс с верхним рельсом.
В демонстрационных целях я заменил диоды на светодиоды и снизил частоту сигнала переменного тока до 1 Гц. Это позволяет нам наблюдать схему выпрямителя в действии.
Ваш браузер не поддерживает видео тег.
Два альтернативных пути тока позволяют питать цепь постоянного тока в обеих полуволнах. Если мы посмотрим на сигнал, то увидим, что отрицательная полуволна превращается в положительную, а не отсекается, как это делает однополупериодный выпрямитель.
Как и в случае с однополупериодным выпрямителем, выпрямленный сигнал имеет примерно ту же амплитуду, что и сигнал переменного тока. Опять же, есть потери на диодах, которые можно уменьшить, используя диоды Шоттки. Поскольку теперь у нас есть два диода на путь, потери в два раза выше, чем в однополупериодном выпрямителе только с одним диодом. Однако, поскольку мы можем использовать обе полуволны, теперь мы имеем более высокую выходную мощность при том же сопротивлении нагрузки. Среднеквадратичное напряжение теперь равно \(V_{RMS} = {V_{p}\over \sqrt{2}}\). Это не случайно идентично общему определению среднеквадратичного напряжения для синусоидальных сигналов переменного тока. За исключением небольших потерь, мы можем использовать всю мощность источника переменного тока с этим выпрямителем.
Добавление конденсаторного фильтра
Для стабилизации выходного напряжения мы снова можем использовать конденсатор, как мы использовали для однополупериодного выпрямителя:
- Макет
- Схема
Конденсатор стабилизирует напряжение, но вызывает скачки тока во время зарядки. Как и в случае с однополупериодным выпрямителем, вам необходимо увеличить значение емкости для больших нагрузок или уменьшения пульсаций.
Заключение
С двухполупериодным выпрямителем мы получаем мощность как в положительной, так и в отрицательной полуволне для нашей цепи постоянного тока. Нагрузка на источник переменного тока распределяется равномерно, а не только на одну полуволну. Нам еще нужно стабилизировать выпрямленный сигнал, чтобы получить постоянное постоянное напряжение. Однако при той же нагрузке и емкости двухполупериодный выпрямитель производит меньше пульсаций, чем однополупериодный выпрямитель. Если пульсации все еще слишком велики для цепи постоянного тока, можно использовать регулятор напряжения, чтобы получить для нее фиксированное и более стабильное напряжение. По сравнению с однополупериодным выпрямителем в большинстве случаев двухполупериодный выпрямитель является лучшим выбором. Недостатками по сравнению с однополупериодным выпрямителем являются большее количество компонентов и удвоенные потери на диодах.
Пример решения контрольной по электротехнике
Задача 1.
Составить схему двухполупериодного выпрямителя, использовав стандартные диоды Д226А, параметры которых : Iдоп=0.3 А, а Uобр=300 В. Мощность потребителя Pd=80 Вт с напряжением питания Ud=150 В. Пояснить порядок составления схемы диодов с приведёнными параметрами.
Дано: тип диода Д226А ; Pd=80 Вт ; Ud=150 В.
Требуется : составить схему двухполупериодного выпрямителя.
Решение.
Определяем ток потребителя :
Id=Pd/Ud=80/150=0.5 A.
Определяем напряжение, действующее на диод в непроводящий период:
Ub=3.14Ud=3.14×150=471 В.
Проверяем диод по параметрам Iдоп и Uобр. Для данной схемы диод должен удовлетворять условиям Uобр>Ub и Iдоп>0,5Id. В данном случае первое условие не соблюдается, так как 300<471 ; второе условие соблюдается, так как 0.3>0.5×0.5=0.25 A.
Составляем схему выпрямителя. Чтобы выполнялось условие Uобр>Ub необходимо в каждом плече включить два диода, соединённых последовательно. Тогда Uобр=2×300=600>471 В.
Полная схема выпрямителя приведена на рисунке.
Задача 2.
Составить схему конечного трансформаторного усилителя мощности на транзисторе из указанных элементов.
Решение.
На рисунке приведена схема однотактного усилителя мощности, составленная из заданных элементов.
Транзистор включен по схеме с общим эмиттером. Полярность источника питания с э.д.с. Ек по отношению к коллекторной цепи зависит от типа транзистора. На рисунке полярность источника соответствует усилительному каскаду с транзистором типа p-n-p. Делитель напряжения R1 и R2 обеспечивает работу транзистора в режиме покоя, т.е. в отсутствие входного сигнала. Конденсатор Свх не пропускает постоянную составляющую в базовую цепь транзистора. Помощь на экзамене онлайн. Резистор Rэ и конденсатор Сэ обеспечивают температурную стабилизацию каскада.
В коллекторную цепь транзистора включен понижающий трансформатор, для согласования сопротивления нагрузочного устройства с выходным сопротивлением усилителя мощности.
Задача 3.
Чем данная схема отличается от промежуточного трансформаторного усилителя напряжения?
Усилители напряжения и многокаскадные усилители обеспечивают получение на выходе сигналов, мощность которых значительно превышает мощность входных сигналов. Однако для большинства из них (усилители напряжения) основным показателем работы является коэффициент усиления по напряжению при определённых допустимых значениях нелинейных и частотных искажений усиливаемого сигнала. В промышленной электронике очень часто возникает необходимость получения в нагрузочном устройстве максимальной мощности усиленного сигнала. Для этой цели используются усилители мощности. Они, как правило, являются выходными (оконечными) каскадами многокаскадных усилителей.
Нагрузочными устройствами усилителей мощности, как правило, являются обмотки электродвигателей, реле, громкоговорители и другие элементы электрических цепей, имеющие сравнительно небольшие сопротивления (единицы и десятки Ом).
Задача 4.
Для транзистора включенного по схеме с общим эмиттером, определить по выходным характеристикам коэффициент усиления h31э, значение сопротивлений нагрузки Rk1 и Rk2 и мощность на коллекторе Pk1 и Pk2 для значений тока базы Iб1 и Iб2, если напряжение на коллекторе и напряжение на источниках питания Ек.
Дано : Uкэ=10 В ; Iб1=150 мкА ; Iб2=200 мкА ; Ek=20 В
Найти : h31э ; Rk1 Rk2 ; Pk1 ; Pk2
Решение.
При заданном напряжении Uкэ=10 В и токе базы Iб1=150 мкА, по выходным характеристикам находим ток коллектора : Ik1=6. 875 мА.
Аналогично, находим ток коллектора при значениях напряжения Uкэ=10 В и токе базы Iб2= =200 мкА : Ik2=11.875 мА
Находим мощность на коллекторе при значениях тока коллектора Ik1 и Ik2 :
Pk1=UкэIk1=10×6.875×10-3=68.75×10-3 Вт=68.75 мВт
Pk2=UкэIk2=10×11.875×10-3=118.75×10-3 Вт=118.75 мВт
Находим сопротивления нагрузки, для различных токов коллектора :
Rk1=(Ek-Uкэ)/Iк1=(20-10)/(6.875×10-3)=1455 Ом
Rk2=(Ek-Uлэ)/Ik2=(20-10)/(11.875×10-3)=842 Ом.
Определяем коэффициент усиления :
h31э=ΔIk/ΔIб==100
Ответ : Pk1=68.75 мВт ; Pk2=118.75 мВт ; Rk1=1455 Ом ; Rk2=842 Ом ; h31э=100.
Как сделать диодный мост своими руками
При необходимости и при наличии нужных диодов и паяльника нетрудно собрать диодный мост своими руками.
Выбор типа сборки
Для каждой задачи существует свой оптимальный вариант выпрямительной диодной сборки. Все их можно условно разделить на 3 вида:
- Выпрямитель на одном диоде. Применяется в самых простых и дешёвых схемах, где нет к.л. требований к качеству выходного напряжения, как, например, в ночниках.
- Сдвоенный диод. Эти детали внешне похожи на транзисторы, ведь они выпускаются в таких же корпусах. Они также имеют 3 вывода. По сути, это два диода, помещённых в один корпус. Один из выводов – средний. Он может быть общим катодом или анодом внутренних диодов.
- Полноценный диодный мост. 4 детали в одном корпусе. Подходит для устройств с большими токами. Применяется в основном на входах и выходах различных блоков питания и зарядных устройств.
Дополнительная информация. Выпрямители используются и в автомобилях. Они нужны для преобразования идущего с генератора переменного напряжения в постоянное. Оно, в свою очередь, необходимо для зарядки аккумулятора. Обычный бензогенератор вырабатывает переменный ток.
Что нужно для работы
Для работы нужно подготовить рабочее место с розеткой для паяльника, паяльник с подставкой, припой, канифоль, пинцет, маленькие кусачки. Конечно, нужны диоды с нужными характеристиками. При большом желании мост можно собрать на печатной плате с готовыми дорожками.
Инструкция по изготовлению
Иллюстрация | Описание действия |
ФОТО: youtube.com | Подготовка рабочего места |
ФОТО: youtube.com | Пайка схемы |
ФОТО: youtube.com | Приборная проверка собранной схемы |
ФОТО: youtube.com | Проверка схемы под нагрузкой с конденсатором фильтра |
Проверка на работоспособность
Первая проверка всегда визуальная. Проверяется, те ли детали установлены, правильно ли собрана схема, качество пайки. Затем собирается проверочная схема с источником и измерительным прибором. И если этот этап прошёл успешно, то можно подключить нагрузку и провести окончательную проверку результатов своей работы.
Источники
- https://rusenergetics.ru/%D0%B1%D0%B5%D0%B7-%D1%80%D1%83%D0%B1%D1%80%D0%B8%D0%BA%D0%B8/sxema-podklyucheniya-i-naznachenie-diodnogo-mosta
- https://amperof.ru/teoriya/diodnyj-most-sxema.html
- https://elektrik-sam.ru/baza-znanij/4139-chto-takoe-diodnyj-most-prostoe-objasnenie.html
- https://go-radio.ru/diodniy%20most.html
- https://www.asutpp.ru/diodnyy-most.html
- https://ElectroInfo.net/teorija/trehfaznyj-vyprjamitel.html
- https://www.RusElectronic.com/diodnyj-most/
- https://homius.ru/diodnyj-most-shema.html
- https://ElectroInfo.net/radiodetali/4-diodnyj-most.html
Классификация по назначению и устройству
Разбираемся с электроизмерительными приборами
Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:
- По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
- По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
- По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
- Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
- По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.
Однополупериодный выпрямитель (четвертьмост)
Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде). Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными. Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.
Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.
Устройство отличается следующими достоинствами:
- Высокая частота пульсация;
- Повышенная нагрузка на выпрямляющее устройство;
- Ухудшение работы трансформатора вследствие намагничивания;
- Невысокий показатель соотношения габаритов к мощности.
Достоинство – дешевизна.
Однополупериодный выпрямитель
Два четвертьмоста параллельно
Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.
Два полных моста последовательно
Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.
Двухполупериодный выпрямитель, мостовая схема
В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.
Три полных моста параллельно (12 диодов)
Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.
Три полных моста последовательно
Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R. Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала. Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.
Трехфазная схема выпрямления
Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.
Трехфазные выпрямители
Схема однополупериодного выпрямителя
При подаче переменного sin-идального напряжения на первичную обмотку трансформатора напряжение на зажимах вторичной его обмотки также будет переменным синусоидальным и будет равноU2=U2msinwt. Диод проводит электрический ток только в том случае, когда его анод относительно катода будет иметь положительный потенциал. Поэтому ток в цепи – вторичная обмотка, диод и нагрузка – будет протекать только в одном направлении, то есть в течение одной половины периода переменного напряженияU2. В результате этого ток, протекающий в цепи нагрузки, оказывается пульсирующим. Максимальное значение тока:
Im=U2m/RH, гдеRH– сопротивление потребителя постоянного тока.
Кривая получаемого в процессе однополупериодного выпрямления пульсирующего тока может быть разложена в гармонический ряд Фурье:
i=Im(1/π+1/2 sinwt-2/3π∙1 cos2wt-…).
Пульсирующий ток, как видно из выражения, кроме переменных составляющих содержит также и постоянную I=Im/π. Отсюда постоянная составляющая напряжения
U=IRH=Im/π∙RH=U2m/π.
Через действующее значение напряжения: U=√2 ∙U2/π.
Переменные составляющие характеризуют величину пульсаций тока и напряжения.
График работы однополупериодного выпрямителя
Для оценки пульсаций при какой-либо схеме выпрямления вводится понятие коэффициента пульсаций q, под которым понимается отношение амплитуды Am наиболее резко выраженной гармонической составляющей, входящей в кривые выпрямленного тока или напряжения, к постоянной составляющей Aв тока\напряжения в выходной цепи выпрямителя:q=Am/AB.
Для схемы однополупериодного выпрямителя: q=0.5Im/(1/π ∙Im)=π/2. В течение половины периода, когда анод диода имеет отрицательный относительно катода потенциал, диод тока не проводит. Напряжение, воспринимаемое диодом в непроводящий полупериод, называется обратным напряжением Uобр. Обратное напряжение на диоде будет определяться напряжением на вторичной обмотке. Максимальное значение напряженияUобрm=U2m. Значит, вентиль надо выбирать так, чтобы [Umax обр]>=U2m.
Недостатки такой схемы выпрямления: большие пульсации выпрямленного тока и напряжения, а также плохое использование трансформатора, поскольку по его вторичной обмотке протекает ток только в течение половины периода. Такую установку используют в маломощных системах, когда выпрямленный ток мал.