Стабилизатор напряжения без обратной связи

Lm 2576 понижающий бп схема

От напряжения к току

Назначение стабилизатора напряжения – обеспечить неизменное выходное напряжение независимо от сопротивления нагрузки. Другими словами, идеальный стабилизатор будет выдавать напряжение, которое (например) равно 3,3 В при подключении к нагрузке 100 кОм и ровно 3,3 В при подключении к нагрузке 5 Ом. Что, конечно, меняется, так это ток нагрузки, который полностью определяется сопротивлением нагрузки (потому что напряжение на нагрузке не изменяется).

Что же произойдет, если мы дадим идеальному стабилизатору напряжения фиксированное сопротивление нагрузки? Если напряжение нагрузки не меняется и сопротивление нагрузки не меняется, и если закон Ома всё еще действует, то ток тоже не изменится.

Вуаля: источник тока.

На следующей диаграмме показано, как использовать LT3085 для решения задач, связанных с управлением светодиодами.

Рисунок 4 – Схема взята из технического описания LT3085

Вот как это работает:

  • Внутренний источник тока посылает 10 мкА через R1, генерируя напряжение, которое будет равно выходному напряжению (т.е. напряжению на R2).
  • Это выходное напряжение постоянно (потому что сопротивление R1 и значение силы тока внутреннего источника тока постоянны).
  • Это постоянное выходное напряжение будет создавать неизменный ток через R2, потому что сопротивление R2 постоянно.
  • Инвертирующий вход усилителя не выдает ток, поэтому почти весь ток R2 идет от положительного источника питания через транзистор, подключенный к выходу усилителя. (Я говорю «почти», потому что ток эмиттера биполярного транзистора представляет собой сумму тока базы и тока коллектора, но ток базы намного меньше тока коллектора.)
  • Светодиод включен последовательно с коллектором биполярного транзистора, и поэтому ток через светодиод фиксирован и (почти) равен току, протекающему через R2.

Ток через светодиод можно изменить, изменив значение R1 или R2; как показано в следующем уравнении, ток через светодиод – это просто значение силы тока внутреннего источника тока, умноженное на отношение R1 к R2.

\

Я бы назвал это довольно удобной схемой: процесс проектирования чрезвычайно прост, и требуется лишь несколько компонентов. Если вы замените один из резисторов потенциометром, результатом станет высокоточный светодиодный драйвер с регулируемым током с широким диапазоном входных напряжений и защитой от перегрева, который может обеспечивать ток до 500 мА.

И, конечно, эта схема не ограничивается светодиодами; вы могли бы так же легко использовать ее, скажем, с резистивным нагревательным элементом. Это позволит вам, несмотря на колебания напряжения питания, генерировать постоянное тепло (потому что P = I2R).

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Принцип действия релейного стабилизатора напряжения

В первую очередь, в стабилизаторе замеряется входящее напряжение, далее, в зависимости от полученных результатов, с платы управления посылается сигнал на открытие того или иного реле, соответственно электрический ток с одной из отпаек автотрансформатора, уменьшенный или увеличенный до нужного значения, поступает на выводы стабилизатора, к потребителю.

В качестве примера работы стабилизатора, давайте примем, что каждый отвод автотрансформатора даёт +/- 15 Вольт изменения напряжения, работает это следующим образом:

— Если напряжение в сети 220В – оно сразу передаётся к потребителю, коэффициент трансформации при этом 1. Соответственно в пределах от 205В до 235В (220В +/-15В), напряжение на выход стабилизатора, будет передаваться без изменений.

— Как только входящее напряжение опускается до значения, меньшего чем 205 Вольт, задействуется первая вторичная обмотка автотрансформатора, с коэффициентом трансформации 1,075, тем самым на выходе снова получается 220 В (205*1,075). В этот момент отвечающее за этот отвод автотрансформатора рале замыкается, пуская ток на выходные контакты стабилизатора, а все другие размыкаются.

Далее, пока напряжение не упадет еще на 15В т.е. до 190В (205В-15В), будет продолжать действовать эта вторичная обмотка с тем же коэффициентом трансформации, таким образом, если в сети напряжение упадет до 196В (граница переключения на следующий режим), на выходе получается 211В (196*1,075).

— Когда входящее напряжение опускается ниже 190В, срабатывает очередное реле, а предыдущее размыкается, тем самым включается следующая вторичная обмотка автоматического трансформатора, с коэффициентом трансформации уже 1,15 и напряжение на выходе опять становится 220В (196*1.15) и так далее, каждые 15В переключается обмотка до, допустим, 145В – после чего стабилизатор уходит в защиту.

— Если же наоборот, напряжение в сети возрастает выше 235В, с помощью соответствующего реле задействуется понижающая вторичная обмотка, с коэффициентом трансформации 0,94 и опять же напряжение в сети выравнивается до требуемых 220В (235*0,94).

Думаю, теперь, принцип действия релейного стабилизатора вам понятен, теперь давайте рассмотрим какие у стабилизатора этого типа сильные и слабые стороны, в каких сферах его лучше всего применять.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и R set .

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно

Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора R sens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.

Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.

Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.

Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.

Интегральный стабилизатор напряжения LM317. Описание и применение

Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приводится описание и примеры применения недорогого (цены на LM317) интегрального стабилизатора напряжения LM317.

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Наиболее распространены схемы блоков питания на LM317 с регулировкой напряжения.

На практике, с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение, находящееся в диапазоне 3…38 вольт.

Технические характеристики:

  • Напряжение на выходе стабилизатора:  1,2… 37 вольт.
  • Ток выдерживающей нагрузки до  1,5 ампер.
  • Точность стабилизации 0,1%.
  • Имеется внутренняя защита от случайного короткого замыкания.
  • Отличная защита интегрального стабилизатора от возможного перегрева.

Мощность рассеяния и входное напряжение  стабилизатора LM317

Напряжение на входе стабилизатора не должно превышать 40 вольт, а так же есть еще одно условие – минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.

Микросхема LM317 в корпусе ТО-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не применять качественный теплоотвод, то это значение будет ниже. Мощность, выделяемая микросхемой в процессе ее работы, можно определить приблизительно путем умножения силы тока на выходе и разности входного и выходного потенциала.

  Цена: 3400.00 руб.    

  Цена: 2700.00 руб.    

  Цена: 260.00 руб.    

  Цена: 7000.00 руб.    

Максимально допустимое рассеивание мощности без теплоотвода равно приблизительно 1,5 Вт при температуре окружающего воздуха не более 30 градусов Цельсия. При обеспечении хорошего отвода тепла от корпуса LM317 (не более 60 гр.) рассеиваемая мощность может составлять 20 ватт.

При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например слюдяной прокладкой. Так же для эффективного отвода тепла желательно использовать теплопроводную пасту.

Подбор сопротивления для стабилизатора LM317

Для точной работы микросхемы суммарная величина сопротивлений R1…R3 должна создавать ток приблизительно 8 мА при требуемом выходном напряжении (Vo), то есть:

R1 + R2 + R3 = Vo / 0,008

Данное значение следует воспринимать как идеальное. В процессе подбора сопротивлений допускается небольшое отклонение (8…10 мА).

Расположение резисторов на плате может быть произвольным, но желательно для лучше стабильности располагать подальше от радиатора микросхемы LM317.

Стабилизация и защита схемы

Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.

Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.

Как было  уже сказано выше, ограничение  максимально  возможного  тока нагрузки для  LM317 составляет 1,5 ампера. Имеются разновидности стабилизаторов схожие по работе со стабилизатором LM317, но рассчитаны на более больший ток нагрузки. К примеру, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338  до 5 ампер.

Обратите внимание

Для облегчения расчета параметров стабилизатора существует специальный калькулятор:

Скачать калькулятор для LM317 (скачено: 5 777)

Скачать datasheet LM317 (скачено: 1 849)

РАДИО для ВСЕХ — ЛБП на LM2576

Лабораторный блок питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения 0-30В и тока 0-3А, с функцией ограничения выходного тока и индикацией режима ограничения при помощи светодиода.

Все мы очень давно знакомы с линейными стабилизаторами напряжения, особенно с трёхвыводными в корпусах TO-220 типа 7805, 7812, 7824 и LM317. Они недорогие и легко доступны. Их малошумящая и быстрая переходная характеристика делают их идеальными для многих применений. Но им присущ один недостаток — неэффективность (очень низкий КПД). Например, при подаче на стабилизатор 7805 напряжения 12В и при токе нагрузки 1А, на стабилизаторе будет рассеиваться мощность 7Вт при мощности нагрузки 5Вт. Поэтому требуется большой радиатор для охлаждения самого стабилизатора. Когда важна эффективность, например при работе от батареи, необходимо выбирать импульсный стабилизатор. Фактически, самое современное оборудование использует импульсные источники питания и импульсные регуляторы или стабилизаторы. Но много радиолюбители уклоняются от импульсных регуляторов, поскольку, например, использование популярной LM3524 требует большого количества внешних деталей и внешнего коммутационного транзистора. Кроме того строгие требования для катушки индуктивности. Как выбрать правильно, и где их взять? К счастью, более новый импульсный регулятор типа LM2576 от National Semiconductor’s позволяет собирать импульсный стабилизатор с высоким КПД так же легко, как и с помощью 7805 и т.п. Микросхема выпускается в пятивыводном привычном корпусе типа TO-220 и корпусе ТО-263 для поверхностного монтажа. Диапазон питающих напряжений 7-40В постоянного тока. КПД — до 80%. Выходной ток — до 3А и на несколько напряжений (3.3V, 5 V, 12V, 15V), а также и в версии регулируемого выходного напряжения, что представляет для нас особенный интерес. При проектировании с использованием импульсного стабилизатора получается малый размер платы, кроме того необходим радиатор с малой площадью поверхности, обычно не более 100 см. кв. Частота преобразования стабилизатора 52 кГц. Есть серия высоковольтных стабилизаторов с  маркировкой HV с диапазоном входных напряжений 7-60В и возможностью регулировки выходного напряжения до 55В.

Приведенная на рисунка схема лабораторного блока питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения в диапазоне 0-30В и возможностью ограничения тока нагрузки в диапазоне 0-3А найдена в сети Интернет и подробно рассмотрена здесь на форуме сайта http://vrtp.ru. Кстати, замечательный сайт, рекомендую к посещению  Свечение светодиода указывает на включение режима ограничения выходного тока, что очень удобно при проверке и ремонте радиоэлектроных устройств.

Чтобы облегчить режим работы стабилизатора 7805 (в корпусе ТО-92) и для повышения верхнего предела напряжения Uвх, последовательно с U2 установлен стабилитрон VD1. Схема регулирования тока  и напряжения собрана на сдвоенном компараторе LM393. На первой половинке U3.1 собран регулятор напряжения, а на второй половинке U3.2 собран регулятор тока. На транзисторном ключе Q1 собран узел индикации включения режима ограничения выходного тока. Номинальный ток дросселя необходимо выбирать не менее тока нагрузки. Возможно пиатние слаботочной части схемы от отдельного источника напряжения с подачей его непосредственно на вход U2, при этом стабилитрон VD1 не устанавливается. Хорошо работает с низкоомной нагрузкой. Без изменения схемы, в ней можно применять импульсные стабилизаторы LM2596T-ADJ с частотой преобразования 150 кГц и диапазоном питающих напряжений 4,5-40В. Выходной ток — до 3А. КПД — до 90%.

Размеры печатной платыы блока питания 72х52 мм, расстояние между осями переменных резисторов 30 мм.:

Видео работы стабилизатора (без слов) приведено ниже. Поскольку сборка и проверка устройства велась в г. Донецке в то время, когда за окном рвались снаряды, то не было никакой охоты ничего рассказывать. Да и собирать его не хотелось, но нужно было как-то отвлечься от действительности. Надеюсь Вы меня поймёте.

https://youtube.com/watch?v=St-61sab5h5

Стоимость печатной платы с маской и маркировкой: закончились

Стоимость набора деталей с печатной платой для сборки блока питания (без радиатора): временно нет в наличии

Стоимость собранной и проверенной платы блока питания (без радиатора): временно нет в наличии

Краткое описание, схема и перечень компонентов набора здесь >>>

Для покупки печатных плат, наборов для сборки и готовых собранных блоков обращайтесь сюда >>> или сюда >>>

Всем удачи, мирного неба, добра, 73!

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр – прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт — амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

№2 — Штиль

Как уже отмечалось, это старейший российский производитель стабилизаторов.
И многие электрики по привычке рекомендуют установку именно этой марки.
Хотя стандартные релейные модели серии R, на наш взгляд, несколько устарели.
Они довольно громоздки и обеспечивают заявленную точность лишь при напряжении от 155-175 вольт (в зависимости от мощности модели).

Куда большим интересом сейчас пользуется последняя новинка компании — инверторные стабилизаторы Инстаб.
Для них и 90 вольт в розетке — не помеха!
К тому же они компактные и быстрые.
Их часто ставят на котельное оборудование, автоматику насосов, высокоточную технику.
На момент написания обзора максимальная мощность инверторных моделей составляла 20 кВт.

Тиристоры, реле, сервоприводы

Такая нагрузка уже и сама по себе делает непригодными к промышленному применению тех схем бытовых стабилизаторов, чья работа основана на полупроводниковых тиристорах. Тиристорные схемы хорошо справляются с нагрузкой в 1–2 киловатта, но для большой мощности они малопригодны.

Остаются два варианта промышленных стабилизаторов напряжения: релейные схемы и сервоприводные.

Релейные схемы, которые хороши в бытовых стабилизаторах в силу своей надежности, при большой мощности это достоинство значительно теряют, поскольку при повышенной силе тока контакты реле будут достаточно быстро подгорать и покрываться окислами, теряя электропроводность, либо напротив, «слипаться» и «свариваться» в результате возникновения микро-вольтовых дуг между контактами в момент срабатывания реле. Надежность такой схемы можно повысить, если использовать реле с контактами, изготовленными из тугоплавких металлов и заключенных в герметичные колбы, заполненные инертными газами. Но проблему это не решит, хотя и сделает стабилизатор такой конструкции значительно дороже.

Наиболее предпочтительными при работе с большой силой тока являются сервоприводные конструкции стабилизаторов, в которых регулировка выходного напряжения производится путем перемещения по «выходной» обмотке каретки с роликом, управляемой серводвигателем.

В силу такого способа регулировки напряжения промышленные стабилизаторы большой мощности имеют и специфическое конструктивное исполнение: они представляет собой обмотки, на вертикальных цилиндрах.

Распиновка LM2576

Скачать dataseet LM2576 (244,4 Kb, скачано: 1 715)

Принципиальная схема применения LM2576 в качестве источника питания показана ниже.

В данном случае, к стандартной схеме подключения из datasheet, был добавлен выпрямительный мост, светодиод играющий роль индикатора и конденсатор C1 в качестве фильтра входного напряжения.

Выходное напряжение стабилизатора устанавливается с помощью потенциометра R2. Оно изменяется в соответствии с формулой:

Uвых = 1,23 * (1 + R2/R3)

Максимальное напряжение, которое можно подать на вход микросхемы LM2576, не должно превышать 45 В. Монтажная схема стабилизатора показана на следующем рисунке. Вся схема собрана на небольшой односторонней печатной плате.

Резисторы R1 и R3 необходимо припаять со стороны пайки. Если схема стабилизатора будет работать с током нагрузки более 1 А, то необходимо LM2576 установить на небольшой радиатор.

Решил недавно отреставрировать свои колонки от ПК, которые достались мне, не помню когда и от кого. Данные колонки хрипели уже на пол громкости. Вид мне был не важен, так как они звучали в моей лаборатории, главное, чтобы был звук без треска и фона. Было принято решение собрать новый усилитель и темброблок. Но питать данные устройства я решил стабилизированным источником, поэтому стал собирать стабилизированный источник с возможностью регулировки выходного напряжения. Вообще мне было нужно однополярное напряжение +15 Вольт, но на всякий случай решил сделать регулируемое выходное напряжение.

Выбор пал на LM2576, их у меня было много, когда-то покупал для ремонта БП. LM2576 есть на фиксированное выходное напряжение 3.3В, 5В, 12В, 15, а также с регулируемым выходным напряжением. В регулируемой версии выходное напр-ие меняется от 1.23В до 37В, а у LM2576HV до 57 Вольт.

Входное же напр-ие может достигать 40В, а у LM2576HV до 60В. Максимальный выходной ток 3 А. Температура, которую может выдержать кристалл, составляет 150 градусов Цельсия.

Если у LM2576 фиксированное выходное напряжение, то в конце маркировки пишется индекс, например 3.3 или 5.0, который указывает выходное напряжение (пример маркировки стабилизатора на 5 Вольт — LM2576HV-5.0).

Схема регулируемого стабилизатора напряжения на LM2576

Ничего сложного нет. Дроссель можете выдернуть из блока питания ПК, например как этот.

Если будете покупать или мотать, то 150 мкГн и на 5 Ампер, не менее. 20-30 Витков провода диаметром 0,8 мм достаточно.

Остальные все элементы доступные.

Добавив диодный мост, получим регулируемый блок питания.

Диодный мост можете собрать из диодов, или использовать любой с током 5 Ампер и более. Я применил KBU810, на 8 Ампер, другого не было.

Забыл на схеме подписать, тот вывод моста, который соединен с выводом №1 микросхемы, это плюс (+) диодного моста, а минус (-) диодного моста соединен с минусом выхода.

Испытывая стабилизатор напряжения на LM2576, я использовал трансформатор с одной вторичной обмоткой, напряжением 20 Вольт и током 0.9 Ампер.

Выставил выходное напряжение 15 Вольт.

Нагрузил сопротивлением 7.5 Ом. Выходной ток составил почти 2 Ампера.

Напряжение при этом просело до 13.7 Вольт. Не обращайте внимания друзья, это все из-за слабого трансформатора, пока другого нет.

Вот переменное напр-ние на трансформаторе без нагрузки 23.7 Вольт.

А вот оно же под нагрузкой 15.2 Вольта.

Видите, это не стабилизатор просаживает напругу, а трансформатор “не вывозит”. Был бы, трансформатор мощнее, напруга на выходе бы почти не проседала.

На какие характеристики нужно смотреть при выборе стабилизатора напряжения

Тип. Стабилизаторы напряжения, в зависимости от основных принципов работы, можно разделить на несколько типов:

  • релейные — одни из самых доступных устройств на рынке, которые небольшую точность выходного напряжения компенсируют высокой скоростью работы и широким диапазоном напряжений;
  • электромеханические — более точные, но не такие быстрые и адаптивные, как релейные аналоги;
  • гибридные (комбинированные) — эти стабилизаторы напряжения сочетают достоинства релейных и электромеханических устройств;
  • электродинамические — следующий этап эволюции электромеханических стабилизаторов: точные, надёжные и дорогие;
  • электронные — тоже далеко не самые дешёвые, но однозначно одни из самых удобных, точных и быстрых стабилизаторов;
  • инверторные — стабилизаторы, которые считаются наиболее современными и отличаются широким диапазоном рабочих напряжений, малыми погрешностями и очень низкими задержками в работе — за счёт, разумеется, высокой цены.

Фазность. Как правило, в городских квартирах используется однофазная электрическая разводка, а вот для питания частных домов и промышленного оборудования нередко применяют трёхфазную, которая позволяет использовать напряжение не 220, а 380 вольт. Стабилизатор с неподходящей фазностью просто не будет работать, так что этот момент обязательно нужно иметь в виду при выборе.

Мощность. Едва ли не самый важный параметр при выборе стабилизатора напряжения. Если его мощности не хватит для обслуживания всех потребителей, то стабилизатор откажет. Соответственно, потребляемая мощность должна соответствовать возможностям прибора (плюс желательно добавить ещё 20-30% — на всякий случай).

Важный аспект: мощность может быть не только активной, но и реактивной. Высокий пусковой ток, который отличает устройства с электродвигателями, типа пылесосов и электромясорубок, может вывести стабилизатор из строя. Для таких реактивных потребителей в расчёт стоит брать не только активную мощность, измеряемую в ваттах, но и полную мощность — в вольт-амперах. Чтобы вычислить последнюю, необходимо активную мощность разделить на специальный коэффициент, указанный в паспорте устройства (для простоты его можно принять равным 0,7 или 0,8).

Точность стабилизации. Высокая точность стабилизации означает, что стабилизатор будет выдавать напряжение, как можно более близкое к эталонным 220 В. Для устройств разных типов точность может колебаться в пределах 2-10%.

Скорость стабилизации. Обычно она составляет от 5 до 20 мс — в зависимости от типа и особенностей конкретного устройства. Разумеется, чем быстрее стабилизатор будет реагировать на скачки напряжения, тем лучше.

Рабочий и предельный диапазон напряжений. Возможности стабилизаторов не безграничны: они способны привести в норму только напряжение определённых уровней

Причём предельные, пиковые значения аппараты выдерживают совсем недолго, поэтому обращать внимание стоит именно на диапазон рабочих напряжений, с которыми стабилизатору будет справляться легче

Индикация. Желательно, чтобы стабилизатор был оснащён ЖК-дисплеем, который будет передавать показания вольтметра (по возможности — не только на выходе, но и на входе). Однако в самых простых моделях вместо экранов используют светодиодную индикацию. Это не так информативно, зато дёшево и надёжно.

Установка. Стабилизаторы могут размещаться на полу, на стене или устанавливаться в специальные стойки.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3.7В аккумулятора – 10-25Ом.

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Все светодиоды, независимо от форм-фактора и электрических параметров, питаются током. Правильно заданный ток – это гарантия длительной и стабильной работы осветительного прибора. Так почему же производители светодиодной продукции часто вместо стабилизатора тока устанавливают стабилизатор напряжения? Как это сказывается на работе светодиодных ламп, лент, фонарей и прожекторов? Попробуем разобраться.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: