Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

Обратное напряжение

У диодов и тиристоров потери проводимости зависят от напряжения в гораздо меньшей степени, чем у MOSFET или IGBT. Следовательно, при выборе класса напряжения следует использовать достаточно большой «коэффициент безопасности», определяющий разницу между блокирующей способностью диода VRRM и максимально возможным рабочим напряжением. В таблице 1 показано, как в общем случае выбирается типовое значение VRRM диодов и тиристоров в зависимости от величины входного линейного напряжения VN. Таблица 1. Рекомендуемые параметры диодов и тиристоров в зависимости от напряжения сети и схемы выпрямления

Линейное напряжение VN, B Схема выпрямления Напряжение холостого хода Vdi, B Обратное напряжение VRRM, B
110–125 В2 97–110 600
200–240 В2 180–220 800
400–460 В6 540–621 1200–1400
575–690 В6 770–932 1800–2200

Блокирующая способность диода/тиристора не должна быть превышена при любых условиях работы, включая допуска и коммутационные всплески. При выборе класса напряжения необходимо учитывать демпфирующее воздействие входных фильтров, конденсаторов DC-шины (инвертора), а также снабберных элементов и супрессоров. Следует также помнить, что величина VRRM нормируется при +25 °С и имеет положительный температурный коэффициент.

Вольт-амперная характеристика

Принцип действия тиристора наглядно демонстрирует его ВАХ. Она, как и характеристика обычного диода, расположена в I и III квадрантах и состоит из положительной и отрицательной ветвей. Отрицательная ветвь также подобна диодной и содержит участок, при котором прибор заперт — от нуля до Uпробоя. При достижении порогового напряжения происходит лавинный пробой.

Положительная ветвь требует внимательного рассмотрения. Если приложить к тиристору прямое напряжение и начать его увеличивать, то ток будет расти медленно – сопротивление закрытого полупроводникового прибора высоко. Это красный участок графика. При достижении определенного уровня тиристор скачкообразно открывается, его сопротивление уменьшается, падение напряжения также уменьшается, ток растет – синий участок. Этот участок характеризуются отрицательным сопротивлением, но прибор ведет себя здесь неустойчиво, с выраженной тенденцией перехода в открытое состояние.

Далее тиристор выходит в режим обычного диода – зеленая ветвь графика. Так работает диодный тиристор, а способность открываться при достижении определенного уровня называется динисторным эффектом.

Этот свойство также присуще трехэлектродному тиристору, но он используется в таком режиме крайне редко. Более того, при разработке схем этой зоны ВАХ избегают. У тринистора есть управляющий электрод, и включение практически всегда производится с его помощью. Если подать на УЭ ток, то тиристор откроется раньше достижения порогового напряжения (красный пунктир на ВАХ). Чем больше ток, тем раньше отпирание. Если ток достигнет определенного уровня (Iуэ>0), то тиристор откроется при любом напряжении анод-катод и будет вести себя подобно обычному диоду, пока не создадутся условия для выключения.

Выключить тиристор (диодный или триодный) сложнее. Для этого требуется, чтобы ток через прибор снизился до определенного уровня (почти до нуля). В цепях переменного тока тиристор может быть переведен в закрытое состояние после снятия управляющего воздействия естественным путем – при ближайшем переходе напряжения через ноль. На самом деле, запирание происходит раньше — когда при снижении напряжения ток снизится до порогового значения. Это зависит от величины нагрузки. В цепях постоянного тока приходится принимать более сложные решения. Например, запирать тиристор можно с помощью конденсатора, заряженного напряжением обратной полярности. При включении коммутационного устройства, он разряжается навстречу прямому току и компенсирует его до нуля.

Также существуют другие способы создания встречного тока, но их устройство еще сложнее. Например, использование колебательных контуров и т.п. Все это усложняет использование тринисторов и динисторов, поэтому относительно недавно были созданы управляемые тиристоры (их также называют двухоперационными). Их отличие в том, что отпирание и запирание осуществляется посредством воздействия на управляющий электрод. Это резко расширяет возможности применения данных полупроводниковых приборов.

Суть устройства

Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:

  • закрытое — соответствующее низкой проводимости;
  • открытое — неоказывающее сопротивление прохождению тока.

То есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).

Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.

Принцип работы

Тиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.

Физические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится. В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.

Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.

При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.

Характеристики и параметры

Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:

  • тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
  • прибор переключается из одного состояния в другое при помощи напряжения;
  • величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
  • изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.

На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.

Тиристор серии Т160

Силовыей полупроводник тиристор Т160 является прибором, за основу которого выступает монокристалл полупроводника с определенным количеством переходов, а именно 3 и больше p-n переходов; имеет 2 устойчивые состояния – закрытое (низкая проводимость) и открытое (высокая проводимость). Разновидности тиристоров подразделяют на группы в зависимости от:

  • способа управления
  • их проводимости
  • тиристоров, которые проводят токи в 1 направлении
  • тиристоров, которые проводят токи в 2 направлениях

Своеобразная особенность штыревых тиристоров Т160 – способность проводить токи лишь по одному направлению и не переходить в состояние «закрыто». Сигнал управления включает прибор, а для его отключения нужно создать снижение до нуля прямых токов. Тиристор используют в таких устройствах: электронных ключах, управляемых выпрямителях, преобразователях (инверторах), регуляторах мощностей (диммерах), электронном зажигании.

Принцип работы тиристора Т160:

Тиристор представляет собой прибор, который не полностью управляем. Это значит, что получив сигнал от объекта управления, он способен всего лишь войти во включенное состояние. Для выключения прибора человек выполняет дополнительные работы, которые способствуют тому, что уровень напряжения падает до нуля. Функционирование тиристора основано на том, что используется силовые электрические поля. Чтобы переключить прибор из режима 1 в режим 2, используют технологию управления, которая передает нужный сигнал. В процессе этого действия токи движутся лишь в определенном направлении. Выключенный тиристор может выдержать прямое напряжение, также обратное.

Полупроводники Т160 используются в:

  • ключевых узлах схем управления радиоэлектроники;
  • сварочном оборудовании;
  • регуляторах цепей переменного тока.

Силовые тиристоры серии Т160 выполняют работу в цепях с постоянным и переменным током (до 500Гц) в электрических преобразователях, а также в регулирующем бесконтактном оборудовании.

Штыревая конструкция тиристора в металлокерамическом корпусе с гибким выводом и прижимными контактами.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Применение тиристора

Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.

Фото — применение Тиристора вместо ЛАТРа

Не стоит забывать и про тиристор зажигания для мотоциклов.

Применение тиристоров

Итак, как вам стало известно ранее, основным назначением тиристоров является их способность управлять мощностью нагрузки.

Кроме того, они имеют ряд других достоинств, а именно: быть “выпрямителем”, иметь два номинально-устойчивых положения, служить в качестве усилителя тока. Именно из-за вышеназванных качественных особенностей, полупроводниковый прибор нашел достаточно широкое применение.

Тиристор используют в роли включателя/выключателя/переключателя в электрических коммутационных устройствах, ведь он способен замыкать и размыкать электроцепь.

Также его активно задействуют как аппарат преобразования (так как тиристор способен генерировать постоянный ток в переменный) в солнечных батареях, в системах бесперебойного питания и в других областях, связанных с электроснабжениях.

Следует сказать и о возможностях тиристора в электронном зажигании, ведь устройство эксплуатируют в двигателях внутреннего сгорания, трамблерах и аккумуляторах для работы стартера.

Если говорить про быт, то надо напомнить, что полупроводниковое устройство применяется в сварке или машиностроении в качестве все того же инвертора.

Использование симистора

Симистор представляется настолько гибким и универсальным устройством, что благодаря его свойству переключения в проводящее состояние запускаемым импульсом с положительным или отрицательным знаком, который не зависит от источника проявляющего свойства мгновенной полярности. По сути названия анод и катод для прибора не имеют большой актуальности.

  1. Одно из популярных и простейших сфер использования симистора может считаться его применение в качестве твердотельного реле. Для него характерно малое значение пускового тока достаточного для нагрузки с большими токами. Функцию ключа в таком устройстве может играть геркон, или обладающее большой чувствительностью термореле и прочие контактные пары с током до 50мА, при этом величина тока нагрузки может ограничиваться исключительно показателями, на которые рассчитан симистор.

Рис.№5. Схема твердотельного реле с использованием симистора.

  1. Не менее широко использование симистора в качестве регулятора интенсивности освещения и управления скоростью вращения электромотора. Схема построена на использовании запускающих элементов, которые устанавливаются RC-фазовращателем, такой элемент, как потенциометр регулирует интенсивность освещения, а резистор служит для ограничения тока нагрузки. Формирование импульсов выполняется с помощью динистора. После пробоя в динисторе, который происходит в результате разности потенциалов на конденсаторе, импульс разряда конденсатора, возникающий мгновенно включает симистор.

Рис. №6. Схема регулирования света с использованием симистора с фазовым управлением.

  1. Управление мощностью в нагрузке с использованием в схеме добавочной RC-цепочки, что дает большой фазовый сдвиг, который облегчает задачу по управлению мощности.

Для чего нужен тиристор, его устройство и принцип работы

Тиристором называется полупроводниковый прибор, имеющий два состояния:

  • открытое (пропускает ток в одном направлении);
  • закрытое (не пропускает ток).

Состоит этот полупроводниковый прибор из 4 слоев (областей) полупроводника (в большинстве случаев – кремния) с различной проводимостью и имеет структуру p-n-p-n.

Такой тиристор называется динистором (диодный тиристор). Подобно диоду он имеет два вывода и отпирается напряжением определенного уровня, приложенным в прямом направлении к аноду и катоду.

Более распространен триодный тиристор – тринистор. Он имеет ту же структуру, но с дополнительным выводом – управляющим электродом (УЭ). Все операции с тринистором производятся посредством УЭ.

Также существуют тиристоры с двумя управляющими электродами, но они получили меньшее распространение.

Проверка тиристора

Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:

Фото — тестер тиристоров

Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного

Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора

После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.

Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.


Фото — схема тестера для тиристоров

Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.

Видео: принцип работы тиристора

Полное тепловое сопротивление

Все расчеты по вычислению теплового сопротивления имеет смысл проводить для уже установившегося режима продолжительностью больше 1 с. Для импульсных токов или длительных переходных процессов меньше 1 с эффект отвода тепла уменьшается. Температура просто рассеивается в объеме прибора с очень небольшим достижением теплоотвода. В таких условиях нагрев перехода зависит от полного теплового сопротивления «переход — корпус прибора» Zth j–mb. Поэтому Zth j–mb уменьшается при уменьшении продолжительности импульса тока благодаря меньшему нагреву кристалла. При увеличении продолжительности до 1 с Zth j–mb увеличивается до значения, соответствующего установившемуся режиму Rth j–mb. Характеристика Zth j–mb приводится в документации для двунаправленного и однонаправленного электрического тока импульсами продолжительностью до 10 с.

Схема эквивалента варикапа

Варикапы — это полупроводниковые приборы с изменяемой емкостью. Принцип их работы основан на изменении барьерной емкости полупроводникового перехода при изменении приложенного напряжения.

Чаще на варикап подают обратное смещение, реже — прямое. Такие элементы обычно применяют в узлах настройки радио- и телеприемников. В качестве варикапов могут быть использованы обычные диоды и стабилитроны (рис. 11), а также их полупроводниковые аналоги (рис. 12 , рис. 13 [ПТЭ 2/81-151]).

Рис. 12. Схема аналога варикапа.

Рис. 13. Схема аналога варикапа на основе полевого транзистора.

Литература: Шустов М.А. Практическая схемотехника (Книга 1).

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН
  • Сборка печатных плат от $88 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
  • Онлайн просмотрщик Gerber-файлов от PCBWay!

ВНИМАНИЕ! В оригинале в книге на рисунках 1 и 2 была обнаружена ошибка: к Аноду включен N-P-N транзистор, вместо PNP. В текущей статье, на рисунках, ошибки исправлены! Нашел ошибки и оповестил нас о них — Иван Иванович. Динистор лучше заменить на тиристор и стабилитрон или цепочка стабилитронов с анода на управляющий, проверено — работает надежно, искать транзисторы PNP на 250-300v проблемотично

Динистор лучше заменить на тиристор и стабилитрон или цепочка стабилитронов с анода на управляющий, проверено — работает надежно, искать транзисторы PNP на 250-300v проблемотично.

НИколай,можно раскурочить парочку сгоревших зарубежных телеков,покопаться в строчной развертке,взять оттуда выходные транзисторы(насколько помню,они там прямой проводимости).Если же нет,можно сделать аналог npn транзистора из нескольких pnp транзисторов.Раскрою принцип действия заменяющей цепочки.При подаче на базу транзистора прямой проводимости pnp структуры отрицательного импульса он открывается.Транзистор обратной проводимости npn структуры закрывается.Так,закрывая один транзистор можно открывать другой,имитируя работу транзистора прямой проводимости.При этом,правда,увеличивается емкость коллектора,но ее можно компенсировать,введя обратную связь.При этом правда,уменьшается коэффициент усиления,но это можно исправить увеличением числа каскадов.

Так же можно присмотреться и к ключу в блоке питания.

Тиристор в цепи постоянного тока

Включение обычного тиристора осуществляется подачей импульса тока в цепь управления положительной, относительно катода, полярности. На длительность переходного процесса при включении значительное влияние оказывают характер нагрузки (активный, индуктивный и пр.), амплитуда и скорость нарастания импульса тока управления iG , температура полупроводниковой структуры тиристора, приложенное напряжение и ток нагрузки. В цепи, содержащей тиристор, не должно возникать недопустимых значений скорости нарастания прямого напряжения duAC/dt, при которых может произойти самопроизвольное включение тиристора при отсутствии сигнала управления iG и скорости нарастания тока diA/dt. В то же время крутизна сигнала управления должна быть высокой.

Среди способов выключения тиристоров принято различать естественное выключение (или естественную коммутацию) и принудительное (или искусственную коммутацию). Естественная коммутация происходит при работе тиристоров в цепях переменного тока в момент спадания тока до нуля.

Способы принудительной коммутации весьма разнообразны. Наиболее характерны из них следующие: подключение предварительно заряженного конденсатора С ключом S (рис 3, а); подключение LC-цепи с предварительно заряженным конденсатором CK (рис 3 б); использование колебательного характера переходного процесса в цепи нагрузки (рис 3, в).

Рис. 3. Способы искусственной коммутации тиристоров: а) – посредством заряженного конденсатора С; б) – посредством колебательного разряда LC-контура; в) – за счёт колебательного характера нагрузки

При коммутации по схеме на рис. 3,а подключение коммутирующего конденсатора с обратной полярностью, например другим вспомогательным тиристором, вызовет его разряд на проводящий основной тиристор. Так как разрядный ток конденсатора направлен встречно прямому току тиристора, последний снижается до нуля и тиристор выключится.

В схеме на рис. 3,б подключение LC-контура вызывает колебательный разряд коммутирующего конденсатора Ск. При этом в начале разрядный ток протекает через тиристор встречно его прямому току, когда они становятся равными, тиристор выключается. Далее ток LC-контура переходит из тиристора VS в диод VD. Пока через диод VD протекает ток контура, к тиристору VS будет приложено обратное напряжение, равное падению напряжения на открытом диоде.

В схеме на рис. 3,в включение тиристора VS на комплексную RLC-нагрузку вызовет переходный процесс. При определенных параметрах нагрузки этот процесс может иметь колебательный характер с изменением полярности тока нагрузки iн. В этом случае после выключения тиристора VS происходит включение диода VD, который начинает проводить ток противоположной полярности. Иногда этот способ коммутации называется квазиестественным, так как он связан с изменением полярности тока нагрузки.

Устройство тиристора

Фиксирование устойчивого состояния прибора возможно благодаря наличию ряду особенностей во внутреннем строении устройства. На представленной ниже схеме можно в этом убедиться:

На этой структуре становится очевидным тот факт, что тиристор представлен в виде 2-х простых электронных транзисторов, которые не похожи по своей структуре, однако связаны между собой. Кроме того, ключевую роль в составе полупроводникового электроприбора играют три следующих звена:

  • Катод;
  • Анод;
  • Электрод управления.

Из-за того, что тиристор имеет четыре последовательно-соединенных диода, его переходный слой имеет такую форму: (р) — (п) — (р) — (п). Этот факт объясняет пропускную способность I, который течет лишь в единственной направленности направлении: от плюса к минусу.

Говоря и описывая внешний вид тиристоров, надо сказать, что они производятся из разных корпусов, поэтому исключен вариант с простым отводом тепла, однако, из-за наличия массивного металлического корпуса, способны выдерживать большие токи.

Какие существуют разновидности тиристоров: краткие сведения

Развитие науки и электронных технологий в частности способствовало созданию большого количества полупроводниковых приборов с различной структурой слоев и переходов. (Смотрите картинку в начале статьи.)

Я относительно подробно показал выше структуру и принцип работы КУ202 и аналогичных тиристоров с тремя выводами. Однако это не полный обзор, а только частный случай, характерный для большинства подобных приборов.

Они отличаются по:

  • количеству выводов и способу управления;
  • проводимости;
  • режимам работы;
  • быстродействию;
  • другим эксплуатационным параметрам.

Количество выводов

У основной четырехслойной структуры может быть создано 2, 3 или 4 контактных отвода для подключения к внешней схеме.

Что такое динистор

Корпуса с двумя выводами называют динисторами. Для открытия этих полупроводников между анодом и катодом импульсом подают повышенное напряжение.

По принципу работы динисторы бывают:

  1. симметричные;
  2. несимметричные.

Второй тип при обратном напряжении (плюс на катоде, а минус на аноде) всегда закрыт. Он ведет себя как диод и при аварийном токе сгорает. Симметричные же динисторы работают при любой полярности.

Как работает тринистор

Такое название закрепилось за триодными тиристорами (с третьим выводом управляющего электрода). Частный случай этих приборов мы уже разобрали, но на практике следует учитывать, что подобные изделия могут выпускаться с:

  1. Катодным управлением, когда командный сигнал поступает по цепи управляющий электрод — катод.
  2. Анодным — тот случай, что показан на примере КУ202.

При проверке работоспособности полупроводникового перехода следует учесть его конструкцию, а не бездумно копировать мою методику или любую другую, взятую из интернета.

Тринисторы могут выполняться с различными способами закрытия:

  1. запираемые;
  2. незапираемые.

Первым для перехода в закрытое состояние достаточно снизить ток по цепи «анод-катод». Вторым необходимо подать напряжение запирания на управляющий электрод.

Еще раз хочу подчеркнуть, что изложенная методика проверки на примере КУ202 применима для незапираемых тиристоров с управлением по аноду.

Виды проводимостей

В самом начале я сравнивал работу полупроводников с течением реки и заострил внимание на том, что через них ток проходит в одну сторону. Только это утверждение характерно для большинства, а не всех поголовно случаев

Однако учтите, что есть и иные конструкции, специально созданные:

  1. с не высоким обратным напряжением, которые называют обратно-проводящими;
  2. без нормировки обратной проводимости. Их применяют в схемах, исключающих появление обратного напряжения;
  3. для пропускания тока в обе стороны по цепи анод-катод. Это симметричные тиристоры, называемые симисторами либо триаком (от англ — «triac»).

При их проверке следует в обязательном порядке учитывать конструктивные особенности электронных переходов.

Тринисторы чаще всего создаются для работы в схеме электронного ключа. Они управляют мощной силовой нагрузкой за счет подачи слабого сигнала команды через управляющий электрод.

Быстродействие

Этим параметром оценивают скорость перехода полупроводниковых изделий из закрытого состояния в открытое и наоборот. Он может быть критичен при работе сложных схем защит или управления технологическими процессами.

Импульсный режим работы

Созданы и такие приборы, способные мгновенно реагировать на быстро возникающие электротехнические ситуации на сложном производстве. Но в домашнем оборудовании их не применяют.

Особенности лавинных тиристоров

Такие конструкции имеют лавинную вольт-амперную характеристику. При подаче обратного напряжения развивается лавинный процесс. Такая ВАХ:

  • устойчива к высоким перенапряжениям схемы;
  • способна работать без дополнительных защит;
  • равномерно перераспределяет энергию по последовательно подключенным полупроводниковым переходам.

Их используют в схемах защит полупроводниковых разрядников и преобразователях.

Тиристоры имеют очень много разновидностей внутренней схемы, корпусов и принципов работы. Проверка их технического состояния должна учитывать все эти особенности.

Довольно оригинально эта информация изложена в видеоролике владельца Радиолюбитель.

Поскольку тема про тиристоры, принципы их работы и проверки весьма обширная, то жду ваших дополнений или комментариев, которые будут полезны и понятны всем домашним электрикам, включая новичков.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: