Схема и принцип действия диодного моста

Устройство, принцип действия и схема диодного моста выпрямителя

Последовательное соединение

Здесь к точкам включения присоединяются контакты только первого и последнего конденсатора.

Схема — схема последовательного соединения

Главной особенностью работы схемы является то, что электрическая энергия будет проходить только по одному направлению, значит, что в каждом из конденсаторов ток будет одинаковым. В такой цепи для каждого накопителя, независимо от его емкости, будет обеспечиваться равное накопление проходящей энергии. Нужно понимать, что каждый из них последовательно соприкасается со следующим и предыдущим, а значит, емкость при последовательном типе может воспроизводиться энергией соседнего накопителя.

Формула, которая отражает зависимость тока от соединения конденсаторов, имеет такой вид:

i = ic1 = ic2 = ic3 = ic4, то есть токи проходящие через каждый конденсатор равны между собой.

Следовательно, одинаковой будет не только сила тока, но и электрический заряд. По формуле это определяется как:

А так определяется общая суммарная емкость конденсаторов при последовательном соединении:

Видео: как соединять конденсаторы параллельным и последовательным методом

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Последовательное включение конденсаторов

Свойства последовательного включения конденсаторов:

Формула подключения: 1/(1/С1+1/С2+…+1/СN), где N — это количество приборов в соединении.

Например, есть три конденсатора по 100мкф. 1/100+1/100+1/100=0,03мкф. 1/0,03=33мкф.

Для чего тогда нужен подобный способ подключения? Такая цепь более устойчива и может выдержать большее напряжение при подключении в схему при меньшем емкостном номинале конденсатора. Однако в продаже имеются приборы, которые и без того обладают нужными свойствами, поэтому-то такое подключение в жизни практически не используется, а если используется, то для специфических задач.

READ Как подключить внешнюю антенну к usb модему huawei

Принцип действия полупроводникового диода

Рис. 1

Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов — полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении — от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

  • повышенная степень пульсаций выпрямленного напряжения;
  • низкий КПД;
  • большой вес трансформатора и его нерациональное использование.

Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ — использование диодного моста.

Смешанное подключение

Но, стоит учитывать, что для соединения различных конденсаторов необходимо учитывать напряжение сети. Для каждого полупроводника этот показатель будет отличаться в зависимости от емкости элемента. Отсюда следует, что отдельные группы полупроводниковых двухполюсников малой емкости будут при зарядке становиться больше, и наоборот, электроемкость большого размера будет нуждаться в меньшем заряде.


Схема: смешанное соединение конденсаторов

READ Как программно подключить сетевой диск

Существует также смешанное соединение двух и более конденсаторов. Здесь электрическая энергия распределяется одновременно при помощи параллельного и последовательного подключения электролитических элементов в цепь. Эта схема имеет несколько участков с различным подключением конденсирующих двухполюсников. Иными словами, на одном цепь параллельно включена, на другом – последовательно. Такая электрическая схема имеет ряд достоинств сравнительно с традиционными:

Источник

Полупроводниковые выпрямители блоков питания, схемы, онлайн расчёт

Классификация, свойства, схемы, онлайн калькулятор. Расчёт ёмкости сглаживающего конденсатора.

«- Почему пульт не работает? — Я, конечно, не электрик, но, по-моему, пульт не работает, потому что телевизора нет».

— А для чего нам ещё «нахрен не упал» профессиональный электрик? — Для чего? Да много для чего! Например, для того, чтобы быть в курсе, что без источника питания, а точнее без преобразователя сетевого переменного напряжения в постоянное, не обходится ни одно электронное устройство. — А электрик? — Электрик, электрик… Что электрик?… «Электрик Сидоров упал со столба и вежливо выругался…»

Итак, приступим. Выпрямитель — это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное. Выпрямитель содержит трансформатор, необходимый для преобразования напряжения сети Uc до величины U2, определяемой требованиями нагрузки; вентильную группу (в нашем случае диодную), которая обеспечивает одностороннее протекание тока в цепи нагрузки; фильтр, передающий на выход схемы постоянную составляющую напряжения и сглаживающий пульсации напряжения.

Расчёт трансформатора — штука громоздкая, в рамках этой статьи рассматриваться не будет, поэтому сразу перейдём к основным и наиболее распространённым схемам выпрямителей блоков питания радиоэлектронной аппаратуры. В процессе повествования давайте сделаем допущение, что под величинами переменных напряжений и токов в цепях выпрямителей мы будем подразумевать их действующие (эффективные) значения: Uдейств = Uампл/√2 и Iдейств = Iампл/√2. Именно такие значения приводятся в паспортных характеристиках обмоток трансформаторов, да и большинство измерительных приборов отображают — не что иное, как аккурат эффективные значения сигналов переменного тока.

Однополупериодный выпрямитель.

На Рис.1 приведена однофазная однополупериодная схема выпрямления, а также осциллограммы напряжений в различных точках (чёрным цветом — напряжение на нагрузке при отсутствии сглаживающего конденсатора С1, красным — с конденсатором). В данном типе выпрямителя напряжение с вторичной обмотки трансформатора поступает в нагрузку через диод только в положительные полупериоды переменного напряжения. В отрицательные полупериоды полупроводник закрыт, и напряжение в нагрузку подаётся только с заряженного в предыдущий полупериод конденсатора. Однополупериодная схема выпрямителя применяется крайне редко и только для питания цепей с низким током потребления ввиду высокого уровня пульсаций выпрямленного напряжения, низкого КПД, и неэффективного использования габаритной мощности трансформатора.

Здесь обмотка трансформатора должна обеспечивать величину тока, равную удвоенному значению максимального тока в нагрузке Iобм = 2×Iнагр и напряжение холостого хода

U2 ≈ 0,75×Uн. При выборе диода D1 для данного типа схем, следует придерживаться следующих его параметров: Uобр > 3,14×Uн и Iмакс > 3,14×Iн.

Едем дальше. Двухполупериодный выпрямитель с нулевой точкой.

Схема, приведённая на Рис.2, является объединением двух противофазных однополупериодных выпрямителей, подключённых к общей нагрузке. В одном полупериоде переменного напряжения ток в нагрузку поступает с верхней половины вторичной обмотки через открытый диод D1, в другом полупериоде — с нижней, через второй открытый диод D2. Как и любая двухполупериодная, эта схема выпрямителя имеет в 2 раза меньший уровень пульсации по сравнению с однополупериодной схемой. К недостаткам следует отнести более сложную конструкцию трансформатора и такое же, как в однополупериодной схеме — нерациональное использование трансформаторной меди и стали.

Каждая из обмоток трансформатора должна обеспечивать величину тока, равную значению максимального тока в нагрузке Iобм = Iнагр и напряжение холостого хода

Обзор типовых схем включения диодного моста

Схема подключения диодного моста в целом стандартна. К выводам переменного тока подключается источник переменного тока. К выводам постоянного тока подключается нагрузка. Но есть смысл рассмотреть примеры применения мостового выпрямителя в различных практических применениях.

Для зарядного устройства

В зарядном устройстве аккумулятора не обязательно иметь сглаживающий конденсатор

Зато важно иметь возможность регулирования тока. В этом случае элементы фильтра не устанавливают, а диоды (или часть) заменяют тиристорами

Используя фазоимпульсный метод управления, можно регулировать усредненный ток заряда аккумулятора.

Фрагмент схемы зарядного устройства Кедр с управляемым диодным мостом

Для генератора

Автомобильный генератор вырабатывает переменный ток, который затем выпрямляется. Этот способ на первый взгляд кажется нерациональным, кажется, что проще применять генератор постоянного тока. Но такое решение связано с меньшей технической и экономической эффективностью, поэтому и здесь применяется мостовая схема выпрямления.

Схема выпрямления для автомобильного генератора

Для трансформатора

Классическое применение диодного мостика – трансформаторный блок питания. В нем напряжение снижается трансформатором T1, выпрямляется мостом D1 и сглаживается конденсатором С1.

Минимальная конфигурация трансформаторного блока питания

Для блока питания

В импульсных источниках питания переменное напряжение, как правило, выпрямляется дважды:

  1. До преобразования.
  2. После преобразования (для каждого выходного напряжения отдельный выпрямитель).

На приведенном примере сетевое напряжение выпрямляется сборкой BD1, сглаживается до постоянного конденсаторами С3 и С4, а после преобразования снова выпрямляется диодами и сборками D11-D17.

Фрагмент схемы импульсного БП

Диодный мостик не является сложным электротехническим узлом. Тем не менее, для его грамотного применения желательно изучить процессы, происходящие при его работе.

Собираем диодный мост

Схема выпрямителя сварочного аппарата с конденсатором.

Диодный мост является самым распространенным радиокомпонентом в блоке питания аппаратуры различного назначения. Он выполняет функции выпрямителя, выдавая постоянное напряжение, преобразованное из переменного. Изделие может быть собрано из отдельных диодов. Самые распространенные из них 1N4007. Все они рассчитаны на напряжение до 1000 В и ток до 1 А. На сборках обычно имеются указания, куда и какие провода присоединять. Для самостоятельной сборки схемы для применения в сварочном агрегате можно поступить следующим образом:

  1. Выбрать тип будущего изделия.
  2. Рассчитать его.
  3. Изготовить радиатор охлаждения.
  4. Закрепить готовую диодную конструкцию на радиаторе.

Схема применения диодного моста в трансформаторе.

Изделие можно собрать из отдельных диодов, можно воспользоваться монолитной сборкой. Отдельные диоды, их параметры можно рассчитать на следующем примере: нужен мост на напряжение 1000 В, 4 А. Тогда полная его мощность составит 1000х4=4 кВт. Через каждый отдельно взятый диод протекает примерно 70% общего тока. В конкретном случае при токе в 4 А это составит 3 А.

При работе схемы диодная конструкция обязательно будет нагреваться. Для ее охлаждения нужен хороший охлаждающий радиатор. Для сварочной установки он может быть сделан из листового алюминия площадью примерно 800 кв.см. На нем нужно просверлить необходимые отверстия, предназначенные для крепления изготовленной конструкции, нарезать резьбу. Готовую сборку следует закрепить на самодельном радиаторе болтами М6. Место под изделие можно промазать теплопроводной пастой марки КПТ-8. Все провода к диодному мосту крепятся методом пайки. Диоды можно использовать марки В-200. Они работают при токе до 200 А.

Принцип работы

Диод в цепях переменного тока работает одинаково – пропускает ток в одну сторону и не пропускает в другую. Но комбинацией нескольких вентилей можно добиться различной работы готовой схемы.

В выпрямительных схемах

Самая простая выпрямительная схема

Принципиально для выпрямления переменного тока достаточно одного диода. Он будет пропускать положительную волну синусоидального напряжения и не пропускать отрицательную (будет ее «срезать»). Этот способ имеет существенный недостаток – половина мощности источника питания не используется. Второй минус – форма выходного напряжения далека от прямой линии, для сглаживания придется использовать громоздкий фильтр.

Форма входного и выходного напряжения простого выпрямителя

Этот недостаток можно исправить, включив два выпрямителя параллельно. Для этого понадобится трансформатор с двумя обмотками, включенными последовательно.

Выпрямительная схема со средней точкой

В этом случае диод VD1 пропускает положительную волну, второй – отрицательную. Через нагрузку Rload проходят оба полупериода тока в одном направлении. Минус схемы – требуется трансформатор с отводом.

Красная линия – форма тока в нагрузке

Этого же результата можно добиться и без отвода во вторичной обмотке, используя схему диодного моста. В однофазном варианте для этого достаточно четырех вентилей.

Однофазный диодный мост

Положительная волна синусоиды пойдет по пути, обозначенному красными стрелками:

  • диод VD2;
  • нагрузка;
  • диод VD3.

Отрицательная по пути, маркированному зелеными стрелками:

  • VD4;
  • нагрузка;
  • VD1.

Очевидно, что в течение любого полупериода ток через нагрузку идет в одном направлении.

Для трехфазной системы можно использовать несколько разновидностей выпрямительных мостов. Наиболее распространена схема Ларионова. Она тоже имеет две разновидности:

  1. Для вторичных обмоток трехфазного трансформатора, включенных «звездой».
  2. Для вторичных обмоток, включенных «треугольником).

В большинстве случаев вторичная обмотка трансформаторов с выходным уровнем 380 вольт включается «звездой» для организации заземления нейтрали, поэтому работа схемы трехфазного выпрямителя будет рассмотрена для этого случая.

Схема трехфазного мостика

В этом случае в нагрузке складываются три тока каждой фазы, сдвинутые между собой на 120 градусов. Это позволяет получить наименьшие, по сравнению с однофазной схемой, пульсации.

Входные и выходные напряжения для схемы Ларионова

В преобразовании переменного тока в постоянный ток

По какой схеме ни был бы собран выпрямительный мост, ток на его выходе не будет полноценным постоянным. Чтобы довести пульсирующий ток до такого состояния, пульсации надо сгладить. Для этого чаще всего применяют конденсаторы. Их подключают параллельно выходу диодного моста.

Если рассматривать несколько упрощенно, конденсатор работает так:

  • во время пика пульсаций он заряжается, сглаживая выброс;
  • во время минимума разряжается в нагрузку, подпитывая ее.

В результате напряжение на выходе (и ток через нагрузку) становится близким к постоянному.

Форма входного, выходного без сглаживания и выходного сглаженного напряжения (сверху вниз)

Для сглаживания пульсаций пригодны и дроссели, включаемые параллельно с нагрузкой, но они имеют массу недостатков – габариты, вес дополнительное падение напряжения и т.п.

Вредные правила эксплуатации генератора (по Остеру)

Далее приведены ключевые правила, соблюдение которых позволит без проблем вывести из строя генератор как можно скорее:

правило “переполюсовки” — поменяйте местами провода АКБ и вы устроите необычную яркую вспышку в генераторе, а также легкое облако, доносящееся от него. В тоже время почувствуете незабываемое акустическое удовольствие, слушая щелчки и шипение, а также невероятный запах горящих проводов, и самое главное — ожог 1-3 степени в зависимости от ваших амбиций. Такой “фокус” выводит из строя диодный мост, статор и регулятор частично, к счастью возгорание авто имеет шансы 1:1000. Из “побочек” могут быть выведены из строя комбинация приборов, бортовой компьютер, магнитола и другие комплектующие бортовой сети. Достоинство — осваивается новичками без долгих теорий;
правило мойки — как можно чаще и тщательнее мойте силовой агрегат, побольше воды и пены, особенно на альтернатор и стартер. Главное, чтобы поток воды обильно вымывал генератор изнутри, сушить категорически запрещается, сразу же запускаем мотор, включаем все энергопотребители и наблюдаем за эффектов. Если его нет — повторяем процедуру. Достоинство — сгоревший “гена” будет чистым;
дедовский метод — сдергивание провода с “+” клеммы, чтобы проверить заряд на работающем моторе, это главное правило! Вероятность выхода из строя всевозможных реле 50:50, главное обеспечить много искр для эффекта, а также включить все, что питается от электричества;
“летим” по лужам — многие даже не догадываются, что пользуются данным правилом в дождь. Главное быть всегда уверенным, что ваше авто вне всякого сравнения с водонепроницаемостью подводной лодки, чем глубже лужа — тем ярче эффект

Немаловажно выбирать скорость, при которой больше воды попадает в подкапотное пространство, главное выбросить все пластиковые кожухи и защиты! Главное достоинство — трюк можно повторять везде, где есть вода (даже ручьи и реки), не выходя из авто;
“меломан” — необходимо установить самую дорогую магнитолу, а лучше две, как можно больше динамиков, пару десятков минимум, усилителей и пару сабвуферов, включаем любимую музыку на всю громкость при работающем моторе, если из-под капота не пошел дым, а воздух остается чистым — значит вы приобрели слишком дешёвую аппаратуру;
“старый аккумулятор” — способ требует некоторых знаний физики, хотя бы закона Ома. Берем самый старый АКБ, и чем старше, тем вероятнее в нем окажется замкнутая банка. Возможно батарея будет издавать признаки бурной работы, обязательно будет потреблять дикое количество энергии, зато работа инжектора будет нестабильной, а за дальний свет можно забыть

Главное побольше эксплуатировать старый аккумулятор — эффект не заставит себя ждать.

Возможно батарея будет издавать признаки бурной работы, обязательно будет потреблять дикое количество энергии, зато работа инжектора будет нестабильной, а за дальний свет можно забыть. Главное побольше эксплуатировать старый аккумулятор — эффект не заставит себя ждать.

Повышение напряжения в сети электропитания

Если же низкое напряжение у всех в округе – нужно думать, как повысить напряжение в сети у себя. Но не пугайтесь сразу же больших затрат на чудеса современной электроники. Они нужны, о них речь пойдет ниже. Но чаще всего проблему можно решить быстро и без хлопот подручными средствами. Причем – технически грамотно и совершенно безопасно.

При стабильно низком напряжении в сети выручит самый обыкновенный понижающий трансформатор на 12 – 36 В. Да, да, именно понижающий. И большой его мощности не потребуется. 100-ваттный потянет нагрузку в 500 Вт, а киловаттный – в 5 кВт. И увеличить напряжение в сети можно до допустимых пределов.

Никаких чудес, никакой паранауки – достаточно такой трансформатор использовать как повышающий автотрансформатор, добавив напряжение понижающей обмотки к линейному. Тогда при 175 В в розетке на выходе будет при 12 В добавочных 187 В. Маловато, но бытовая техника работать будет. Если вдруг напряжение повысится до нормы, автотрансформатор выдаст 232 В; это еще в норме. При 36 В добавочных 175 В вытягиваем до 211 В – норма! Но вдруг и в розетке норма окажется, получим 256 В, а это уже нехорошо для электроприборов. Поэтому лучше всего – 24 В добавочных.

А как же мощность? Дело в том, что в сетевой обмотке автотрансформатора течет РАЗНОСТНЫЙ ток, и если повышать напряжение на небольшую долю от исходного, он окажется совсем незначительным. Правда, в дополнительной обмотке пойдет суммарный ток, но она в понижающих трансформаторах выполняется из толстого провода и при мощности исходного трансформатора в 100 Вт выдержит ток в 3-5 А, а это более 500 Вт при 220 В.

Нужно только правильно сфазировать обмотки. Для этого включаем трансформатор, как показано на схеме, БЕЗ НАГРУЗКИ. К гнездам «Прибор» подключаем любой вольтметр переменного тока на 300 В и более, хотя бы тестер. Показывает меньше, чем в розетке? Меняем местами концы любой из обмоток. Стало больше, чем в розетке? Все, можно пользоваться. Потребителей включаем вместо измерительного прибора.

Нужно только поставить в цепь сети предохранитель – вдруг в розетке «зашкалит» (это может случиться, если на старой и плохо обслуживаемой подстанции испортится зануление), так пусть он сгорит, а не техника.

Подходящий трансформатор можно найти на «железном» или радиорынке, а то и у себя в кладовке. Не спутайте только с гасящим устройством для низковольтных электропаяльников – они выполнены на конденсаторах, и от них толку не будет, а будет авария.

Технοлοгия изгοтοвления и κοнструκция

Κοнструκция выпрямительных диοдοв представляет сοбοй οдну пластину κристалла пοлупрοвοдниκа, в οбъеме κοтοрοй сοзданы две οбласти разнοй прοвοдимοсти, пοэтοму таκие диοды называют плοсκοстными.

Технοлοгия изгοтοвления таκих диοдοв заκлючается в следующем: на пοверхнοсть κристалла пοлупрοвοдниκа с элеκтрοпрοвοднοстью n-типа расплавляют алюминий, индий или бοр, а на пοверхнοсть κристалла с элеκтрοпрοвοднοстью p-типа расплавляют фοсфοр.

Пοд действием высοκοй температуры эти вещества κрепκο сплавляются с κристаллοм пοлупрοвοдниκа. Атοмы этих веществ прοниκают (диффундируют) в тοлщу κристалла, οбразуя в нем οбласть с преοбладанием элеκтрοннοй или дырοчнοй элеκтрοпрοвοднοсти. Таκ пοлучается пοлупрοвοдниκοвый прибοр с двумя οбластями различнοгο типа элеκтрοпрοвοднοсти, а между ними устанавливается p-n перехοд. Бοльшинствο распрοстраненных плοсκοстных κремниевых и германиевых диοдοв изгοтавливают именнο таκим спοсοбοм.

Для защиты οт внешних вοздействий и οбеспечения надежнοгο теплοοтвοда κристалл с p-n перехοдοм мοнтируют в κοрпусе. Диοды малοй мοщнοсти изгοтавливают в пластмассοвοм κοрпусе с гибκими внешними вывοдами, диοды средней мοщнοсти – в металлοстеκляннοм κοрпусе с жестκими внешними вывοдами, а диοды бοльшοй мοщнοсти – в металлοстеκляннοм или металлοκерамичесκοм κοрпусе сο стеκлянным или κерамичесκим изοлятοрοм.

Κристаллы κремния или германия с p-n перехοдοм припаиваются κ κристаллοдержателю, являющемуся οднοвременнο οснοванием κοрпуса. Κ κристаллοдержателю приваривается κοрпус сο стеκлянным изοлятοрοм, через κοтοрый прοхοдит вывοд οднοгο из элеκтрοдοв.

Малοмοщные диοды, οбладающие οтнοсительнο малыми габаритами и весοм, имеют гибκие вывοды, с пοмοщью κοтοрых οни мοнтируются в схемах. У диοдοв средней мοщнοсти и сильных, рассчитанных на значительные тοκи, вывοды значительнο мοщнее. Нижняя часть таκих диοдοв представляет сοбοй массивнοе теплοοтвοдящее οснοвание с винтοм и плοсκοй внешней пοверхнοстью, предназначеннοе для οбеспечения надежнοгο теплοвοгο κοнтаκта с внешним теплοοтвοдοм (радиатοрοм).

Выбор типа сборки

Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:

  • максимальное обратное напряжение диодов — 300 В;
  • прямой ток всей сборки — 1 А;
  • граничная частота — 5 кГц.

Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.

Сглаживающие RC фильтры

В схемах выпрямления малой мощности дроссель фильтра может быть заменён резистором RФ. Такие типы фильтров называют RC фильтрами

Расчёт сглаживающего RC фильтра должен вестись с учётом следующих условий

Коэффициент сглаживания фильтра

Сопротивление резистора RФ обычно задаются в пределах RФ = (0,15…0,5)RH; КПД резистивно-емкостного фильтра сравнительно мал и обычно составляет 0,6…0,8, причем при ηф = 0,8 RФ = 0,25RH. Емкость Cф (в микрофарадах), обеспечивает требуемый коэффициент сглаживания q при частоте сети fC = 50 Гц, находят из выражения

Преимущества резистивно-емкостных фильтров: малые габариты, масса и стоимость; недостаток – низкий КПД.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: