Значение Cos φ
Cos φ в практической электротехнике имеет очень важное значение. Реальные нагрузки, типа электромоторов и трансформаторов, имеют большую индуктивную составляющую сопротивления, то есть, фактически, представляют собой цепи RL
Для таких цепей неизбежно существует сдвиг фаз, который приводит к тому, что полная мощность S значительно превышает активную мощность (P).
Из формулы видно, что чем меньше Cos φ (Чем больше угол сдвига фаз), тем меньшую часть активная мощность составляет от полной мощности .
Только активная мощность является полезной, если источник затрачивает полную мощность, а от нагрузки мы можем получить только активную мощность, значит, Cos φ имеет смысл электротехнического КПД или коэффициента мощности.
В идеале источник должен отдавать такую мощность, которую будет потреблять нагрузка. Реальные устройства неизбежно содержат индуктивности (катушки, обмотки, и т.п.), значит, источник вынужден отдавать полную мощность, которая значительно больше, активной.
Проектирование устройств и электрических цепей должно иметь целью получить значение Cos φ как можно ближе к единице, то есть влияние индуктивности надо свести к минимуму. Плохие значения Cos φ приводят к большим неоправданным затратам электроэнергии.
Варианты получения хорошего портативного звука
Если же идея получения качественного звука со смартфона вас по-прежнему не покидает, готовьтесь потратить свои кровные на приобретение внешнего портативного усилителя.
Высокоомные наушники действительно звучат лучше своих низкоомных собратьев и вот по какой причине. За счет высокого уровня сопротивления наушников, усилитель отдает меньше тока (при более высоком напряжении), а это предотвращает волновые искажения на его каскаде. Более того, наушники с большим сопротивлением имеют более равномерные амплитудно-частотные характеристики (следствие увеличенного количества витков на магнитной подушке динамика), а при условии низкого сопротивления и со стороны усилителя, АЧХ могут оставаться практически неизменными.
Еще одной альтернативой получения качественного звука является использование так называемых однодрайверных арматурных наушников.
Внешне они ничем не отличаются от традиционных вкладышей, но имеют поднятый диапазон средних и высоких частот, что обеспечивает «чистое и прозрачное» звучание.
Наконец, раз и навсегда решить проблему терзаний перед выбором наушников может покупка плеера с высоким уровнем выходного напряжения.
В отличие от смартфонов и недорогих плееров, в Hidisz установлен мощный предусилитель. Преимущество на лицо: 2,2 В против 100-150 мВ у смартфона. Использование подобных плееров открывает перед меломаном широкий ассортимент высокоомных наушников с настоящим качественным звучанием.
Перед покупкой любых наушников, а особенно высокоомных моделей, обязательно определите максимально возможный уровень громкости, проигрывая музыку на том устройстве, с которым планируете дальнейшую эксплуатацию. Акцентируя внимания на числовых характеристиках наушников, не забывайте, что слух и любая аудиоаппаратура – вещи строго индивидуальные. Наушники с, казалось бы, средними значениями сопротивления и частотного диапазона, зачастую могут дать фору самым технологически совершенным экземплярам.
P.S. Выражаем спасибо компании Bowers & Wilkins за помощь и профессиональную консультацию в подготовке материала.
iPhones.ru
Данная статья будет посвящена разбору полетов широкого ассортимента наушников и одному из главных показателей – их импедансу. 16, 32 или 320 Ом – какое сопротивление выбрать и на что оно влияет? Встретить на улице человека с наушниками можно повсеместно. Кто-то привык к компактным вкладышам или наушникам вставного типа. Для кого-то эталоном хорошего звука стали стильные…
Рассказать
Мощность в цепи с емкостью
Произведение тока и напряжения для емкости дает синусоиду, которая состоит из положительных и отрицательных полуволн, значит, средняя за период мощность равна 0.
Физический смысл состоит в том, что емкость за пол периода получает энергию, а затем пол периода возвращает ее в источник. Энергия накапливается в электрическом поле емкости, а затем возвращается в источник. Частота синусоиды мощности вдвое больше частоты тока и напряжения.
Таким образом, на емкости не получается выделение тепла и никакой полезной мощности получить нельзя. Поэтому мощность, которая получается на емкости, называется реактивной и обозначается буквой – Qc.
Метод векторных диаграмм
Мы уже пользуемся векторными диаграммами, по которым наблюдаем соотношения токов и напряжения в цепях переменного тока. Векторная диаграмма это стоячее изображение вращающихся векторов.
В предыдущих рассуждениях, было сказано, что линейно развернутая диаграмма переменного процесса, (в простом случае синусоидального), точно показывает изменение мгновенного значения переменной величины, то есть происходит все именно так как показывает синусоида и каждая ее точка и есть переменная величина в данный момент. Но оказывается нам интересно не это, нам нужно знать какое значение тока и напряжения и мощности действует в цепи в течение времени, то есть действует длительное время, пока цепь работает.
Анализ синусоид нескольких величин, одновременно действующих в разных фазах, позволяет рассчитать все свойства и режимы работы цепи переменного тока, но гораздо проще это сделать, если отвлечься от синусоид и просто построить соотношение векторов, которые, собственно, и образуют эти синусоиды. Вся информация синусоид заложена в их радиус – векторах. Мы останавливаем эти векторы на рисунке, понимая, что они вращающиеся, но факт их вращения учитываем угловой частотой в расчетных формулах векторной диаграммы.
Итак, векторная диаграмма заменяет линейно развернутую синусоидальную диаграмму, потому, что любая информация, заложенная в синусоиду, есть и в соответствующем ей радиус-векторе.
Если нам приходится рассматривать несколько действующих одновременно синусоидальных процессов, то они изображаются векторной диаграммой, где длина каждого вектора, соответствует действующему значению синусоидальной величины, направление вектора соответствует начальной фазе, синусоидальной величины.
Результирующие значения одновременно действующих напряжений рассчитывается как векторная сумма, где угол между векторами определяется сдвигом фаз между ними.
Расчет цепей переменного тока сводится к расчету треугольников, которые состоят из соответствующих векторов.
Например, можно определить суммарное напряжение, частичные напряжения, и сдвиг фаз между ними.
На основании векторных диаграмм можно построить подобные векторным диаграммам треугольники сопротивлений и треугольники мощностей, решением которых можно определить соотношения сопротивлений, и мощности которые действуют в цепях переменного тока.
Векторная диаграмма напряжений представляет собой векторный треугольник напряжений
Последовательное соединение L R.
Любая катушка наматывается проволокой, а проволока обладает сопротивлением, которое приходится учитывать.
Получается, что реальная цепь, содержащая только L, просто невозможна. В некоторых случаях значением R пренебрегают, и получается, что вроде бы цепь с только L, на самом деле она конечно L R.
Реально, кроме проволоки, в цепи всегда есть и какие – то другие элементы R, поэтому интерес представляют именно цепи L R,
Ток, при последовательном соединении, один и тот же через все сопротивления, а напряжения разные, но общее напряжение не равно просто сумме напряжений на каждом сопротивлении, оно равно векторной сумме, то есть вектор общего напряжения равен сумме векторов напряжений на каждом участке. Для расчетов напряжений надо построить векторную диаграмму.
Векторная диаграмма строится так.
Входные, выходные и характеристические импедансы
Согласно закону Ома, напряжение на компоненте равно току, протекающему через него, умноженному на его импеданс, значение которого (опять же, измеряется в омах) влияет на выходное напряжение и ток устройства-источника.
Когда выходной импеданс устройства-источника не совпадает с входным импедансом устройства нагрузки, например, усилителя и динамиков, возникает несоответствие импеданса.
Соображения, связанные с импедансом, например, несоответствие импеданса, могут привести к деградации сигнала и недостаточной передаче мощности. Входной и выходной импедансы играют важную роль в определении нагрузки и возможностей привода аудиоустройств.
Входной импеданс
Электрическое сопротивление, оказываемое аудиоустройством источнику сигнала, подключенному к нему, называется входным сопротивлением. Аудиоустройства с высоким входным сопротивлением требуют меньшей мощности от источника сигнала для приведения цепи в действие. Устройства с высоким входным сопротивлением оказывают меньшую нагрузку на источник сигнала.
Поэтому выбор аудиоустройств с соответствующим входным импедансом (в смысле: достаточно высоким, по сравнению с предшествующим ему выходом) необходим для обеспечения правильной передачи сигнала, минимизации потерь сигнала и достижения оптимальной производительности аудиосистем.
Возможно, следует мимоходом отметить, что в те времена «законом страны» было то, что входное сопротивление должно было точно соответствовать выходному, то есть оно было намного ниже, чем сегодня (хотя все равно никогда не было ниже выходного сопротивления).
Выходной импеданс
Выходной импеданс относится к электрическому сопротивлению, которое аудиоустройство оказывает на управляемую им нагрузку, которое, как отмечалось выше, ниже, чем входной импеданс целевого устройства. Это выгодно, поскольку обеспечивает эффективную передачу энергии на подключенную нагрузку, сводя к минимуму деградацию и потерю сигнала.
Высокий выходной импеданс может привести к падению напряжения и искажению сигнала при подключении к низкоомной нагрузке. Выбирая устройства с низким выходным сопротивлением, можно обеспечить подачу чистого, надежного сигнала на подключенную нагрузку.
Когда речь идет о выходе, высокий импеданс обычно является плохой идеей, даже если целевое устройство имеет входной импеданс, который по сравнению с ним больше. Дело в том, что вход должен быть больше на порядки (в 10 раз или даже больше), чтобы обеспечить поток без потерь. В противном случае, например,
многодорожечная запись
и
поток без потерь
были бы просто невозможны.
Характерный импеданс
Это сопротивление, которое электрическая линия передачи, например, кабель или волновод, создает для распространяющегося по ней звукового сигнала. Некоторая потеря сигнала технически неизбежна, однако, когда удается избежать искажений, ее следует считать незначительной.
Само собой разумеется, что кабели должны быть «высочайшего качества», но они не влияют на все оборудование фиксированным образом. Например, импеданс колонок низок почти по определению, а это значит, что кабель подозрительного качества будет напрямую влиять на переходные процессы сигналов в самом конце их прохождения.
Убедиться в том, что характеристический импеданс линии передачи соответствует аудиоустройствам, важно для сохранения целостности сигнала и оптимизации звуковых характеристик. Кабели не защищены от воздействия окружающей среды, поэтому чем более они изолированы — тем лучше
Сопротивление в 4 Ом
Если значение на динамике указано 4 Ом, то к нему можно подключать усилитель от 4 Ом и больше. В этом случае нет риска, что он испортиться спустя какое-то время от перегрузок. При этом, чем больше будет показатель, тем тише будет звук.
Частый совет, который можно встретить, таков: по возможности лучше использовать двукатушечный динамик, у которого каждая катушка имеет импеданс в 4 Ом. В этом случае всегда есть несколько вариантов использования такого динамика. При параллельном подключении к усилителю: 4*4/4+4=2 Ом, при последовательном: 4+4=8 Ом и при использовании только одной катушки будет получено значение в 4 Ом. Так можно получить различные варианты сопротивления и использовать один и тот же динамик в связке с различными усилителями.
Общее описание
Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.
Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).
Принцип действия конденсатора заключается в следующем: при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.
Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.
Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.
Классификация
Постоянный и переменный ток
Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический »ток проводимости». Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют »конвекционным».
Токи различают на постоянный и переменный. Также существуют всевозможные разновидности переменного тока. При определении видов тока слово «электрический» опускают.
- Постоянный ток — ток, направление и величина которого не меняются во времени. Может быть пульсирующий, например выпрямленный переменный, который является однонаправленным.
- Переменный ток — электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
- Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
- Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. Любой периодический несинусоидальный ток может быть представлен в виде комбинации синусоидальных гармонических составляющих (гармоник), имеющих соответствующие амплитуды, часто́ты и начальные фазы. В этом случае Электростатический потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
- Квазистационарный ток — относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
- Ток высокой частоты — переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, которые являются либо полезными, определяющими его применение, либо вредными, против которых принимаются необходимые меры, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей.
- Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля.
- Однонаправленный ток — это электрический ток, не изменяющий своего направления.
Вихревые токи
Вихревые токи ( или токи Фуко) — замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитный поток, поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.
Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.
Электрическое сопротивление.
И так, мы теперь знаем, как протекает электрический ток. Рассмотрели что такое сила и напряжение тока. Еще раз повторим: Сила тока. Условное обозначение: I. Измеряется в амперах (А). Напряжение тока. Условное обозначение: U. Измеряется в вольтах (В).
Давайте рассмотрим пример, замкнутой цепи:
наведите или кликните мышкой, для анимации
Если вы заметили, на этот раз мы добавили в цепь «нагрузку». Нагрузкой может быть любое устройство или элемент (например: лампочка, электродвигатель и т.д.). В этой замкнутой цепи, мы наблюдаем электрический ток, то есть движение заряженных частиц. А так же есть, какие-то количественные показатели силы тока и напряжения.
При движение через проводник, заряженные частицы встречают сопротивление. Отсюда мы получаем новую для нас величину – сопротивление проводника или электрическое сопротивление .
Исходя из этого, сопротивление проводника – это физическая величина, которая характеризует свойство проводника препятствовать проводить электрический ток. Более простыми словами это величина, которая мешает проводить электрический ток. Условное обозначение сопротивления: R . Единица измерения сопротивления – это Ом .
Сопротивление проводника зависит от его материала, длины и площади поперечного сечения. Так же на сопротивление материала может повлиять окружающая среда (температура, свет и т.д.)
Давайте рассмотрим как взаимосвязаны сила тока, напряжение и сопротивление в замкнутой цепи. Мы видим как протекает ток по проводнику через нагрузку, цепь замкнутая. Сопротивление проводника на всем участке одинаковая, а сопротивление нагрузки отличается, оно выше чем у проводника. То есть движению заряженных частиц, в нагрузке препятствии больше, чем в проводнике.
Обратим внимание на движению частиц через проводник и нагрузку:
наведите или кликните мышкой, для анимации
Можно отметить, что движущихся частиц, через поперечное сечение нагрузки (за определенное время), проходит меньше, чем через проводник. Другими словами, чем больше сопротивление тем меньше сила тока. Что такое сила тока, мы рассмотрели в предыдущей статье.
Обратную картинку можно наблюдать с напряжением, сила с которой происходит движение частиц больше на участке нагрузки, чем в проводнике. Из этого мы получаем, что чем больше сопротивление, тем больше напряжение на участке этой нагрузке:
наведите или кликните мышкой, для анимации
Зависимость тока и напряжения от сопротивления нагрузки в последующих статьях будут рассмотрены подробнее.
Активная мощность для цепи переменного тока с активным сопротивлением
Скорость преобразования электрической энергии в другой вид энергии за конечный промежуток времени, значительно больший периода изменения тока, характеризуется средней мощностью. Она равна средней мощности за период, которую называют активной.
Активная мощность — среднее арифметическое мгновенной мощности за период.
Для рассматриваемой цепи активную мощность Р нетрудно определить из графика рис. 13.2. Средняя величина мощности равна высоте прямоугольника с основанием Т, равновеликого площади, ограниченной кривой р(t) и осью абсцисс (на рисунке заштриховано).
Равенство площадей РТ = Sp выполняется, если высоту прямоугольника взять равной половине наибольшей мгновенной мощности Pm.
В этом случае часть площади Sp , находящаяся выше прямоугольника, точно укладывается в оставшуюся незаштрихованной его часть:
P = UI
Активная мощность для данной цепи равна произведению действующих величин тока и напряжения:
P = UI = I2R
С математической точки зрения активная мощность является постоянной составляющей в уравнении мгновенной мощности p(t) .
Среднюю мощность за период можно найти интегрированием уравнения (13.2) в пределах периода:
Сопротивление R, определяемое из формулы (13.3) отношением активной мощности цепи к квадрату действующего тока, называется активным электрическим сопротивлением.
Параллельное соединение RL
При параллельном соединении RL одинаковое напряжение на всех элементах цепи, а токи разные и сдвинутые по фазе. Ток через сопротивление совпадает по фазе с напряжением, а ток через катушку отстает по фазе от напряжения. на 90. Общий ток отстает от напряжения меньше чем на 90.
Для цепей с параллельным соединением элементов, гораздо удобнее использовать не сопротивления (активные и реактивные) а их обратные величины, которые называются проводимости. Вместо r используется g, вместо XL используется bL, вместо Xc используется bc
Параллельное соединение RC
При параллельном соединении RС одинаковое напряжение на всех элементах цепи, а токи разные и сдвинутые по фазе. Ток через сопротивление совпадает по фазе с напряжением, а ток через конденсатор опережает по фазе от напряжения. на 90. Общий ток опережает напряжение меньше чем на 90
ИМПЕДАНС
ИМПЕДАНС (англ. impedance, от лат. impedire препятствовать) — физ. величина, характеризующая сопротивление среды для колебаний различного происхождения.
В зависимости от вида колебания различают И. электрический, И. механический и И. акустический.
Электрический импеданс представляет собой полное (комплексное) сопротивление электрической цепи переменному току. В общем виде И. электрический (Z) представляет собой геометрическую сумму активного сопротивления электрической цепи (R) и реактивного сопротивления (X):
Активное сопротивление В является величиной, обратной величине электропроводности ткани, и мало зависит от частоты переменного тока. Реактивная составляющая X комплексного сопротивления Z для различных электропроводящих биол, субстратов in vivo и in vitro зависит от частоты электрического тока. За единицу измерения И. электрического в Международной системе единиц принят Ом (Ω, ом).
Измерение величины электрического И. применяется для характеристики электрических свойств тканей, органов, отдельных клеток (см. Электропроводность биологических систем). Электрический И. биол, тканей уменьшается при увеличении частоты приложенного электрического поля, что связано с наличием емкостной составляющей И., обусловленной в основном явлением поляризации (см.).
И. тканей организма зависит, в частности, от состояния кровообращения (кровенаполнения сосудов). Поэтому измерение И. отдельных участков тела, чаще конечностей, положено в основу изучения периферического кровообращения — так наз. метод реографии (см.). При реографии используется переменный ток частотой 20—30 кгц.
Электрический И. биол, тканей изменяется в зависимости от их функц, состояния. Слабый переменный ток, проходящий через объект при измерении, не вызывает повреждения ткани, поэтому наблюдаемые изменения в нем при тех или иных условиях можно связать со структурными и ионными изменениями в ткани. Изучение составляющих электрического И. взвеси клеток позволяет определить электрические параметры как самих клеток, так и их поверхностных мембран, судить об изменении их проницаемости (см.).
Измерение импеданса на высоких частотах (выше 1 МГц) позволяет оценивать суммарную концентрацию свободных электролитов в клетках и тканях (см. Кондуктометрия). Измерение И. электрического позволяет также регистрировать изменения физ.-хим. структуры живых тканей в норме и патологии. Поэтому этот метод можно использовать для изучения динамики изменений, происходящих при различных заболеваниях и травмах, а также для оценки эффективности их лечения.
Акустический импеданс — величина комплексного сопротивления, вводимая для характеристики сопротивления каких-либо акустических систем распространению звуковых колебаний.
Учет акустического И. важен при изучении распространения звука, акустических свойств как физ. (трубы переменного сечения, рупоры, излучатели и приемники звука, их диффузоры, мембраны и т. д.), так и биол, систем (органы слуха, речи и т. д.), а также при создании аппаратов, корригирующих органы слуха и речи.
Акустический И., так же как и электрический, включает активную и реактивную составляющие. Активная составляющая связана с потерями энергии на излучение звука акустической системой и с потерями на трение. Реактивная составляющая (реактивное сопротивление) характеризует силы инерции и упругости, действующие в системе. В соответствии с этим реактивное сопротивление называют также инерционным или упругим сопротивлением.
В системе СИ акустический И. измеряют в ньютон-секундах на метр в пятой степени (Н-с/м 5 ), а в системе СГС — в динах-секундах на сантиметр в пятой степени (дин-сек/см 5 ). Последнюю единицу называют иногда акустическим омом.
Механический импеданс характеризует сопротивление среды распространению различных колебаний (звуковых, ультразвуковых и т. д.). Измерение величины механического И. используется в мед.-биол, исследованиях при изучении вибрации и ее действия на организм в производственных условиях.
Единицей измерения механического И. в системе СИ является ньютон-секунда на метр (Н-с/м). И. акустический (Za) и механический (Zm) связаны соотношением:
где S — площадь акустической системы.
Библиография: Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, М., 1968, библиогр.; С кучи к Е. Основы акустики, пер. с англ., т. 1—2, М., 1976.
Сопротивление в 8 Ом
В этом случае, подключив к динамику в 8 Ом устройства со значением импеданса выше 8, получаемый уровень громкости будет уменьшаться, кроме того это не несет существенного риска поломки самим устройствам. При этом подключение более низких по сопротивляемости устройств приведет к возможным перегрузкам динамика.
Делая вывод из вышесказанного, надо понимать, что максимально допустимая мощность будет получена при среднем положении регулятора громкости. Если выставлять большие значения, то появляется риск поломки усилителя или самих колонок. Поэтому перед использованием стоит решить, при каком положении регулятора громкости усилитель достигнет с этими динамиками максимально допустимой мощности и стараться не выставлять значения громкости, больше допустимой. Так устройство прослужит дольше.
Какие отличия
Отличия этих типов электросопротивления в том, что «внутри» активностного типа энергия не накапливается, так как она попадает в активностый элемент и отдается окружающей среде в виде другого ее типа. Это может быть тепло или механическое поднятие груза, свечение, химическая реакция, задание чему-либо скорости.
Индуктивная величина и ее формулы
Важно! Преданная электроэлементу с активностным электросопротивлением энергия преображается и конвертируется, но не возвращается в сеть. Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается
То есть, в окружающую среду полученная энергия не передается
Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается.
Вам это будет интересно Особенности сопротивления проводников
Комплексная сопротивляемость отдельного элетроэлемента сети R
В активностном типе фазы электрических токов и напряжения совпадают, следовательно, выделяется некоторое количество электроэнергии. В реактивном виде фазы электротока и напряжения расходятся, поэтому энергия передается обратно. Это во многом объясняет то, что активностные электроэлементы нагреваются, а реактивные — нет.
Активная сопротивляемость в цепи переменного синусоидального тока
Импеданс элемента
Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.
Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние. Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.
Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где
- Xl — индуктивность;
- Xс — ёмкость;
- R — активная составляющая.
Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.
Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:
- X > 0, в элементе проявляются индуктивные свойства;
- X = 0, в ёмкости присутствует только активная величина;
- X < 0, в элементе проявляется ёмкостное сопротивление.
Будет интересно Что такое полярность конденсатора и как ее определить?
Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.
Импеданс элемента.