Волновая электростанция и многофункциональный комплекс на её основе

Предлагаемое решение

Вариант первый

Экономически микро ГЭС (до 100кВт) эффективны, разработаны с учетом современных технологий, просты в управлении, полностью автоматизированы. Оборудование не требует присутствия человека. Качество тока, вырабатываемого микро ГЭС, соответствует ГОСТу. Практика использования микро ГЭС давно отработана.

Микро ГЭС не требуют приобретения какого-либо топлива. Простота технологии выработки электроэнергии, затраты труда на единицу мощности ГЭС почти в 10 раз меньше, чем на ТЭЦ.

Прибрежная волновая электростанция с микро ГЭС с пропеллерной турбиной Каплана низкого давления – один из перспективных путей выработки электроэнергии для прибрежных удалённых объектов.

Простая, эффективная и дешёвая морская прибрежная электростанция для питания удаленных объектов с микро ГЭС, устройствами для забора и подъёма воды, резервуаром на высоте около 3м, работающая от давления воды, поднятой в резервуар за счет энергии морских или океанских волн, в том числе, с малой глубины.

Поплавок в виде тележки с килем и тороидальными баллонами большого диаметра для «перекатывания» через закрученный гребень волны на малых глубинах. Простейший нагнетательный насос внутри колонны внизу. Впускной и выпускной клапаны.

Группа устройств забора и подъёма воды за счет волновой энергии поднимает воду в резервуар на высоту около 3м и выше.

Вариант второй

Простой, эффективный и дешёвый морской прибрежный волновой электрогенератор в составе группы, для питания удаленных объектов, работающий за счет энергии морских или океанских волн, в том числе, на малой глубине в полосе прибоя.

Основные отличительные особенности решения:

Независимость от направления волн: Устройство использует не только фактор подъёма и спада волны, но и фактор движения волн в определенном направлении («вытягивание» силовой части в направлении движения волн за счет киля).

Легкость обслуживания: движущиеся части над поверхностью воды (под водой устанавливать электрогенератор нельзя), устройство близко к берегу – короткая электропроводка.

Поплавок в виде тележки с килем и тороидальными баллонами большого диаметра – для «перекатывания» через закрученный гребень волны в полосе прибоя.

Для выработки э/энергии используется круговой, а не линейный возвратно-поступательный генератор с низким КПД;

Маховик – накопитель энергии, зацеплен с шестерней на генераторах, периодически «подкручивается» прохождением волн;

Рычаг, «подкручивающий» маховик через механизм одностороннего вращения (храповик), автоматически оптимально ориентирован по направлению волн за счёт киля на тележке с баллонами на осях по её краям;

Возможно использование одного или двух генераторов – в зависимости от наличия генераторов по мощности и средней высоты волн в местности (энергии волны).

К примеру, мощность генератора (или суммарная мощность 2-х генераторов) – 10 кВт. В течение одной волны генератор работает около 5 сек. С периодом: 1 волна – каждые 10 секунд, в течение 1 часа генератор работает 0,5 часа и ориентировочно вырабатывает 5 кВт/час электроэнергии.

Электростанция из 10 прибрежных волновых электрогенераторов имеет усреднённую мощность 50 кВт. опубликовано econet.ru

Типы волновых электростанций

Любые волновые электростанции имеют похожий принцип действия, при котором используется энергия волн. Некоторое различие имеют конструкции этих массивных сооружений.

ВЭС, работающие по принципу качения

Такие сооружения находятся на воде. Принцип качения предполагает работу, основанную на энергии, которая возникает при поверхностном покачивании волн. Они раскачивают преобразователи, выполненные в виде поплавков. Имеется несколько вариантов подобных конструкций.

Морские змеи

Они изготовлены в виде нескольких секций, каждая из которых имеет форму цилиндра. Между собой секции соединены шарнирами. Вся конструкция находится в полузатопленном состоянии.

При колебании волн змеевидная конструкция начинает изгибаться. Это приводит в движение гидравлические поршни, которые находятся в местах соединений. Вырабатываемый электрический ток на берег передается по кабелю, проложенному в месте, где находится дно водоема.

Контурный плот Коккереля

При этой конструкции осуществляется перемещение секций друг относительно друга при помощи шарниров. Колебания передаются насосам, на которых закреплены генераторы. Такая конструкция дает высокий эффект примения.

Утка Солтера

Подобное название получили волновые электростанции, которые состоят из большого количества поплавков. Все они расположены на одном валу. Чтобы работа давала необходимый эффект, таких поплавков должно быть порядка двадцать-тридцать.

Энергия течений

В течениях океанов и морей заложена огромная потенциальная энергия. Имеется возможность получать достаточно высокое значение энергии. В перспективе будет целесообразно использовать энергию таких течений, как Флоридское и Гольфстрим.

Кинетическая энергия волн в ВЭС

Кинетическая энергия, которой обладают волны в подобных сооружениях, является огромной. Ее использование может происходить различными способами.

Первый заключается в том, что волна проходит через полую камеру. При этом она вытесняет имеющийся внутри воздух. Турбина начинает вращаться.

При втором способе волна попадает в трубу, имеющую большой диаметр. Там она начинает приводить во вращение лопасти турбины, приводя в действие генератор.

Принцип обоих способов является одинаковым. Происходит использование энергии, которой обладает столб воды при его колебании. Скорость потока воздуха можно регулировать путем изменения диаметра проходного канала. Тогда даже неторопливо катящиеся волны смогут вращать турбины с большой частотой.

Буй генератор

Подобная конструкция представляет собой буй, имеющий высоту 42 метра. На дне водоема буй зафиксирован якорями, а на водной поверхности его удерживает длинный поплавок, колеблющийся в вертикальной плоскости вместе с колебаниями воды.

Поплавок, закрепленный на подвижном штоке, который служит частью линейного генератора, генерирующего энергию. Контроль хода штока, зависящий от высоты и силы волны, контролируется специальными датчиками. Этим обеспечивается оптимальное прохождение работы. Во избежания во время сильного шторма поломки происходит автоматическая блокировка штока.

Солнечные паруса

В 2019 году Планетарное общество развернуло парус LightSail 2 на одной из ракет от SpaceX, и он успешно прошел испытания.

LightSail 2 во время развертывания

(Фото: The Planetary Society)

Солнечный парус — почти то же самое, что и обычный парус на кораблях. Только в движение его приводит не ветер, а солнечная энергия — поток заряженных частиц, которые выделяет Солнце. Если поймать этот поток энергии, можно долгое время путешествовать в космосе по заданному маршруту, а топливо для этого не понадобится.

Как это применять: используя наработки Планетарного общества, в 2021 году NASA с помощью паруса планирует долететь до Луны, а затем отправиться к околоземному астероиду 1991 VG.

Съедобная упаковка и солнечный парус: новинки космических эко-технологий

Как работают волновые электростанции

Образование такого явления как волны является результатом воздействия солнечных лучей. Они нагревают воздух, в результате чего происходит перемещение в пространстве. Перемещаемый воздух приходит в соприкосновение с водной поверхностью, результатом чего является возникновение волн.

Энергетическая емкость волны зависит от силы ветра, длительности его порывов и длины воздушного фронта. На мелководье величина энергоемкости каждой волны уменьшается вследствие трения о дно.

Волновые электростанции при их применении используют кинетическую энергию перемещающихся масс морской и океанской воды. Независимо от вариантов преобразования используется энергия движущихся морских волн или соответственно энергия движущихся волн океана.

История появления

Поскольку объем используемых до этого газа, нефти и угля значительно уменьшился, альтернативное получение энергии с помощью волновых электростанций стало весьма актуальной проблемой.

История появления волновых электростанций имеет несколько этапов:

  • в 1799 году во Франции был зарегистрирован патент на устройство, называемое волновой мельницей;
  • с 1880 года были предприняты неоднократные попытки с целью получения электричества использовать энергию волн;
  • впервые волновая электростанция была официально открыта в сентябре 2008 года в Португалии.

Расположена она на расстоянии пяти километров от линии берега.

https://youtube.com/watch?v=rb0aApA_S2E

Устройство

Волновая электростанция независимо от ее типа имеет принцип работы, основанный на преобразовании кинетической энергии в электрическую. Принцип действия является одинаковым как для стационарных моделей, так и для плавучих.

Энергия волн, совершающих колебательные движения вверх-вниз, преобразуется в электрическую энергию.

Имеется несколько видов устройств станций:

  1. Принцип «осциллирующий водяной столб».

В таком устройстве волны заполняют специальные камеры. Воздух в них сжимается. Создавая давление, имеющее избыточный характер. Под воздействием этого воздух поступает на турбину. Лопасти турбины начинают крутиться. Вращательное движение с помощью генератора вырабатывает электроэнергию.

В конструкции имеется несколько секций. На платформах между ними смонтированы поршни. Платформы являются подвижными. К поршню подсоединяется двигатель, имеющий гидравлический характер, приводящий во вращение электрический генератор.

  1. Установка с «искусственным атоллом».

На корпусе бетонного сооружения размещается площадка, на которую происходит накат волн. Они накапливаются в специальном резервуаре. Из него вода попадает на гидротурбину.

Во всех вариантах происходит использование энергии движущейся водяной массы. Существуют попытки изменить конструкцию камеры, чтобы воздух внутри нее был максимально сжат.

Почему это выгодно

Морские и океанические волны являются безграничным источником энергии, который постоянно возобновляется. Волновые электростанции расположены в природной среде, что позволяет использовать колоссальную энергию морей и океанов.

Принцип действия классической волновой электростанции

Осциллирующая водяная колонна с воздушной турбиной Уэллса являет собой классический, наиболее проработанный вид волновой электростанции. Аналогичное оборудование успешно функционирует как в море, так и в прибрежной зоне.

Принцип работы одинаков и для стационарных, и для плавучих моделей. Волной в, наполовину погруженной в воду, камере поднимается уровень воды. Благодаря заполнению внутреннего объема агрегата водой, воздух, находящийся внутри, под давлением выдавливается из сосуда. Образовавшиеся воздушные потоки пропускаются через лопасти реверсивной турбины низкого давления Уэллса. Когда возникает откат воды, воздух возвращается в камеру, минуя все те же турбинные лопатки. Уэллс добился сохранения направления вращения вала турбины вне зависимости от направления движения волны, что обеспечивает непрерывность передачи крутящего момента на вал генератора.

Турбина Алана Артура Уэллса избавлена от сложных механизмов измерения шага, а также систем клапанов. Агрегат имеет симметричное сечение и сравнительно большой угол атаки лопастей. В целом механизм характеризуется:

  • малым отношением скорости вращения к скорости потока воздуха;
  • высоким коэффициентом лобового сопротивления;
  • периодическими провалами мощности;
  • КПД на уровне 40-70%;
  • шумностью – издаваемые им, звуки сопоставимы со звучанием огромного органа.

Совершенствование классической модели

Принцип действия подобных агрегатов сохраняется неизменным. Конструкторы пытаются изменить архитектуру камеры, чтобы добиться максимального сжатия воздушной массы внутри нее. Усовершенствованная модель камеры позволяет изменять ее объем и геометрию в зависимости от состояния акватории.

Эффективность этой идеи доказали и теоретически, и практически. В итоге удалось избавиться от перепадов мощности станции, обусловленных падением высоты волны, и защитить оборудование от чрезмерных нагрузок и разрушения во время штормов.

Такая станция с «дышащей» камерой функционирует в Атлантике у португальских берегов. Ее мощности в 750 кВт достаточно для обеспечения электричеством около 1000 семей. Там планируется создать огромный прибрежный генерирующий каскад.

В перспективе плавучие волновые станции этого типа будут строить там, где функционируют ветровые фермы, используя единую якорную систему для электростанций обоих видов.

Преимущества ветровых генераторов

Ветровые электростанции уже долгое время используются в быту, на производстве и других областях.

За это время удалось выявить их основные положительные качества и преимущества:

  • Энергия ветра, используемая для ветроэлектростанций, является бесплатной и самое главное – возобновляемой. Устройства не загрязняют окружающую среду и не выделяют каких-либо вредных веществ. В перспективе планируется еще шире использовать экологически чистые ветровые электростанции в России, что позволит сократить количество обычных установок с вредными выбросами.
  • Снижается зависимость электроснабжения через центральные электрические сети.
  • Широкие перспективы для дальнейшего развития и внедрения новых прогрессивных технологий, и это не последние достоинства этих установок.
  • Постепенное снижение затрат на получение энергии, без которых не обойтись на первоначальном этапе. В течение последних 20 лет стоимость оборудования и комплектующих снизилась примерно на 80%. Энергия ветра становится наиболее прибыльной среди всех альтернативных источников электроэнергии.
  • Ветряки имеют достаточно высокий срок эксплуатации, составляющий 20-30 лет. В течение этого срока окружающий ландшафт остается неповрежденным.
  • Простота сборки и дальнейшего использования. Ветряная электростанция монтируется очень быстро, затраты на ремонт и обслуживание сравнительно низкие. Произведенная электроэнергия количественно превышает затраченную энергию ветра примерно в 85 раз. Потери при передаче электроэнергии сравнительно невысокие.

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» – «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой – D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов – графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

https://youtube.com/watch?v=_tcQpawPN_g

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Из чего состоит генератор

Движущей силой любого генератора является двигатель, который приводит в действие сам генератор. Для работы двигателя необходима топливная система, а для стабильности напряжения, вырабатываемого генератором, регулятор напряжения. Не менее необходимой является и система охлаждения, как двигателя внутреннего сгорания, так и самого генератора. Еще одним важным компонентом является система смазки. На станине, которая содержит все узлы и агрегаты находится так же зарядное устройство для аккумулятора и панель управления. Также в обязательном порядке присутствует глушитель шума.

Строительство ВЭС

Во время строительства ВЭС необходимо учитывать следующие факторы получения электрической энергии:

  • Требуется брать в расчет показатели кинетической энергии волн. При попадании в трубу волновой электростанции вода оказывает давление на расположенную внутри, которая приводится в движение и вырабатывает энергию. Также данный процесс может осуществляться с помощью давления, которое оказывается водой, выталкивающей воздух из полой камеры.
  • Энергия получаемого от качения поверхности. При подобных случаях на поверхность воды устанавливаются специальные датчики, называемые поплавками. Они отслеживают профили каждой волны и преобразовывают качание в электрическую энергию.

К счастью схема ПВЭС проста, поэтому на строительство и запуск не приходится тратить больших средств, в то время как КПД приливной электростанции позволяет использовать ее даже для крупных городов побережья.

Заключение

Конечно, как и другие альтернативные способы добычи электрической энергии, данный метод не до конца изучен и разработан, но процесс идет очень хорошими темпами. На сегодняшний день даже преобразование не может на равных конкурировать с углеводородными источниками, но следует продолжать исследовать все альтернативные методы. Россия не так давно стала разрабатывать проект получения энергии из ВЭС, но у страны есть большой потенциал и возможности, которые требуется лишь реализовать на все 100%.

В наши дни основными источниками энергии являются углеводороды – нефть, уголь, газ. Согласно прогнозам аналитиков запасов угля при современных уровнях добычи хватит на 400 лет, а запасы нефти и газа закончатся через 40 и 60 лет соответственно. Такое стремительное уменьшение объема природных богатств ставит задачу поиска альтернативных способов получения энергии.

География применения волновых электроэнергетических установок

Использование волновых электростанций незначительных мощностей находит применение в получении электропитания для небольших объектов:

  • береговых сооружений;
  • небольших поселений;
  • автономных маяков, буев;
  • научно-исследовательских приборов;
  • буровых платформ.

Уже около 400 навигационных буев и маяков получают питание от волновых энергоустановок – как, например, плавучий маяк индийского порта Мадрас.

Португалия

Первая в мире крупная волновая электростанция с мощностью 2,25 МВт начала эксплуатироваться в 2008 году в районе португальского

Сейчас на станции функционируют три преобразователя энергии волн – змеевидные устройства, погруженные на одну половину в воду. Длина каждого преобразователя равна 120 метрам, а диаметр – 3,5. Вес так называемой морской змеи составляет 750 тонн. Волны приводят в движение секции преобразователей, а сопротивление гидравлической системы способствует выработке электричества, которое по кабелям передается на сушу (станция базируется в 5 км от берега). В настоящее время ведутся работы по увеличению мощности этой волной станции с 2,25 МВт до 21 МВт: планируется добавить еще 25 преобразователей. В этом случае установка обеспечит электроснабжением 15 тысяч домов.

Норвегия

Опытно-промышленные волновые электростанции были впервые введены в строй в 1985 году в Норвегии.

Одна из них, мощностью до 500 кВт, является пневматической волновой установкой, в которой нижняя открытая часть камеры погружена под самый низкий поверхностный слой воды.

Мощность второй составляет 450 кВт. Здесь применяется эффект набегания волны на 147-метровый конфузорный откос (отлогую конусообразную поверхность). Суживающийся канал расположен в фьорде, а турбинный водоприемник возвышается на 3 м над средним уровнем моря. Установка, размещенная на берегу, исключает трудности с ее ремонтом и обслуживанием.

Австралия

Принцип работы Oceanlinx заключается во вращении турбин сжатым воздухом, поступающим из специальной камеры. Конструкция станции громоздка, и благодаря тяжести своего веса она стоит на дне, не нарушая его структуры. Около 1/3 всей конструкции, а это составляет почти 15 метров, выступает над поверхностью воды.

Важным достоинством волновой станции такого типа является производство прогнозируемого количества энергии. Платформы работают вследствие возмущения океанической поверхности, а не самих волн. Это позволяет определить погодные условия, влияющие на количество вырабатываемой энергии, на 5–7 дней вперед. Мощность Oceanlinx составляет 1 МВт, а потребители получают около 450 кВт электричества.

Россия

Применение волновой энергетики в России делает только первые шаги. Совсем недавно волновая электростанция, аналогичная португальской, была в экспериментальном порядке запущена на полуострове Гамова в Приморском крае. Испытания проходили в бухте Витязь на морской экспериментальной станции «Мыс Шульца». Инициаторами этой идеи стали ученые Уральского федерального университета и исследователи Тихоокеанского океанологического института при Дальневосточном отделении Российской Академии Наук.

Испытания показали, что волновая энергетика обладает большими перспективами.

Опасения при запуске этой станции вызвали:

  1. возможные повреждения генератора от воздействующих на него волн;
  2. безопасность движения рыболовецких траулеров в непосредственной близости от станции.

Вместе с тем волновая установка, разработанная российскими специалистами, помимо основной задачи – выработки электрической энергии, может осуществлять ряд дополнительных функций:

  1. стать волногасителем, обеспечивая защиту береговых сооружений;
  2. производить автоматическую охрану морских границ.

Развивать волновую энергетику в России необходимо. Однако существующие запасы углеводородов, отработанные, проверенные временем, освоенные до мелочей технологии традиционной выработки электроэнергии ставят под сомнение рентабельность использования волновых электростанций больших мощностей. Волновые электростанции наравне с солнечными электростанциями для дома вероятно станут тем необходимым шагом вперед в энергетике которого все мы, так долго ждем.

Есть смысл применять альтернативную энергетику в малозаселенных районах побережья Северного Ледовитого океана, Приморья, Дальнего Востока.

Тренажеры превратили в мини-электростанции

Решение, лежащее на поверхности, — заставить тренёжер, работа с которым требует длительных монотонных движений, вырабатывать электричество. Всё решается подключением динамо-машины и аккумулятора, который будет собирать энергию

Стоит заострить внимание на британском фитнес-центре «Кэдбери Хаус», владельцы которого первыми в мире полностью перешли на автономные машины. Велотренажёры, беговые дорожки, эллиптические тренажёры переводят энергию посетителей центра в электроэнергию, полностью обеспечивая не только работу самих тренажёров, но и функционирование заведения. К тому же автономный фитнес-центр за счёт своих инновационных тренажёров является ещё и самым «зелёным» с точки зрения экологии спортивным залом

К тому же автономный фитнес-центр за счёт своих инновационных тренажёров является ещё и самым «зелёным» с точки зрения экологии спортивным залом.

Компания Green Revolution, которая выпускает такие тренажеры, подсчитала, что 20 велотренажеров хватает для того, чтобы в течение целого месяца освещать 72 односемейных жилых дома!

Приведенные примеры показывают, что нам, по-видимому, не грозит энергетический кризис, и открытые исследователями новые методики получения энергии далеко не так агрессивны, как имеющиеся ныне. Так что возможно уже очень скоро мы перестанем уничтожать природу и начнем сотрудничать с ней!

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: