Применение повышающего трансформатора
Повышающий трансформатор имеет несколько применений. Большинство приложений очень специфичны и относятся к разным областям.Изображение Фото: Трамп16, Трансформер подстанции, CC BY-SA 4.0
- Приложения в энергосистемах: шаг вперед трансформатор является одной из наиболее важных частей системы распределения электроэнергии. Повышающий трансформатор помогает повышать подаваемое напряжение в соответствии с потребностью.
- Электронное устройство и инструменты: Step-up трансформеры используется внутри многочисленных электронных устройств и инструментов. Такие устройства, как выпрямители, преобразователи АЦП и ЦАП, используют этот тип трансформатора.
- Электродвигатели и генераторы, микроволновая печь печи, рентгеновские аппараты и различные бытовые приборы используют для повышения трансформаторов.
Охладительный резервуар
Является емкостью для масла и одновременно защищает активные компоненты агрегата от перегрева. В конструкции исполняет роль опоры для дополнительных и управляющих устройств. Перед наполнением из бака удаляют воздух, подвергающий разрушению изоляцию и уменьшающий ее защитные свойства. Из-за этого резервуар работает в условиях низкого атмосферного давления.
Для уменьшения шума от функционирования трансформатора должны совпадать звуковые частоты, воспроизводимые стержнем агрегата, и аналогичные показатели резонанса конструктивных элементов. Для сброса при увеличении объема жидкости в баке от нагревания устанавливается отдельно расположенная расширительная емкость.
Повышение номинальных значений мощности увеличивает скорость движения электронов снаружи и внутри трансформатора, что разрушает конструкцию. Аналогично действует рассеивающее магнитное течение в баке. Применяют вкладыши из материала, не подверженного намагничиванию. Их располагают вокруг изоляторов сильного потока, что уменьшает риск нагревания. Внутреннюю отделку бака выполняют так, чтобы она не пропускала магнитный поток через ограждения емкости. Материал с малым сопротивлением магнетизму поглощает течение перед его проникновением через наружные стенки.
Количество полуокружностей почти соответствует числу оборотов обвивки. С увеличением витков делается больше дуг, но строгая пропорциональность отсутствует. Возле выхода жирной точкой указывают начало обмоток (на двух катушках и больше). Ставят обозначения мгновенно возникающей ЭДС, они на выходах обычно одинаковы.
Такой подход используется при показе промежуточности агрегатов в преобразовательных цепочках для наметки синхронности или противофазности. Обозначение актуально и при нескольких катушках, если для их эффективного функционирования требуется соблюдать полярность. Отсутствие явного обозначения обвивок говорит о том, что они идут в одном направлении, то есть конец предыдущей соответствует началу последующей.
Что происходит с понижающим трансформатором при увеличении нагрузки
А ничего с ним не происходит))) Как понижал он напряжение- так и продолжает понижать- так уж он устроен.
На первичную обмотку (обмотка высокого напряжения) подается 110 000 Вольт, а со вторичной (обмотка низкого напряжения) снимается 10 000 Вольт.
Это идеальный вариант, когда напряжение на первичной обмотке стабильное и не меняется, а нагрузка вторичной обмотки или очень мала или ее совсем нет (трансформатор работает в режиме холостого хода).
На самом деле это совсем не так.
В действительности высокое напряжение на первичной нагрузке постоянно меняется в небольших пределах- 110-117кВ
А так как коэффициент трансформации у трансформатора величина неизменная, то получается что и на вторичной обмотке 10 кВ напряжение тоже колеблется так сказать “в ногу” с первичным напряжением.
А вслед за этим колебания напряжения передаются следующим понижающим трансформаторам 10/0,4 кВ…
И так эти колебания дойдут и до наших квартир и напряжение колебалось бы пропорционально с высоким напряжением 110 кВ.
И было бы у нас в розетках то 180 Вольт, то 250 и бесперестанно бы оно изменялось в течении суток. Думаю что никому не понравится когда свет в доме постоянно меняет яркость, как в том анекдоте- то потухнет, то погаснет, то совсем не загорит)))
Повышающие трансформаторы
Являются силовыми конструкциями, используемыми в электрических цепях бытовых либо производственных назначений, меняя напряжение в направлении повышения.
По характеристикам и областям использования различают следующие виды повышающих напряжение устройств:
- автотрансформатор – однофазный прибор с одной обмоткой;
- трансформатор тока – устройство с использованием нескольких обмоток, сердечника, оборудованный резисторами и оптическими датчиками;
- устройство силового типа – предназначен для передачи тока между контурами посредством электромагнитной индукции;
- антирезонансный агрегат – полностью закрытое однофазное или трёхфазное устройство;
- заземляемые устройства – имеют специальные типы обмотки;
- пик-трансформаторы – применяются с целью для разделения постоянного и переменного токов;
- домашние бытовые агрегаты – передают электричество от источника тока к прибору потребителю, предотвращают помехи в работе приборов.
Трансформаторы, преобразующие напряжение из 220В в 380В, широко используются в трёхфазных сетях производственных зон. С их помощью легко решаются проблемы создания дополнительных линий электрического питания. Кроме того, данные агрегаты помогают симметрично распределять нагрузки по фазам сети в местах, где отсутствует сеть 380В.
Типы сердечников для трансформаторов
На практике используются сердечники не только указанной формы. В зависимости от назначения устройства магнитопроводы могут выполняться по-разному.
Стержневые сердечники
Магнитопроводы низкочастотных трансформаторов изготавливают из стали с выраженными магнитными свойствами. Для уменьшения вихревых токов массив сердечника набирают из отдельных пластин, электрически изолированных друг от друга. Для работы на высоких частотах применяют другие материалы, например, ферриты.
Рассмотренный выше сердечник называется стержневым и состоит из двух стержней. Для однофазных трансформаторов применяют и трехстержневые магнитопроводы. У них меньше магнитный поток рассеяния и выше КПД. В этом случае и первичная и вторичная обмотки располагаются на центральном стержне сердечника.
Также на трёхстержневых сердечниках выполняют трехфазные трансформаторы. У них первичная и вторичная обмотки каждой фазы располагаются каждая на своём сердечнике. В некоторых случаях применяются пятистержневые магнитопроводы. У них обмотки располагаются точно также – первичная и вторичная каждая на своём стержне, а два крайних стержня с каждой стороны предназначены только для замыкания магнитных потоков в определенных режимах.
Броневые
В броневом сердечнике выполняют однофазные трансформаторы – обе катушки располагают на центральном стержне магнитопровода. Магнитный поток в таком сердечнике замыкается аналогично трехстержневому конструктиву — через боковые стенки. Поток рассеяния при этом очень мал.
К плюсам такой конструкции относят некоторый выигрыш по габаритам и весу за счёт возможности более плотного заполнения окна сердечника обмоткой, поэтому броневые сердечники выгодно применять для изготовления маломощных трансформаторов. Следствием этого также является более короткая магнитная цепь, что ведёт к уменьшению потерь холостого хода.
Недостатком считается более сложный доступ к обмоткам для ревизии и ремонта, а также повышенная сложность изготовления изоляции для высоких напряжений.
Тороидальные
У тороидальных сердечников магнитный поток полностью замыкается внутри сердечника, и магнитный поток рассеяния практически отсутствует. Но такие трансформаторы сложны в намотке, поэтому их применяют достаточно редко, например, в регулируемых автотрансформаторах небольшой мощности или в высокочастотных устройствах, где важна помехозащищенность.
Магнитный поток в тороидальном сердечнике
Автотрансформатор
В некоторых случаях целесообразно применять такие трансформаторы, у которых между обмотками имеется не только магнитная связь, но и электрическая. То есть, в повышающих устройствах первичная обмотка является частью вторичной, а в понижающих – вторичная частью первичной. Такое устройство называется автотрансформатором (АТ).
Плюсами автотрансформаторов являются:
- меньшие потери;
- возможность плавного регулирования напряжения;
- меньшие массогабаритные показатели (автотрансформатор дешевле, его проще транспортировать);
- меньшая стоимость за счёт меньшего потребного количества материала.
К минусам относят необходимость применения изоляции обеих обмоток, рассчитанной на высшее напряжение, а также отсутствие гальванической развязки между входом и выходом, что может перенести воздействие атмосферных явлений из первичной цепи во вторичную. При этом элементы вторичной цепи нельзя заземлять. Также недостатком АТ считают повышенные токи короткого замыкания. У трехфазных автотрансформаторов обмотки обычно соединяют в звезду с заземленной нейтралью, другие схемы соединения возможны, но слишком сложны и громоздки. Это тоже является недостатком, сужающим область применения автотрансформаторов.
Особенности повышающего трансформатора
Повышающие трансформаторные устройства, как их называют специалисты, также используются в быту и на производстве. В основном их назначение – работа по своему профилю на проходных электростанциях. Они должны повысить ток в соответствии с нормативными показателями, поскольку в процессе транспортировки происходит постепенное снижение высокого напряжения в ЛЭП. В конце пути следования электростанция с помощью повышающего трансформатора напряжение поднимается до нормативных 220 В и поставляется в бытовые сети, а 380 В – в промышленные.
Работа трансформатора повышающего типа осуществляется по следующей схеме, включающей в себя несколько этапов:
- Вначале на электростанции производится электрический ток напряжением 12 киловольт (кВ).
- Далее по ЛЭП оно поступает на повышающую подстанцию и попадает в повышающий трансформатор, преобразующий это напряжение до 400 кВ. Отсюда ток поступает в высоковольтную ЛЭП и уже по ней приходит на понижающую подстанцию, где его напряжение вновь становится 12 кВ.
- На последнем этапе ток оказывается в низковольтной линии, в конце которой установлен еще один трансформатор понижающего действия. Здесь напряжение окончательно принимает рабочее значение 220 или 380 В и в таком виде поступает в бытовую или промышленную сеть.
Принцип работы повышающего трансформатора также основан на электромагнитной индукции. Основная конструкция состоит их двух катушек с разным количеством витков и изолированного сердечника.
Низкое переменное напряжение поступает в первичную обмотку и вызывает появление магнитного поля, возрастающего при оптимально подобранном соотношении обмоток. Под его влиянием во вторичной обмотке образуется электрический ток с повышенными показателями – 220 В и более. В случае необходимости изменения частоты, в цепочку дополнительно устанавливается преобразователь, способный выдавать постоянный ток для определенных видов оборудования.
В процессе работы трансформаторы нагреваются, поэтому им требуется использовать охлаждение, которое может быть масляным или сухим. Трансформаторные масла относятся к пожароопасным веществам, поэтому такие системы оборудуются дополнительной защитой. Сухие трансформаторы заполняются специальными негорючими веществами. Они безопасны в эксплуатации, но стоят значительно дороже.
Трансформаторы являются одними из самых распространенных электротехнических устройств, которые находят применение в самых различных областях — энергетике, промышленности, электронике, в быту. В частности, они нашли широкое практическое применение при передаче электроэнергии на большие расстояния, в распределительных системах, в различном промышленном и бытовом электрооборудовании.
Вообщем можно сказать, что трансформаторы окружают нас, порой даже незаметно, со всех сторон, начиная с трансформаторных подстанций и заканчивая зарядными устройствами для наших мобильных телефонов.
Все трансформаторы предназначены для работы только с переменным напряжением.
Вследствие этого в первичной обмотке будет протекать большой ток, так как при отсутствии ЭДС он будет ограничиваться только относительно небольшим активным сопротивлением обмотки. Этот ток может вызвать недопустимый нагрев обмотки и даже ее перегорание.
Коротко назначение трансформатора можно охарактеризовать так: это устройство, преобразующее переменный ток одного напряжения в переменный ток другого напряжения.
Существуют трансформаторы как повышающего, так и понижающего типа. Правда в этом правиле есть одно исключение.
Разделительные трансформаторы
Это исключение — разделительные трансформаторы 220/220, которые предназначены для повышения электробезопасности, за счет гальванической развязки первичных цепей обмотки от вторичных, причем вторичная цепь не должна заземляться, чтобы исключить возможность замыкания вторичных цепей на землю.
Применение такого подключения существенно снижает вероятность поражения электрическим током, так как токи, возникающие в случае пробоя изоляции на корпус, имеют небольшое значение, что обусловлено гальванической изоляцией вторичных цепей трансформатора от цепей заземления.
Такие трансформаторы еще называют трансформаторами безопасности.
Применяются они в местах с повышенными требованиями электробезопасности, таких как подвалы, мед.учреждения, помещения с повышенной влажностью и т.д.
Проблемы в электрических сетях
Изначально электричество подаётся через линии электропередач от повышающих трансформаторов поставщика и может проходить до нескольких сотен километров до отдельного дома. При установке понижающего агрегата на несколько домов-потребителей нагрузки будут подразделяться между всеми подключенными домами.
Гораздо выгоднее, хотя и дороже, установить индивидуальный трансформатор для дома – таким образом внутренняя электрическая сеть будет получать уже пониженный до 220В ток.
В случаях, когда в электрической сети наблюдается регулярная просадка напряжения, при которой приборы не в состоянии функционировать в полную силу, решить проблему можно установкой повышающего трансформатора.
Разновидности
К категории повышающих разновидностей техники относится ряд устройств, отличающихся конструкцией, назначением, техническими характеристиками:
- Автотрансформатор. Обладает одной совмещенной обмоткой.
- Силовой. Наиболее распространенная разновидность среди приборов, которые повышают показатель напряжения.
- Антирезонансный. Обладает закрытой конструкцией. Из-за особого принципа функционирования имеют компактные габариты.
- Заземляемый. Обмотки соединяются звездой или зигзагом.
- Пик-трансформаторы. Отделяют постоянный и переменный ток.
- Бытовые. Повышение характеристик электричества при функционировании трансформатора производится в небольшом диапазоне. Помогают устранить помехи в бытовой сети, защитить технику от перепадов, пониженного и повышенного электричества.
Представленные конструкции отличаются мощностью и техническими характеристиками.
Как повысить силу тока в генераторе?
Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.
Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.
Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).
Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.
Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.
Частота сети должна находиться на одном уровне (быть постоянной величиной).
Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.
Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.
Кроме того, сам диодный мост меняется на деталь большей производительности.
После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.
При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.
После припаивания место стыка изолируется термоусадкой.
Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.
Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).
После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.
Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).
Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.
Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.
Что делает трансформатор
У трансформатора много полезных и важных функций:
Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.
Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.
Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.
Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).
Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
- Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.
Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.
Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.
Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.
Достоинства и недостатки сердечников
- Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
- Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
- Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.
В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.
Трансформатор — что это такое
В последнем случае имеется ввиду такой тип передачи электрической энергии или информационного сигнала, при котором между контактирующими деталями нет непосредственного электрического контакта.
Трансформатор может быть однофазным или же трехфазным, хотя по особенностям конструкции они и не слишком сильно отличаются.
Данное устройство было изобретено, основываясь на работах великого ученого Фарадея (по другим версиям – он его и изобрел), который открыл явление электромагнитной индукции. В 1831 году М. Фарадей и другой ученый Д. Генри разработали первое схематическое изображение рассматриваемого прибора.
Позже, в 1876 году, русский изобретатель П. Н. Яблочков запатентовал первый трансформатор переменного тока.
Электромагнитный сердечник
В низкочастотных трансформаторах сердечник выполнен из стали или пермаллоя (а не ферромагнетика) и не из цельного куска, а из отдельных пластин такое выполнение помогает уменьшить нагрев трансформатора в следствие вихревых токов Фуко.
Промокоды со скидками на светильники
Сердечники из пластин стягивают винтами или склеивают, но в последнее время их делают не разборными и просто сваривают точечной сваркой по углам собранного трансформатора. Склеивают как правило очень маленькие трансформаторы, например в адаптерах зарядок и другой различной малогабаритной техники.
По форме сердечники могут быть несколько типов. Наиболее встречающимся вариантом, в последнее время, есть Ш-образный сердечник, обмотки катушки располагаются в середине трансформатора.
Реже встречаются П-образные сердечники, обмотки в таком трансформаторе две и они располагаются по бокам сердечника.
Но важное правило — сердечник должен быть замкнутым то есть магнитный поток в нем также должен быть замкнутым что и достигается при подобных конструкциях. Отличным вариантом замкнутого магнитного сердечника есть тороидальный трансформатор
Такие сердечники характеризуются меньшим рассеиванием магнитного потока и соответственно в итоге большим КПД
Отличным вариантом замкнутого магнитного сердечника есть тороидальный трансформатор. Такие сердечники характеризуются меньшим рассеиванием магнитного потока и соответственно в итоге большим КПД.
Тороидальный сердечник представляет из себя кольцо (круг) из железа или стали, это может быть цельный метал, а может быть, зачастую это стальная лента свитая в кольцо и пропитана слоем лака что предотвращает пагубное действие токов Фуко.
В высокочастотных (импульсных) трансформаторах используют сердечники из цельного материала (или двух кусков). В качестве материала применяют ферромагнетик (феррит). Необходимой особенностью в таких случаях является то что феррит и альсифер могут работать на частотах выше сотни килогерц и обладает повышенным электромагнитным сопротивлением.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Что такое трансформатор и как его проверить | Электрик Листовые стали ГОСТ 802-58 изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали ГОСТ 9925-61 только методом холодной прокатки. Спрашивайте, я на связи!
Часто задаваемые вопросы о повышающих трансформаторах
1. Как определить повышающий и понижающий трансформаторы?
Повышающий трансформатор обеспечивает повышенное напряжение на нагрузке, тогда как понижающий трансформатор обеспечивает пониженное напряжение на нагрузке. Измеряя входное напряжение на первичной обмотке и выходное напряжение на вторичных обмотках, можно определить тип трансформатора. Также можно проверить текущее значение входа и выхода. Если текущее значение больше, чем предоставленное, то это тип шага вверх, иначе — шаг вниз. Это был процесс. Другой процесс будет заключаться в проверке передаточного числа. Если передаточное число меньше единицы, то это повышающий, иначе понижающий трансформатор.
Другим способом будет проверка типов провода. Для повышающих трансформаторов плотность провода первичной обмотки больше, чем плотность провода вторичной обмотки.Небольшой повышающий трансформатор
2. Зачем нужен повышающий трансформатор?
Повышающий трансформатор подает на нагрузку повышенное подаваемое напряжение. Итак, если есть необходимость повысить или увеличить подаваемое напряжение для наших работ, рекомендуется использовать повышающий трансформатор. Но при этом текущая стоимость уменьшается. Поэтому, если нам нужен источник более высокого напряжения с тем же током, то повышающий трансформатор не будет служить нашим целям.
3. Для чего нужен повышающий трансформатор?
Повышающий трансформатор помогает повысить напряжение. Итак, цель относительно прямая, то есть повысить подаваемое на него напряжение.
4. Какое передаточное число у повышающего трансформатора?
Коэффициент трансформации — важный параметр электрических трансформаторов. Он определяется отношением числа витков первичной обмотки к числу витков вторичной обмотки.
Коэффициент оборотов = Nпервичный/Nвторичный
Nprimary — это количество витков первичной обмотки, а Nsecondary — это количество витков вторичной обмотки.
Повышающий трансформатор не имеет идеального коэффициента трансформации. Но в целом коэффициент трансформации меньше 1 в случае повышающего трансформатора.
5. Напишите о практическом значении повышающих трансформаторов.
Повышающие трансформаторы очень важны для нашей повседневной жизни. Подача электричества без повышающих трансформаторов совершенно невозможна. В системе распределения электроэнергии, когда питание подается от электростанций, подаваемое напряжение уменьшается из-за сопротивления питающих проводников. В настоящее время требуются повышающие трансформаторы для увеличения напряжение снова сохраняет мощность постоянный. В этом практическое значение повышающего трансформатора.
Увеличьте автотрансформатор, Изображение предоставлено: КРЦК 2014 03 07 15”(CC BY-NC 2.0) от Дэвидсейболд
6. Различия между повышающим трансформатором и понижающим трансформатором?
Задача повышающего и понижающего трансформатора различает трансформаторы. Задача повышающего трансформатора состоит в том, чтобы повышать подаваемое напряжение, а понижающий трансформатор обеспечивает пониженное подаваемое напряжение. Некоторые другие отличия приведены ниже.
7. Повышает ли ток повышающий трансформатор?
Нет, повышающий трансформатор не увеличивает ток. Вместо этого он увеличивает напряжение и уменьшает ток. Однако мощность сигнала остается постоянной.
Маркировка силовых трансформаторов
Пример и расшифровка маркировки силового трансформатора АТДЦТН-125000/220/110/10-У1
Пример маркировки трансформатора с обозначением позиций, параметров и климатического исполнения приводится на рисунке.
- Назначение трансформатора (в обозначении может отсутствовать)
- А — автотрансформатор
- Э — электропечной
- Количество фаз
- О — однофазный трансформатор
- Т — трехфазный трансформатор
- Расщепление обмоток (в обозначении может отсутствовать)
- Cистема охлаждения
- Сухие трансформаторы
- С — естественное воздушное при открытом исполнении
- СЗ — естественное воздушное при защищенном исполнении
- СГ — естественное воздушное при герметичном исполнении
- СД — воздушное с дутьем
- Масляные трансформаторы
- М — естественное масляное
- МЗ — с естественным масляным охлаждением с защитой при помощи азотной подушки без расширителя
- Д — масляное с дутьем и естественной циркуляцией масла
- ДЦ — масляное с дутьем и принудительной циркуляцией масла
- Ц — масляно-водяное с принудительной циркуляцией масла
- С негорючим жидким диэлектриком
- Н — естественное охлаждение негорючим жидким диэлектриком
- НД — охлаждение негорючим жидким диэлектриком с дутьем
- Сухие трансформаторы
- Конструктивная особенность трансформатора (в обозначении может отсутствовать)
- Л — исполнение трансформатора с литой изоляцией
- Т — трехобмоточный трансформатор
- Н — трансформатор с РПН
- З – трансформатор без расширителя и выводами, смонтированными во фланцах на стенках бака, и с азотной подушкой
- Ф – трансформатор с расширителем и выводами, смонтированными во фланцах на стенках бака
- Г – трансформатор в гофробаке без расширителя – “герметичное исполнение”
- У – трансформатор с симметрирующим устройством
- П – подвесного исполнения на опоре ВЛ
- э – трансформатор с пониженными потерями холостого хода (энергосберегающий)
- Назначение (в обозначении может отсутствовать)
- С — исполнение трансформатора для собственных нужд электростанций
- П — для линий передачи постоянного тока
- М — исполнение трансформатора для металлургического производства
- ПН – исполнение для питания погружных электронасосов
- Б – для прогрева бетона или грунта в холодное время года (бетоногрейный), такой же литерой может обозначаться трансформатор для буровых станков
- Э – для питания электрооборудования экскаваторов (экскаваторный)
- ТО – для термической обработки бетона и грунта, питания ручного инструмента, временного освещения
- Ш – шахтные трансформаторы (предназначены для электроснабжения угольных шахт стационарной установки)
- Г — трансформатор с грозозащитой
- К — трансформатор с кабельными вводами