Закон полного тока для магнитного поля

Закон полного тока простыми словами

Оптимизированная процедура составления системы

По упрощенной методике поступают следующим образом:

  • В уравнениях в левой части записывают произведение суммы всех входящих в контур сопротивлений на контурный ток;
  • От полученного выражения вычитаются умноженные на сумму сопротивлений общей ветви соседние контурные токи;
  • Справа записывается сумма источников ЭДС контура.

Формальный подход

Формальный подход предполагает матричную форму записи системы уравнений. Для расчетов исходные данные записывают в матричной форме. Используются такие матрицы:

  • C – в которой i строк, соответствующих количеству контуров, и j столбцов по количеству ветвей;
  • Z – диагональная матрица сопротивлений, количество строк и столбцов которой соответствуют числу веток;
  • Ct – транспонированная матрица С;
  • I – матрица контурных величин;
  • J – матрица источников тока;
  • Е – матрица ЭДС.

При составлении матрицы С каждый элемент Сij

  • 0, если ветвь j не входит в контур;
  • -1, если ветвь входит в контур, направление тока противоположно контурному;
  • 1 – то же самое, но направление тока совпадает с контурным.

В матрице Z диагональные элементы равняются сопротивлению участков, остальные приравниваются нулю.

Итоговая формула для расчетов имеет вид:

C∙Z∙Ct∙I=C(Z∙J+E).

Такая форма записи решения в матричной форме показывает, каким образом выполняются действия над составленными матрицами.

Пример системы уравнений

Ниже рассмотрен пример расчета конкретной схемы без учета номиналов элементов.


Пример решения

В заданной цепи выделяют три контура. Как выразить токи в ветвях через контурные:

  • i1=I1;
  • i2=I2;
  • i3=I3;
  • i4=I2+I3;
  • i5=I1+I2;
  • i6=I1-I3.

Как составить систему уравнений:

  • i1R1+i5R5+i6R6=E1;
  • i2R2+i4R4+i5R5=E2;
  • i3R3+i4R4-i6R6=0

Как подставить контурные значения

  • I1R1+( I1+I2)R5+( I1-I3)R6=E1;
  • I2R2+( I2+I3)R4+( I1+I2)R5=E2;
  • I3R3+( I2+I3)R4-( I1-I3)R6=0

После преобразования получается необходимая система уравнений:

  • (R1+R5+R6)I1+R5I2+R6I3=E1;
  • R5I1+(R2+R4+R5)I2+R4I3=E2;
  • -R6I1+R4I2+(R3+R4+R6)I3=0.

Система из трех уравнений легко решается после подстановки известных параметров. Из полученных значений контурных токов затем можно найти искомые величины.

Данный пример решения задач по методу контурных токов показывает, что любую достаточно сложную схему можно существенно упростить для решения, руководствуясь указаниями.

Важно! Метод неприменим, если нет возможности преобразовать цепь без взаимного пересечения ветвей. В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник

В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник

В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник.

Точно такие же результаты получаются при использовании метода узловых потенциалов. В основе расчетов – поиск потенциала каждого узла (так называемый узловой потенциал). Существуют программы, позволяющие произвести онлайн расчет параметров по рассмотренным методам.

Особенности переменного напряжения, тока

Генераторы, вырабатывающие электроэнергию, сконструированы так, что напряжение, скорость изменения заряда в наших линиях электропередач меняются по гармоничному закону:

Обозначения:

  • u, i – мгновенные значения (в произвольный момент времени);
  • Um, Im – амплитудные значения (максимальные);
  • Um – амплитуда напряжения;
  • Im – амплитуда тока;
  • t – время;
  • величина ω – циклическая частота.

Величина ω связана с линейной частотой ν выражением:

  • π = 3,14 – математическая константа;
  • ν = 50 Гц (для электрических сетей в нашей стране).

Произведение ωt называют фазой:

Измеряют в радианах (рад), φ0 – начальная фаза, зачастую равна нулю. Использование в формулах функции cos не изменяет смысла физических выражений.

Если напряжение, изменяющееся по гармоничному закону, приложить к обычному резистору (в его роли может быть лампа накаливания, тепловой нагреватель), то через него начнут двигаться частицы, характер движения которых изменяется по такому же закону.

Изменение величин будет синхронным, фазы – одинаковыми. Такое сопротивление называют активным.

9.1.4. Неразветвленная магнитная цепь

Задачей расчета неразветвленной магнитной цепи в большинстве случаев является определение МДС F=Iw , необходимой для того, чтобы получить заданные значения магнитного потока или магнитной индукции в некотором участке магнитопровода (чаще всего в воздушном зазоре).

На рис. 9.9 приведен пример неразветвленной магнитной цепи — магнитопровод постоянного поперечного сечения S1

с зазором. На этом же рисунке указаны другие геометрические размеры обоих участков магнитопровода: средняя длинаl1 магнитной линии первого участка из ферромагнитного материала и длинаl2 второго участка — воздушного зазора. Магнитные свойства ферромагнитного материала заданы основной кривой намагничиванияВ(Н) (рис. 9.10) и тем самым по (9.4) зависимостьюma(Н).

По закону полного тока (9.2)

где H1

иH2 — напряженности магнитного поля в первом и втором участках.

В воздушном зазоре значения магнитной индукции В2

и напряженностиH2 связаны простым соотношениемВ2 =mН2 , а для участка из ферромагнитного материалаВ1 =ma1Н1. Кроме того, в неразветвленной магнитной цепи магнитный поток одинаков в любом поперечном сечении магнитопровода:

Ф = В1S1=B2S2, (9.6)

где S1

иS2 — площади поперечного сечения участка из ферромагнитного материала и воздушного зазора.

Если задан магнитный поток Ф

, то по (9.6) найдем значения индукцийB1 иB2 . Напряженность поляH1 определим по основной кривой намагничивания (рис. 9.10), аH2 =B2m . Далее по (9.5) вычислим необходимое значение МДС.

Сложнее обратная задача: расчет магнитного потока при заданной МДС F

Заменив в (9.5) напряженности магнитного поля значениями индукции, получим

,

или с учетом (9.6)

где rMk=lkSkmak — магнитное сопротивлениеk -гoучастка магнитной цепи, причем магнитное сопротивлениеk -гo участка нелинейное, если зависимостьВ(H) для этого участка нелинейная (рис. 9.10), т.е.mak ≠ const.

rM

можно построить вебер-амперную характеристику — зависимость магнитного потокаФ от магнитного напряженияUM на этом участке магнитопровода. Вебер-амперная характеристика участка магнитопровода рассчитывается по основной кривой намагничивания ферромагнитного материалаВ(H) . Чтобы построить вебер-амперную характеристику, нужно ординаты и абсциссы всех точек основной кривой намагничивания умножить соответственно на площадь поперечного сечения участкаS и его среднюю длинуl .

На рис. 9.11 приведены вебер-амперные характеристики Ф

(UM1 ) для ферромагнитного участка с нелинейным магнитным сопротивлениемrM1 иФ (UM 2) для воздушного зазора с постоянным магнитным сопротивлениемrM 2 =l2S2m магнитопровода по рис. 9.9.

Между расчетами нелинейных электрических цепей постоянного тока и магнитных цепей с постоянными МДС нетрудно установить аналогию. Действительно, из уравнения (27.7) следует, что магнитное напряжение на участке магнитной цепи равно произведению магнитного сопротивления участка на магнитный поток UM

=rMФ . Эта зависимость аналогична закону Ома для резистивного элемента электрической цепи постоянного токаU = rI . Сумма магнитных напряжений в контуре магнитной цепи равна сумме МДС этого контураSUM =SF , что аналогично второму закону Кирхгофа для электрических цепей постоянного токаSU =SE. Продолжая дальше аналогию между электрическими цепями постоянного тока и магнитными цепями с постоянными МДС, представим неразветвленную магнитную цепь (рис. 9.9) схемой замещения (рис. 9.12, а).

Советуем изучить Удостоверение по электробезопасности: бланк

В качестве иллюстрации ограничимся применением для анализа неразветвленной магнитной цепи графических методов: метода сложения вебер-амперных характеристик (рис. 9.11) и метода нагрузочной характеристики (рис. 9.12, б).

Согласно первому методу построим вебер-амперную характеристику всей неразветвленной магнитной цепи Ф

(UM1 +UM 2), графически складывая по напряжению вебер-амперные характеристики ее двух участков. При известной МДСF=Iw по вебер-амперной характеристике всей магнитной цепи определим рабочую точкуА , т. е. магнитный потокФ , а по вебер-амперным характеристикам участков магнитопровода — магнитные напряжения на каждом из них.

Согласно второму методу для второго (линейного) участка построим нагрузочную характеристику

т. е. прямую, проходящую через точку F

на оси абсцисс и точкуFrM2 на оси ординат. Точка пересеченияА нагрузочной характеристики с вебер-амперной характеристикой ферромагнитного участка цепи Ф(UM1 ) определяет магнитный потокФ в цепи и магнитные напряжения на ферромагнитном участкеUM1 и воздушном зазореUM2 . Значение индукции в воздушном зазореB2= Ф/S2 .

Определение закона полного тока

Важные выводы и пояснения:

  • напряженность зависит от источника тока;
  • индукция выполняет силовые функции воздействия на движущиеся по цепи заряды;
  • параметры поля формируются магнитными свойствами определенной среды.

На практике усиление тока сопровождается пропорциональным изменением поля (магнитной индукции). Базовое правило справедливо при рассмотрении цепей, созданных из серебра, влажного или сухого воздуха, других материалов.

Измененные правила действуют в железе или иной среде с выраженными ферромагнитными свойствами. Именно такие решения применяют при создании трансформаторов и других изделий для улучшения потребительских характеристик.

Для упрощения следует начать изучение физических величин и расчетов на примере нейтральной среды. При отсутствии ферромагнитных параметров можно изобразить магнитное поле несколькими замкнутыми линиями длиной L. В этом случае полный ток (I) будет зависеть от индукции (B) следующим образом:

I = (B*L)/м.

Здесь m – магнитная постоянная, которая в стандартной системе единиц измерения приблизительно равна 1,257*10-7 Генри на метр (Гн/м).

Важно! В действительности подобные идеальные условия встречаются редко, когда индукция сохраняет одинаковые параметры вдоль всей линии контура. Поле формируется перпендикулярно прямому длинному проводнику. Его линии образуют набор из множества окружностей

Центр каждой из них соответствует продольной оси проводника. Расстояние от нее до кольца – r. Длину (L) вычисляют по стандартной геометрической пропорции:

Его линии образуют набор из множества окружностей. Центр каждой из них соответствует продольной оси проводника. Расстояние от нее до кольца – r. Длину (L) вычисляют по стандартной геометрической пропорции:

Поле формируется перпендикулярно прямому длинному проводнику. Его линии образуют набор из множества окружностей. Центр каждой из них соответствует продольной оси проводника. Расстояние от нее до кольца – r. Длину (L) вычисляют по стандартной геометрической пропорции:

L = 2π*r.

Если разместить витки симметрично на тороидальном сердечнике из электрически нейтрального фарфора для устранения искажений, линии магнитного поля будут проходить внутри равномерно. Кольца, как показано на рисунке с вырезанным сегментом, образуют замкнутые контуры. В такой конструкции обеспечивается неизменность индукции. Для каждой отдельной линии можно пользоваться формулой:

Советуем изучить Векторная диаграмма токов и напряжений

B*L = B* 2π*r = m*I.

Суммарное значение (полный ток) получают умножением на количество витков (N).

На основе приведенных данных нетрудно вычислить индукцию, которая будет создана внутри нейтрального тороидального кольца при определенной силе тока:

B = m*(I*N/L).

Эта пропорция позволяет сделать определение удельного полного тока:

(IN)o=(I*N)/L.

Зная размеры тора и другие исходные параметры, вычисляют индукцию у внутреннего и наружного края. При необходимости делают коррекции с помощью изменения толщины кольца, количества витков.

Если на основу из ферромагнитного материала намотать две обмотки (изолированные), будут создан наглядный образец для измерений. Изменяя силу тока в одном проводнике, можно наблюдать за изменением электродвижущей силы по подключенному к другой паре выводов прибору.

На графике приведены результаты эксперимента при использовании кольца, сделанного из железа с минимальным количеством примесей. Если применить закон полного тока для рассмотренного выше примера с нейтральным сердечником в точке «а», должно получиться приблизительно 5*10-4 Тл. Между тем в действительности напряженность составляет для этой силы тока 1,2 Тл при одинаковых размерах тока и количестве сделанных витков.

Корректируют вычисления с учетом поправочного коэффициента – магнитной проницаемости. Следует подчеркнуть, что это параметр не линейный. Максимальный полезный эффект наблюдается при относительно небольших значениях силы тока. Значительный спад после порогового уровня насыщения ограничивает практическое применение рассмотренных свойств.

9.1.1. Элементы магнитной цепи

Магнитной цепью (магнитопроводом) называется совокупность различных
ферромагнитных и неферромагнитных частей электротехнических устройств для создания магнитных полей нужных конфигурации и
интенсивности. В зависимости от принципа действия электротехнического
устройства магнитное поле может возбуждаться либо постоянным магнитом, либо
катушкой с током, расположенной в той или иной части магнитной цепи.

К простейшим магнитным цепям
относится тороид из однородного ферромагнитного
материала (рис. 9.1). Такие магнитопроводы
применяются в многообмоточных трансформаторах, магнитных усилителях, в
элементах ЭВМ и других электротехнических устройствах.

На рис. 9.2 показана
более сложная магнитная цепь электромеханического устройства, подвижная часть
которого втягивается в электромагнит при постоянном (или переменном) токе в
катушке. Сила притяжения зависит от положения подвижной части магнитопровода.

На рис. 9.3 изображена
магнитная цепь, в которой магнитное поле возбуждается постоянным магнитом. Если
подвижная катушка, расположенная на ферромагнитном цилиндре, включена в цепь
постоянного тока, то на нее действует вращающий момент. Поворот катушки с током
практически не влияет на магнитное поле магнитной цепи. Такая магнитная цепь
есть, например, в измерительных приборах магнитоэлектрической системы.

Рассмотренные магнитные цепи,
как и другие возможные конструкции, можно разделить на неразветвленные
магнитные цепи (рис. 9.1 и 9.3), в которых магнитный поток в любом сечении цепи
одинаков, и разветвленные магнитные цепи (рис. 9.2), в которых магнитные потоки
в различных сечениях цепи различны. В общем случае разветвленные магнитные цепи
могут быть сложной конфигурации, например в электрических двигателях,
генераторах и других устройствах.

В большинстве случаев
магнитную цепь следует считать нелинейной, и лишь при определенных допущениях и
определенных режимах работы магнитную цепь можно считать линейной.

Упрощенный подход

Выразить закон в дифференциальном представлении довольно сложно. Потребуется вводить дополнительные компоненты. Необходимо учитывать влияние молекулярных токов. Наличие вихревых токов является причиной образования магнитного вихревого поля в пределах контура.

Вектор электрического смещения сравним с вектором напряжённости присутствующего магнитного поля H. При этом Ориентация вектора смещения зависит от быстроты изменения магнитной индукции.

Для упрощения вычислений на практике часто пользуются формулами закона для магнитного поля полных токов, представленных в виде суммирования предельно малых участков контура, с учётом влияния вихревых полей. При реализации этого метода контур мысленно разбивают на бесконечно малые отрезки. На этих отрезках проводники считаются прямолинейными, а магнитное поле на таких участках контура считают однородным.

На одном дискретном участке вектор напряженности Um определяется по формуле: Um= HL×ΔL, где HL– циркуляция вектора напряжённости на участке ΔL контура L. Тогда суммарная напряжённость UL вдоль всего контура вычисляется по формуле: UL= Σ HL× ΔL.

Источники магнитного поля

У магнетизма есть свои основные источники. Земля является самым большим из них. Магнитное поле воздействует на частицы за счет силы Лоренца. Движение электрически заряженных частиц и способствует возникновению магнетизма.

Источники магнитного поля:

  • токоведущие проводники;
  • постоянные магниты;
  • электромагниты.

Все эти материалы провоцируют магнетизм. Например, постоянные магниты, сделанные из таких материалов, как железо, испытывают сильнейшее воздействие, известное как ферромагнетизм.

Известен также диамагнетизм, который вызван орбитальным действием электронов, создающих крошечные токовые петли. Диамагнетизм демонстрирует такой компонент, как пиролитический углерод, вещество, похожее на графит и висмут. 

Еще одно явление — парамагнетизм — возникает, когда материал временно становится магнитным при очень низких температурах. Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул выстраиваются рядом друг с другом; и поведение спинового стекла, в котором участвуют как ферромагнитные, так и антиферромагнитные взаимодействия.

​​Из чего состоит магнитное поле науке пока неизвестно. Но порождается оно движущимися электронами. Иными словами электрический ток создает поле, которое в свою очередь зависит от ряда факторов (заряда, скорости и ускорения частиц). 

Характеристики магнитного поля:

  • заставляет стрелки компаса выстраиваться в линию в определенном направлении (например, магнетизм существует вокруг Земли);
  • вынуждает электрически заряженные частицы двигаться по круговой или винтовой траектории при определенных условиях.

Все состоит из атомов, и у каждого атома есть ядро, состоящее из нейтронов и протонов с электронами, которые вращаются вокруг него. Сила, действующая на электрические токи в проводах в магнитном поле, лежит в основе работы всех электродвигателей. Использование магнетизма при изготовлении телефонов, телевизоров и других электронных приборов осуществляется повсеместно.

Суть закона

Рассматриваемый закон, применимый в магнитных цепях, определяет следующую количественную связь между входящими в него составляющими. Циркуляция вектора магнитного поля по замкнутому контуру пропорциональна сумме токов, пронизывающих его. Чтобы понять физический смысл закона полного тока – потребуется ознакомиться с графическим представлением описываемых им процессов.

Из рисунка видно, что около двух проводников с протекающими по ним токами I1 и I2 образуется поле, ограниченное контуром L. Оно вводится как мысленно представляемая замкнутая фигура, плоскость которой пронизывают проводники с движущимися зарядами. Простыми словами этот закон можно выразить так. При наличии нескольких потоков электричества через мысленное представляемую поверхность, охватываемую контуром L, в ее пределах формируется магнитное поле с заданным распределением напряженности.

За положительное направление движения вектора в соответствии с законом для контура магнитной цепи выбирается ход часовой стрелки. Оно также является мысленно представляемым.

Такое определение создаваемого токами вихревого поля предполагает, что направление каждого из токов может быть произвольным.

Для справки! Вводимую полевую структуру и описывающий ее аппарат следует отличать от циркуляции электростатического вектора «Е», который при обходе контура всегда равен нулю. Вследствие этого такое поле относится к потенциальным структурам. Циркуляция же вектора «В» магнитного поля никогда не бывает нулевой. Именно поэтому оно называется «вихревым».

Закон в интегральном представлении

Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).

Рис. 1. Поле бесконечно прямого тока

Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ → 2π.

Из теоремы Остроградского-Гаусса вытекает формула:

Учитывая, что cos φ = 1,

следовательно:

Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μ0I, где μ0 = 1/c2 ε0 – магнитная постоянная.

Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда

Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.

Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.

Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.

Если ток распределён в пространстве (произвольный ток), тогда

где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:

Рис. 2. Иллюстрация закона для вакуума

Отсюда вытекает:

  1. Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
  2. Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
  3. Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.

3.4. Закон Био-Савара–Лапласа

3.4.1. Магнитное поле проводника с током

В общем случае для определения магнитного поля от произвольного проводника с произвольным знаком протекания тока проводим дифференцирование. Определяем полную индукцию, как сумму элементарных индукций от элементов тока dl, содержащих dq движущегося заряда.

Согласно последнему утверждению, совпадает с перпендикуляром к плоскости, образованной векторами cкорости и радиус- вектора

Пользуясь известными формулами, получим:

Последняя формула и есть закон Био-Савара-Лапласа для определения магнитной индукции для проводника с током.

Примем условиями: . Тогда Переведем в скалярную форму и выразим геометрические величины через один параметр, параметр a: ; Используем условия геометрии: при условии, что: Подставляя полученное в формулу для dB, получаем:

Это выражение для составляющей магнитного поля в точке p элемента проводника с током dl. Тогда полное магнитное поле проводника с током в искомой точке принимает вид:

Назовем предельные углы α1 и α2 как углы, под которыми из искомой точки видны концы проводника, создающего магнитное поле. Тогда для конечного проводника с током это будет выглядеть так:

. Если проводник бесконечен, т.е. , то: ; . Тогда .

3.4.3. Магнитное поле кругового проводника с током

Направление магнитного поля (B) внутри кругового проводника с током также подчиняется правилу буравчика (шляпка как ток, буравчик как индукция). Магнитное поле элемента dl кругового проводника с током:

Тогда для замкнутого проводника с током в центре витка магнитное поле определится как: — Магнитная индукция кругового проводника (контура) с током в центре контура.

3.4.4. Магнитное поле вдали от центра контура с током

Элементы контура с током dl создают в точке А элементарные индукции dB, являющиеся трехмерным образованием в виде конуса, который дает результирующую B, равную:

Это магнитное поле на оси контура с током. При : (смотри формулу для центра контура)

3.4.5. Магнитное поле соленоида

Если контура с током последовательно соединить в одном месте пространства, то такое образование называется соленоидом.

В таком соленоиде магнитные потоки от последовательно соединенных контуров суммируются. Так как магнитные силовые линии замкнутые, то внутри соленоида число силовых линий равно числу силовых линий всего соленоида.

А раз объем внутри соленоида ограничен, то можно сказать, что магнитное поле сконцентрировано внутри соленоида, снаружи рассеяно, и магнитные силовые линии внутри соленоида параллельны между собой и поле внутри соленоида считается однородным, вне соленоида — неоднородным. Величина магнитной индукции внутри соленоида записывается так:

, где μ — среда внутри соленоида, N — число витков соленоида, l — длина соленоида. Если обозначить — удельное число витков

Заключение

Если в проводнике создать электрическое поле и не поддерживать это поле, то перемещение носителей тока приведет к тому, что поле внутри проводника исчезнет, и ток прекратится. Для того чтобы поддерживать ток в цепи достаточно долго, необходимо осуществить движение зарядов по замкнутой траектории, то есть сделать линии постоянного тока замкнутыми. Следовательно, в замкнутой цепи должны быть участки, на которых носители заряда будут двигаться против сил электростатического поля, то есть от точек с меньшим потенциалом к точкам с большим потенциалом. Это возможно лишь при наличии неэлектрических сил, называемых сторонними силами. Сторонними силами являются силы любой природы, кроме кулоновских.

Дополнительную информацию о предмете статьи можно узнать из файла «Электродвижущая сила в цепях электрического тока». А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:

www.booksite.ru

www.scsiexplorer.com.ua

www.samelectrik.ru

www.electricalschool.info

www.sxemotehnika.ru

www.zaochnik.ru

www.ido.tsu.ru

Мне нравится1Не нравится2

Предыдущая
ТеорияЧто такое термопара: об устройстве простыми словами
Следующая
ТеорияЧто такое заземление простыми словами

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: