Пошаговая инструкция как настроить скорость вентиляторов в speedfan

Радио-как хобби

Послесловие

Как-то так. Про всякие глубокие настройки и другие вкладки, в рамках этой статьи, я рассказывать не буду, благо они не особенно нужны. Остальные вкладки отвечают за разгон, информацию и другие полезные данные (об этом позже).

В рамках следующей статьи из этого цикла я рассказал подробно как отрегулировать скорость вращения кулера на видеокарте, ибо оные имеют свой собственный BIOS и вентилятор, запитанные не от мат.платы или БП, а от самой карточки, а посему контролировать их через SpeedFan или мат.плату не получится.

Как и всегда, если есть какие-то вопросы, мысли, дополнения, комментарии и всё такое прочее, то добро пожаловать в комментарии к этой записи.

Вводная про скорость кулера компьютера

Начнем с того как вообще происходит регулировка, если она есть вообще.

Изначально скорость вращения определяется и устанавливается мат.платой на основе показателей о температуре и настроек, указанных в BIOS.

Мат.плата в свою очередь делает это путём изменения напряжения/сопротивления и прочих нюансов, умно контролируя число оборотов (RPM), опираясь на заданные Вами настройки, а так же температуру компонентов компьютера как таковую и внутри корпуса вообще.

Однако, далеко не всегда, не смотря на всякие технологии умной регулировки (Q-Fan и иже с ними), оная внятно делает свою работу, а посему крутилки на системах охлаждения, либо вкалывают излишне сильно (часто именно так и бывает), что создает не иллюзорный шум, либо слишком слабо (редко), что повышает температуры.

Как быть? Варианта, как минимум, три:

  • Попытаться настроить всё в BIOS;
  • Воспользоваться специализированными программами;
  • Либо физически ковырять что-то с питанием (или купив всякие там реобасы и другие физические устройства).

Вариант с BIOS, далеко не всегда оправдан, ибо, во-первых, подобная технология не везде есть, во-вторых, она далеко не так интеллектуальна как кажется, а, в-третьих, бывает необходимо менять всё вручную и на лету.

Сборка схемы

Монтаж системы управления моторами не сложен, пайку следует начать с установки одной перемычки. Порядок подключения к плате остальных элементов любой, но удобно начать с резисторов и светодиодов, а в конечном итоге электролитическими конденсаторами и разъемами. Способ монтажа транзистора T2 и термодатчика T1 очень важен.

Следует иметь в виду, что транзистор Т2 работает линейно, поэтому выделяется большая мощность потерь, которая непосредственно переводится в тепло. Плата спроектирована так, чтобы можно было ее прикрутить к радиатору. Транзисторы T1 и T2 необходимо смонтировать на длинных выводах и их отогнуть, чтобы можно было установить на радиатор. Не забудьте прокладки, чтоб изолировать их электрически от радиатора.

Регулятор частоты вращения вентилятора 220В

Регулирование скорости электродвигателей является распространенной проблемой. Хотя схемы, предназначенные для управления коллекторными двигателями, относительно просты, асинхронные двигатели требуют более сложных решений. Предлагается устройство, идеально подходящее для регулирования скорости вращения ванных и офисных вентиляторов, приводимых в движение асинхронными двигателями.

В устройстве используется специализированная интегральная схема U2008B. Контроллер предназначен для небольших однофазных двигателей он не подходит для управления коммутационными двигателями постоянного тока и 3-фазными асинхронными двигателями.

Контроллер был построен с использованием микросхемы U2008B. Конденсатор С2 отвечает за так называемый плавный запуск, благодаря которому скачок напряжения на нагрузке не возникает при подключении регулятора к сети. Элементы D1 и R1 выпрямляют и ограничивают напряжение питания для безопасного значения питания микросхемы, в то время как C1 сглаживает напряжение.

Резисторы R3 и R5, а также потенциометр P1 являются делителями напряжения, используемыми для регулировки мощности, отдаваемой в нагрузку. Благодаря R2, непосредственно подключенному к фазному проводнику, внутренние блоки синхронизации U1 управляют переключением симистора синхронно с напряжением питания.

Это минимизирует радиопомехи, которые могут возникнуть при импульсном переключении больших индуктивностей, и все же это характер обмоток электродвигателей при высоких значениях напряжения питания. Таким образом, нет необходимости экранировать схему, вы также можете не устанавливать сетевые фильтры, но все же лучше использовать простейший фильтр. Уровень создаваемых помех значительно ниже, чем при использовании стандартного импульсного источника питания.

Сборка схемы не должна вызвать проблем, однако система питается напрямую от электросети, поэтому рекомендуется собирать и эксплуатировать схему с особой осторожностью так как нет гальванической развязки с сетью

Во время сборки обращайте внимание только на правильную поляризацию элементов, и схема после сборки сразу готова к работе

После сборки включите нагрузку и установите потенциометры P1 и P2 в соответствии с вашими потребностями. Потенциометр P1 используется для плавного регулирования скорости, тогда как P2 устанавливает минимальное эффективное напряжение на нагрузке. Все регулировки должны быть выполнены с помощью изолированных инструментов. Наконец, система должна быть установлена в корпусе и убедиться, что все выступающие из нее части надежно закреплены.

Устройство также подходит для управления двигателями переменного тока, но в этом случае, возможно отказаться от резистора R7 и дросселя L1. Всем спасибо.

Источник

Несколько важных моментов

Проблему шумной вентиляции лучше решать комплексно. Ведь звук исходит не только от вентилятора. Факторов несколько, например:

Монтаж воздуховодов. Каждый излом венткороба добавляет системе шумность. Если есть возможность, избегаем углов или делаем их плавными. Перед монтажом убираем наплывы пластика, которые могут оставаться после литья. Каждая неровность — капля в копилку шумности. Саморез, закрученный насквозь в венткороб — гарантированный свист.
Вид вентилятора

Среди всех особенностей обращаю внимание на двигатель. Если он собран на втулках, со временем появится выработка, дисбаланс и шум

Поэтому беру те, что на подшипниках.
Скорость движения воздуха. Сам воздух, перемещаясь по вентканалу, создает много шума. Поэтому отдельно стоящий и вмонтированный вентилятор шумят по-разному. Чем выше скорость воздуха, тем больше шума.

Почему нельзя регулировать скорость вращения вентилятора диммером

Для регулирования скорости вращения однофазных электродвигателей на напряжение питания 220 В применяются симисторные регуляторы скорости вращения.

Диммер (симисторный светорегулятор), в свою очередь, разработан для управления резистивной нагрузкой и должен применяется только как регулятор яркости свечения ламп.

В паспортах и руководствах по эксплуатации обычно есть указание на недопустимость использования диммера для управления двигателем.

Например, в описании диммера 300W фирмы Eljo (Швеция) указано: индуктивная и емкостная нагрузка (обычные трансформаторы, флуоресцентные лампы и электродвигатели) не могут работать с данными диммерами.

Различия в схемах управления:

В диммерах и симисторных регуляторах скорости применены близкие схемы управления. Обе используют принцип фазового управления, когда изменяется момент включения симистора относительно перехода сетевого напряжения через ноль. Для простоты обычно говорят, что изменяется выходное напряжение.

Схема симисторного регулятора отличается от схемы диммера в следующем:

· Установлен нижний порог напряжения подаваемого на двигатель вентилятора

· Мощность симистора выбирается так, чтобы его максимальный рабочий ток превышал рабочий ток вентилятора не менее, чем в 4 раза. При резистивной нагрузке в 2 А достаточно взять симистор также на 2 А.

· Предохранитель подбирается исходя из мощности электродвигателя. Обычно максимальный ток предохранителя должен быть на 20% больше рабочего тока двигателя.

· Для более правильного формирования синусоиды установлен дополнительный фазосдвигающий демпфирующий конденсатор.

· Для уменьшения сетевых помех используется дополнительный конденсатор помехоподавления

Для чего это необходимо:

1. Вращающий момент асинхронного двигателя падает пропорционально квадрату подаваемого напряжения. При достижении нижнего порога по напряжению двигатель может не запуститься. Для однофазных осевых и канальных вентиляторов нижним значением являются 40-60 В.

Ввиду того, что двигатель не вращаясь, все равно потребляет ток, обмотки вентилятора начинают нагреваться. Двигатель начинает издавать характерный звук (гудеть). В результате, если двигатель не оснащен надежной внутренней термозащитой, перегорает в течение часа.

В симисторных регуляторах, минимальное напряжение, подаваемое на вентилятор, устанавливается на заводе-изготовителе. Обычно это 80-100 В. Это гарантирует нормальную работу вентилятора при низких напряжениях.

2. При запуске двигатель кратковременно потребляет ток, в 6-7 раз больше максимального рабочего (пусковой ток). Для надежной работы при пуске двигателя применяется симистор с большим рабочим током.

3. Для правильной защиты двигателя от перегрузки по току (повышенное напряжение сети, перегрев подшипников и т.п.) величина максимального тока предохранителя должна быть подобрана по типу двигателя. Для симисторных регуляторов это значение на 15-20% выше максимального тока двигателя.

4. При подаче уменьшенного напряжения мощность двигателя падает и ротор начинает проскальзывать относительно поля статора. При определенных оборотах происходит фазовый сдвиг и двигатель начинает кратковременно потреблять ток выше, чем максимальный рабочий. Для недопущения такой ситуации в схему симисторного регулятора устанавливается дополнительный демпфирующий конденсатор и более мощный симистор.

5. Форма синусоиды при фазовом регулировании индуктивной нагрузки более сложна, чем при управлении активной нагрузкой, поэтому необходим дополнительный конденсатор подавляющий высокочастотный спектр помех. Диммер, управляющий вентилятором, может создавать помехи видимые на экране компьютера или телевизора.

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора

Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Шумные вентиляторы

Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.

Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.

Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.

Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.

Необходимые детали:

  1. 2 Конденсатора
  2. 2 переменных резистора

Соединяем части:

  1. Подключаем конденсаторы к самому регулятору.
  2. Первый резистор подключается с минусом регулятора, второй на массу.

Теперь менять скорость двигателя у прибора по желанию пользователя.

Регулятор напряжения на 14 вольт готов.

Простой регулятор напряжения 12 вольт

Специальные устройства и приспособления для снижения мощности кулеров

Существует огромное количество приборов и ручных регуляторов, способных снизить уровень шума. Они работают в автоматическом режиме, делать с ними ничего не нужно – только установить в системный блок и нажать на запуск. Некоторые подобные устройства уже присутствуют в блоках нового поколения. Они находятся в системах охлаждения, могут повысить или снизить уровень обдува радиатора процессора, достаточно нажать на кнопку или включить параметр через настройки БИОС.

В случае отсутствия таких приспособлений рекомендуется приобрести механический регулятор «Реобас».

Данное устройство устанавливается в DVD-разъем с внутренней стороны системного блока так, чтобы можно было постоянно изменять настройки (менять количество оборотов). Новые модели «Реобаса» обладают экраном, который отображает всю важную информацию о текущем состоянии кулеров. Если параметры превышают установленные нормы, то просто подкрутите ползунки на устройстве, и шум вентиляторов уменьшится. Стоимость таких устройств довольно высокая – дешевый «реобас» обойдется в 1600 рублей. Более качественные приспособления будут стоить намного выше.

Регулятор скорости вентилятора — простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

Список необходимых радиоэлементов:

  • 2 биполярных транзистора — КТ361А и КТ814А.
  • Стабилитрон — 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор — 10 мкФ.
  • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор — 10 кОм
  • Вентилятор.

Плата регулятора скорости вентилятора:

Фото готового регулятора скорости вентилятора:

регулятор оборотов

в разрыв цепи +12В, как показано на рисунке

Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких плюс питания подаётся по желтому проводу), то регулятор включается в разрыв желтого провода

Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.

Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 — 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 — 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.

Схема подключения регулятора скорости вентилятора

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора

Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Способы регулировки скорости вращения бытовых вентиляторов

Существует достаточно много различных способов регулировки частоты вращения вентилятора, но практически применяются в домашних условиях только два из них. В любом случае Вы сможете только понизить число оборотов вращения двигателя только ниже максимально возможной по паспорту к устройству.

Разогнать электродвигатель возможно только с использованием частотного регулятора, но он не применяется в быту, потому что у него высокая как собственная стоимость, так и цена на услугу по его установке и наладке. Все это делают использование частотного регулятора не рациональным в домашних условиях.

К одному регулятору допускается подключение нескольких вентиляторов, если только их суммарная мощность не будет превышать величину номинального тока регулятора. Учитывайте при выборе регулятора, что пусковой ток электродвигателя в несколько раз выше рабочего.

Способы регулировки вентиляторов в быту:

  1. С использованием симисторного регулятора скорости вентилятора- это самый распространенный способ, позволяющий постепенно увеличивать или уменьшать скорость вращения в пределах от 0 до 100 %.
  2. Если электродвигатель вентилятора на 220 Вольт оборудован термозащитой (защитой от перегрева), тогда для управления оборотами применяется тиристорный регулятор.
  3. Наиболее эффективным методом регулировки скорости вращения электродвигателя является применение моторов с несколькими выводами обмоток. Но многоскоростные электродвигатели в бытовых вентиляторах Я пока не встречал. Но В интернете можно найти схемы подключения для них.

Очень часто электродвигатель гудит на низких оборотах при использовании первых двух методов регулировки- старайтесь не эксплуатировать долго вентилятор в таком режиме. Если снять крышку, то при помощи находящегося под ней специального регулятора, Вы сможете, его вращая, установить нижний предел частоты вращения мотора.

Схема подключения симисторного или тиристорного регулятора скорости вентилятора

Практически во всех регуляторах стоят внутри плавкие ставки, защищающие их от токов перегрузки или короткого замыкания, при возникновении которых она перегорает. Для восстановления работоспособности необходимо будет заменить или отремонтировать плавкую ставку.

Подключается регулятор довольно просто, как обычный выключатель. На первый контакт (с изображением стрелки) подключается фаза от электропроводки квартиры. На второй (с изображением стрелки в обратном направлении) при необходимости подключается прямой вывод фазы без регулировки. Он используется для включения, например дополнительно освещения при включении вентилятора. На пятый контакт (с изображением наклонной стрелки и синусоиды) подключается фаза, отходящая на вентилятор. При использовании такой схемы необходимо использовать для подключения распределительную коробку, с которой Ноль и при необходимости Земля заводятся напрямую на вентилятор, минуя сам регулятор, для подключения которого понадобится всего-то 2 провода.

Но если распределительная коробка электропроводки находится далеко, а сам регулятор стоит рядом с вентилятором, тогда рекомендую использовать вторую схему. На регулятор приходит кабель электропитания, а затем с него уходит сразу на вентилятор. Фазные провода подключаются аналогично. А 2 нуля садятся на контакты № 3 и № 4 в любой последовательности.

Подключение регулятора скорости вращения вентилятора довольно просто сделать и своими руками, не вызывая специалистов. Обязательно изучите и всегда соблюдайте правила электробезопасности- работайте только на обесточенном участке электропроводки.

Для чего нужны регуляторы скорости вентилятора?

У некоторых владельцев частных домов и квартир возникает вопрос, как уменьшить обороты вентилятора вытяжки. Для начала разберемся, зачем это нужно. Обычно скорость вращения сокращают для уменьшения шума от прибора и экономии электроэнергии. Но стоит помнить, что подобные действия приведут к снижению производительности, что не лучшим образом отразится на микроклимате в помещении.

Если вентилятор постоянно работает на максимальной скорости, то быстро вырабатывает свой ресурс. Для продления срока эксплуатации, экономии электроэнергии и уменьшения шума устанавливают специальное оборудование, которое позволяет регулировать частоту вращения.

Разновидности регуляторов

Существует несколько разновидностей регуляторов:

  1. Тиристорный контроллер используют в однофазном оборудовании. Его преимущество в дополнительной защите корпуса от перегревания.
  2. Для мощных вентиляторов выбирают трансформаторный регулятор. В продаже есть однофазные и трехфазные разновидности. Основное достоинство заключается в возможности одновременной регулировки мощности сразу нескольких приборов. Еще один плюс состоит в плавном уменьшении скорости.
  3. Некоторые домашние мастера используют частотные или электронные контроллеры.
  4. Симисторный регулятор применяют чаще, потому что он подходит для одновременной регулировки мощности сразу нескольких моторов. Его плюс заключается в бесшумной работе.
  5. Для функционирования в диапазоне от 0 до 480 Вольт подходит частотный контроллер. Его используют в комплексе с трехфазным двигателем, имеющим мощность не больше 75 тысяч Вт.

Сборка регулятора своими руками

Для самостоятельного изготовления регулятора понадобятся обычный и переменный резисторы, а также транзистор.

Последовательность изготовления:

  • Для начала базу транзистора припаивают к среднему контакту резистора переменного типа. Его коллектор прикрепляют к внешнему выходу.
  • Ко второму краю резистора переменной разновидности припаивают второй обычный резистор. Мастера берут модель с сопротивлением 1 тысяча Ом.
  • Второй выход резистора соединяют пайкой с транзисторным эмиттером.
  • Провод, по которому происходит подача напряжения, припаивают к транзистору. Его положительный выход крепят к эмиттеру резистора переменной разновидности.
  • Самодельный прибор присоединяют к вентилятору для проверки работоспособности. Для этого положительный провод устройства соединяют с проводкой, идущей от эмиттера. Кабели подачи напряжения подключают к блоку питания.
  • Минусовой провод подсоединяют напрямую. Для проверки эффективности работы колесо переменного резистора крутят вручную и отслеживают изменение частоты вращения лопастей.
  • Если требуется, один контроллер синхронизируют с работой сразу двух канальных вентиляторов.

Эффективность вытяжной вентиляции во многом зависит от правильного выбора канального вентиляционного оборудования. При подборе подходящей модели учитывают нормативные требования, условия эксплуатации, необходимую производительность, габариты и материал изготовления.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

https://youtube.com/watch?v=EYkb8_6F-Sw

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Феррорезонансные аналоги

Принцип действия феррорезонансных стабилизаторов основывается на эффекте магниторезонанса, возникающий в той системе с дросселями и конденсаторами. В работе они немного похожи на электромеханические устройства, только вместо ползунка здесь ферромагнитный сердечник, перемещающийся относительно катушек.

Подобная система отличается высокой надежностью, однако имеет большие размеры и издает много шума при работе. Также присутствует серьезный недостаток – функционируют такие приборы лишь под нагрузкой.

Если ранее такая схема сетевого стабилизатора напряжения 220В пользовалась популярностью, то теперь от нее лучше отказаться. К тому же здесь не исключены синусоидальные искажения. По этой причине для современных бытовых электрических приборов такой вариант не подходит. Но если в хозяйстве имеются мощные электродвигатели, ручные инструменты, сварочные аппараты, то такие стабилизаторы еще применимы.

Феррорезонансные стабилизаторы были широко распространены в быту 20 или 30 лет назад. В то время через них питались старые телевизоры, поскольку имели особую конструкцию, которая не позволяло безопасно использовать электросеть напрямую. Существуют современные модели этих стабилизаторов, которые лишены многих недостатков, но стоят они очень дорого.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: