Световод: Введение в светодиодное освещение
Световод
Светоизлучающие диоды (СИД) — это относительно старая технология, разработанная примерно в 1970 году, которая прошла путь от цифровых дисплеев и световых индикаторов до целого ряда новых применений, включая знаки выхода, акцентные огни, рабочие огни, светофоры, автомобильное освещение, вывески, настенные бра, наружное освещение и потолочное освещение.
Светодиоды обладают такими преимуществами, как небольшой размер, длительный срок службы лампы, низкая теплоотдача, энергосбережение и долговечность. Они также обеспечивают исключительную гибкость дизайна при изменении цвета, затемнении и распределении путем объединения этих небольших блоков в желаемые формы, цвета, размеры и пакеты светового потока.
Характеристики
Светодиоды представляют собой твердотельные полупроводниковые устройства. Светодиодное освещение достигается, когда полупроводниковый кристалл возбуждается так, что он непосредственно производит видимый свет в желаемом диапазоне длин волн (цвете). Светодиодные блоки небольшие, обычно 5 мм (T 1-3/4).
Метод работы
Когда светодиодный блок активируется, источник питания преобразует переменное напряжение в достаточное постоянное напряжение, которое подается на диодный полупроводниковый кристалл. Это приводит к тому, что электроны (отрицательные носители заряда ) в электронно-транспортном слое диода и дырки (положительные носители заряда ) в дырочно-транспортном слое диода объединяются в PN-переходе и преобразуют свою избыточную энергию в свет. Светодиод заключен в прозрачную или рассеивающую пластиковую линзу, которая может обеспечивать диапазон углового распределения света.
Цвет
Цветовой состав света, излучаемого светодиодом, зависит от химического состава возбуждаемого материала. Доступны светодиоды, которые могут воспроизводить цвета, включая белый, темно-синий, синий, зеленый, желтый, янтарный, оранжевый, красный, ярко-красный и темно-красный.
Efficacy
Светодиоды — это низковольтные, слаботочные устройства и эффективные источники света. Для красных, желтых, желтых, зеленых и синих светодиодов были разработаны новые материалы, которые более эффективны, чем традиционные материалы, обеспечивая более высокую эффективность (люмен на ватт), чем лампы накаливания и конкурирующие люминесцентные лампы. A. В лабораторных условиях уже достигнута эффективность до 100 LPW. По словам Стива Джонсона, руководителя группы исследований освещения Национальной лаборатории Лоуренса в Беркли, «нереалистично ожидать, что эффективность твердотельных источников света достигнет 150–200 люмен на ватт в ближайшие десятилетия».
Светодиоды белого света
Использование нитрида индия-галлия (InGaN) в качестве полупроводникового материала привело к созданию самых ярких светодиодов и позволило разработать светодиоды белого света.
Светодиоды белого света содержат люминофор, добавленный к синему светодиоду, который преобразует часть светового излучения в желтый, в результате чего получается голубовато-белый свет. Таким образом, светодиоды белого света являются холодным источником света со спектром коррелированных цветовых температур 4000-11000K. Белый свет также может быть получен путем смешивания цветов света, излучаемого красными, синими и зелеными светодиодами.
Эрик Страндберг, Лаборатория дизайна освещения
Другие световоды
Как определить ток
Узнать о том, какой номинальный ток имеет светодиод, не используя специальных справочников, не так просто. По внешнему виду, силу тока можно определить по колбе диода: чем она больше, тем больше ток. Если во время проверки вы пересекаете допустимую черту, цвет диода изменится. Например, изначально жёлтый цвет может перейти в белый или синий оттенок.
Современные технологии позволяют дополнять корпус прибора новыми комплектующими. Чаще всего используются гасящие резисторы. Таким способом можно получить светодиод с напряжением 5,12 или 220 В.
Помимо этого, номинальный ток светодиода определяется тем же мультиметром
Когда лампочка загорится, обратите внимание на экран прибора, на нём будет отображено напряжение, зная его и закон Ома, можно без проблем вычислить ток светодиода
Посмотрев видео можно понять, как проверить различные типы светодиодов при помощи мультиметра.
Получение светодиода определенного цвета
Индикаторные и осветительные LED
Чтобы яснее представлять, какие бывают светодиоды, их можно разделить на две большие группы: индикаторные и осветительные.
Индикаторные используются в основном в целях цветовой индикации, а также при подсветке дисплеев, приборных панелей и других приборов. То есть это светодиоды сравнительно небольшой мощности (до 0.2 Вт) с умеренной яркостью.
Осветительные LED используются при освещении помещений в составе светодиодных ламп и лент, в автомобильных фарах и везде, где требуется получить высокую интенсивность свечения. Мощность таких светодиодов может достигать десятков ватт.
Разновидности светоизлучающих диодов
В основе работы LED-приборов лежит процесс пропускания фотонов через полупроводниковый кристаллик. Именно от применяемого материала зависит цвет возникающего свечения. Совсем не светофильтры делают свечение красным или синим.
Увеличения интенсивности светового излучения добиваются с помощью специальных присадок или способом создания нескольких слоев — внутрь помещают нитрид алюминия.
Цвет свечения светодиодов зависит от материала кристалла
Светодиоды делят на две группы по способу применения:
- Индикация и декорация. К этой категории относятся цветные светодиоды. Их помещают в просвечивающийся корпус. Для управления техникой на расстоянии применяют модели с инфракрасными индикаторами.
- Освещение. В этом случае используют LED-источники белого свечения. Соответственно потребностям подбирают теплые или холодные оттенки.
По способу монтажа выделяют осветительные светодиоды:
SMD. При такой модификации кристаллик расположен на специальной подложке, которая помещается в корпус. Контакты соединяются. При поломке одного кристаллика его заменяют, восстанавливая работу всей системы.
ОСВ. В таком устройстве множество кристаллов размещены на одной плате. Все они покрытых люминофором. Степень свечения таких ламп высокая, а производство недорогое. Систему придется заменить полностью даже при выходе из строя всего одного светодиода.
Способы определения мощности светодиода
На самом деле способов как узнать потребление не так уж и много, поэтому давайте остановимся на каждом из них и рассмотрим более подробно.
Мультиметром
Этот способ самый сложный и не является точным, прибегать к нему советую только в крайнем случае, когда достаточно хотя бы примерных значений.
Имея на руках только один мультиметр (он же тестер), для измерения следует выполнить следующую последовательность действий:
- Собрать схему с подключенным светодиодом через токоограничивающий резистор на 500 Ом от блока питания с плавной регулировкой напряжения от 0 до 12 В.
- Плавно поднимая напряжение на блоке питания, следует постоянно измерять напряжение на блоке питания и светоизлучающем диоде, т.е. до резистора и после (в местах V1 и V2). В таком способе удобно использовать два мультиметра или два вольтметра. Изначально, значения напряжений будут почти одинаковы (разница не более 0,1В). При достижении определенного уровня, начнется ощутимый рост разницы измеряемых значений.
- Зафиксировать значение напряжение
- Подключить проверяемый светоизлучающий диод через резистор 10 Ом последовательно с амперметром. Если нет амперметра, используйте мультиметр.
- Поднимите напряжение до зафиксированного ранее значения V
- Зафиксируйте значение тока и, используя закон Ома, определите мощность светодиода.
Как это сделать, читайте ниже.
Иногда люди сталкиваются с интересной особенностью, проверяемый светоизлучающий диод исправен (проверяют светодиод мультиметром), но никак не светится при подаче на него питания. Оказывается, что он инфракрасный. Определить ИК — светодиод можно посмотрев на него через объектив камеры. Он будет светиться.
По закону Ома
В самом начале статье мы упоминали формулу мощности, которая вытекает из закона Ома. Там же приведен пример расчета потребления. Зная формулу (P=I*U), а также силу тока (I) и напряжение (U) светодиода, Вы без труда узнаете сколько потребляет светодиод.
По внешнему виду
Определить сколько потребляет светодиод по внешнему виду практически не возможно, поэтому этим способом также рекомендую пользоваться только в крайнем случае, так сказать в безвыходной ситуации. Методика визуального определения сводится к возможности отнесения «узнаваемого» к какому-либо известному Вам типу светоизлучающего диода. Определяем для «подопытного» тип светодиода (а лучше марку и модель, это можно сделать по маркировке) и ищем к нему даташит, в котором можно найти точные характеристики, в том числе и мощность.
Давайте посмотрим, как применить способ на практике. Например, на руках у нас имеется светоизлучающий диод, как на фото ниже.
Сразу видим, что это SMD LED. Зная то, что в названии SMD LED зашифрованы габариты. Берем штангенциркуль и меряем размеры. Получив значения ширины – 28 и длины – 35 мм, можно с уверенностью сказать, что это светодиод SMD 3528. Мощность SMD 3528 белого цвета составляет 0,06 Вт. Это значение является средним, т.к. оно может варьироваться плюс – минус 15% в зависимости от производителя.
Рассмотренная выше методика применима к любому SMD LED и даже для светодиодной ленты, т.к. в ее основе лежат данные LED. Узнав мощность одного светоизлучающего диода на ленте, и посчитав их количество, Вы без труда узнаете мощность всей светодиодной ленты.
Для наглядной демонстрации определения мощности светодиодной ленты, рекомендуем посмотреть соответствующее видео с ютуба. При расчетах автор пользуется законом Ома.
Входные параметры
Технические характеристики светодиодов, которые оказывают влияние на его работу, условно называют входными. Речь идёт о прямом (обратном) токе и напряжении и их графической зависимости.
Прямой ток
Техническим параметром №1 любого светодиода является ток, протекающий в прямом направлении через p-n-переход. Номинальный (рабочий) ток – это ток, при котором производитель гарантирует заявленную яркость в течение всего срока эксплуатации. Также указывается максимальный ток, превышение которого ведёт к электрическому пробою. Для некоторых модификаций номинальный прямой ток теоретически равен максимальному. В таких случаях рекомендуется эксплуатировать светодиод на 90-95% от номинального значения. Величина рабочего тока во многом зависит от размера кристалла и режима работы. Например, ток органического светодиода, используемого для формирования OLED матриц, не превышает нескольких микроампер. И, наоборот, кристалл мощностью 1 вт потребляет около 0,35 А.
Падение напряжения
Под этим параметром принято понимать прямое падение напряжения при протекании через p-n‑переход номинального тока. Его значение зависит от химического состава полупроводника (цвета свечения). Наименьшим прямым напряжением обладают инфракрасные диоды (около 1,9В), а наибольшим ультрафиолетовые (от 3,1 до 4,4В). Зачастую в паспорте указывают диапазон возможных значений.
Обратное напряжение
Под максимальным обратным напряжением понимают напряжение обратной полярности, прикладываемое к p-n-переходу, при превышении которого происходит электрический пробой и, как следствие, выход из строя полупроводникового прибора. Для превалирующей части светодиодов его значение составляет 5В. Среди излучающих диодов ИК-диапазона немало приборов с допустимым обратным напряжением 1 или 2 вольта.
Мощность рассеивания
Мощность, рассеиваемая корпусом, определяется как произведение максимального тока и прямого напряжения и указывает на наибольшее количество энергии, которую способен эффективно рассеивать светодиод в течение длительного времени. При превышении паспортного значения в кристалле полупроводника возникает электрический или тепловой пробой.
ВАХ
Вольтамперная характеристика светодиода представляет собой графическую зависимость прямого тока от прикладываемого прямого напряжения. С помощью этого технического параметра можно легко узнать падение напряжения на светодиоде при задании тока определённой величины без проведения лабораторных исследований. ВАХ помогает произвести теоретические расчёты будущей электрической цепи.
Самодельный светодиодный драйвер
Предоставим вашему вниманию несколько вариантов драйверов на основе специализированных микросхем компании Monolithic Power System, использование которых существенно упрощает конструкцию. Схемы приводятся в качестве примера, полное описание типового включения можно найти в даташит на микросхемы.
Вариант первый на базе понижающего преобразователя МР4688.
Данный драйвер может работать с напряжениями от 4,5 до 80 В, порог максимального выходного электротока 2 А, что позволяет запитать светильник на сверхярких светодиодах большой мощности. Уровень электротока, проходящего через светодиоды, регулируется сопротивлением R FB . Реализация ШИМ-диммирования с частотой 20 кГц позволяет плавно изменять протекающий через светодиод электроток.
Второй вариант драйвера на базе микросхемы МР2489. Ее компактный корпус (QFN8 или TSOT23-5) делает возможным размещение драйвера в цоколе MR16, используемый галогенными лампами, что позволяет заменить последние светодиодными. Типовая схема подключения МР2489 показана на рисунке.
Приведенная выше схема позволяет включать два параллельных светодиода, у каждого из которых рабочий ток 350 мА.
Последний вариант драйвера на базе микросхемы МР3412, который может быть использован в переносных фонариках. Отличительная особенность такой схемы – возможность работы от пальчикового элемента питания АА.
Сверхяркие светодиоды – это источники светодиодного освещения мощностью от 1 Ватта с силой тока 300 мА и выше, обладающие высокой яркостью свечения. Светодиод мощностью 10 Ватт получают при использовании 10 таких светоизлучающих диодов в виде матрицы.
Светодиодная матрица мощностью 80 Ватт.
Дополнительные характеристики
Кроме основных технических параметров, при проектировании светодиодных светильников нужно учитывать ещё несколько дополнительных факторов, таких как влияние температуры и различных коэффициентов.
Температурная зависимость
Продолжительная и стабильная работа излучающего диода во многом зависит от эффективного отвода тепла от кристалла. В связи с этим у мощных светодиодов должно быть низкое тепловое сопротивление перехода кристалл-подложка. Например, SMD 5730 и SMD 3014 имеют всего 4°C/Вт, что является достижением современных технологий.
Также нормируются:
- максимальная температура p-n-перехода (температура кристалла), которая для SMD приборов может достигать 130°C;
- температурный диапазон, при котором допускается эксплуатация;
- температурный диапазон, при котором можно хранить полупроводниковый прибор;
- температурно-временной график пайки SMD светодиодов.
Биновка
Светодиодный бин представляет собой неделимую область на диаграмме цветности, условно выраженную в цифробуквенном коде. Необходимость биновки белых светодиодов вызвана погрешностью, допускаемой в процессе их изготовления. Бин-код позволяет максимально точно указать оттенок белого света приборов, имеющих одинаковую цветовую температуру и коэффициент цветопередачи. Данный параметр учитывают производители светильников высокого качества.
Маркировка диодов
Проще всего маркируются диоды в металлическом корпусе. В большинстве случаев на них наносится обозначение прибора и его цоколевка. Диоды в пластиковом корпусе маркируются кольцевой меткой со стороны катода. Но нет гарантии, что производитель строго соблюдает это правило, поэтому лучше обратиться к справочнику. Ещё лучше прозвонить прибор мультиметром.
Отечественные стабилитроны малой мощности и некоторые другие приборы могут иметь метки из двух колец или точек разного цвета на противоположных сторонах корпуса. Чтобы определить тип подобного диода и его цоколевку, надо взять справочник или найти в интернете онлайн-определитель маркировки.
Мир светодиодов: краткий обзор предложений современных производителей
Первые удачные эксперименты были проведены более ста лет назад. Но только в конце 70-х прошлого века удалось создать образцы, пригодные для коммерческого применения.
Разные комбинации полупроводниковых материалов создают волны определенной длины
Для зеленого цвета применяют AlGaInP (Алюминий-Галий-Фосфид индия). Красный получается с использованием AlGaAs (Алюминий-Арсенид галлия). Долгое время не могли найти комбинацию для синего. Только в 90-х годах был найден подходящий состав, за который авторы получили Нобелевскую премию. Сочетание перечисленных цветов позволило создать белый свет. С этого времени был дан старт массовому внедрению технологий данной категории в разные сферы человеческой деятельности.
Индикаторные светодиоды
Конструкция прибора DIP типа
Для концентрации светового потока функции отражателей выполняет опорная пластина и стенки. Такие приборы выпускают с выпуклыми линзами и прямоугольными торцами диаметром от 3 до 10 мм. Их подключают к источникам питания 2,5-5 В с ограничением по току до 20-25 мА. Угол рассеивания не превышает 140°. Яркость – до 1,1 люмен.
Индикаторные светодиоды ранее применяли для создания фонарей, светофоров, информационных стендов и рекламных табло. В наши дни появились новые модификации полупроводниковых приборов с большей силой света.
Оригинальная подсветка сценических костюмов
На практике пригодятся следующие преимущества индикаторных светодиодов:
- низкая стоимость;
- хорошая защищенность от влаги и других неблагоприятных внешних воздействий;
- безопасные токи и напряжение питания;
- небольшое потребление энергии.
Последний пункт надо дополнить низким выделением тепла. Такие устройства способны функционировать долгосрочно в широком температурном диапазоне без специальных охлаждающих радиаторов.
Осветительные светодиоды
Полупроводниковые приборы SMD, как наиболее распространенные изделия, подробно рассмотрены ниже. Их создают в стандартных размерах на специальной подложке, которая хорошо приспособлена для последующего монтажа на печатную плату.
Излучающее поле лампы, созданное из SMD светодиодов
Для улучшения защищенности полупроводники закрепляют на подложке внутри литого пластикового корпуса. Верхняя полусферическая часть образует линзу, что помогает сузить световой поток.
«Пиранья». Грозное название этой категории подчеркивает высокую эффективность приборов
Следующая группа изделий создана специально для освещения. На подложке размещают синие светодиоды. Сверху – слой люминофора. В данном случае применяют большее количество кристаллов на единицу поверхности по сравнению с технологией SMD. Это позволяет получить сильный световой поток.
Мощную матрицу категории COB (Chip On Board) надо охлаждать. Такие лампы устанавливают в автомобильные фары ближнего и дальнего светаТехнология Chip On Glass («Чип-на-стекле»)
На фото изображены основные стадии производственного процесса:
- Создается подложка из стекла нужной формы.
- На ней закрепляют последовательно полупроводниковые кристаллы.
- Сверху устанавливают слой люминофора.
- Далее – финишное защитное покрытие.
В цоколе лампочки размещают блок питания, который создает постоянное напряжение с нужной силой тока.
Плюсы и минусы осветительных светодиодов
Выяснив, какие бывают светодиоды, надо перечислить их преимущества по сравнению с альтернативными изделиями:
- Лучшие полупроводниковые приборы способны обеспечить более 200 люменов на 1 Вт энергии. Это потребление на 80-85 % меньше по сравнению с типовыми лампами накаливания.
- Качественные светодиодные светильники устойчивы к вибрациям, перепадам напряжения в сети. Долговечность лучших изделий приближается к 100 тыс. часов, что эквивалентно белее чем 11 годам непрерывной эксплуатации.
- Отсутствие ртутных и других вредных соединений вместе с прочной рассеивающей колбой повышает уровень безопасности.
Не забывайте, что в экономический расчет надо включать все сопутствующие расходы. Светодиодные источники, сделанные известными производителями, стоят дорого. Только через несколько лет получится окупить первоначальные инвестиции. Также надо отметить:
- Мерцание при недостаточно качественной сборке блока питания.
- Небольшой угол рассеивания.
- Различные технические характеристики в одной товарной партии.
- Узкий диапазон цветовой температуры, несоответствие параметра паспортным данным.
Показатели качества
О показателях качества светодиодного изделия можно судить, исходя из следующих критериев: — производитель (предпочтительнее продукция известных компаний, которые публикуют открытые данные о надежности их приборов); — использование специально разработанного конструктива и формы для максимально быстрого отвода тепла, регулирующих температурный режим при работе чипа; — оптические (светотехнические) спецификации LED-лампы, которые можно получить от независимой лаборатории либо изготовителя; — высококачественные гарантийные обязательства; — итоги результатов долгосрочных испытаний функционирования приборов.