ЧТО ТАКОЕ АДРЕСНАЯ ЛЕНТА
Варианты подключения
Естественно, что самым простым способом подключения устройства управления RGB станет вариант, при котором подключена лишь одна светодиодная полоса или ее часть. Но такой способ не совсем практичен, хотя он и не требует включения в цепь каких либо дополнительных приборов. Дело все в том, что на одну линию такого устройства возможно подключение не более 5–6 метров световой полосы, что для подсветки комнаты будет явно недостаточным. Если же длина отрезка будет больше, то на ближайшие к контроллеру светодиоды возрастет нагрузка, в результате чего они просто перегорят.
Еще одна проблема при подключении длинных светодиодных полос – большая нагрузка по мощности на тончайшие провода RGB-светодиодной ленты. При их нагреве пластиковое основание начинает плавиться, и в итоге жилы остаются без изоляции либо просто прогорают.
Вариант подключения устройства управления RGB
А потому при необходимости осветить более длинные расстояния применяются следующие способы и схемы подключения.
Две светодиодные ленты
При таком подключении к контроллеру для RGB-световой полосы понадобится два устройства питания и усилитель. Особенность подобного подключения в том, что отрезки ленты должны подключаться именно параллельно. Хотя у них и одно, общее электронное устройство управления, питание должно подаваться на каждую в отдельности. Усилитель же используется для более ясного и четкого света диодов.
Иными словами, напряжение поступает на оба блока питания, после чего с одного из них идет на усилитель и далее на световую полосу. Со второго блока питание поступает на электронный блок управления. Между собой устройство управления и усилитель связаны второй светодиодной лентой. Схематически такое подключение выглядит как на схеме выше.
Лента в 20 метров, разделенная на четыре отрезка
При таком подключении желательно применять также два блока питания, но если они имеют большой выход мощности, то можно воспользоваться и одним.
Лента в 20 метров, разделенная на четыре отрезка
Четыре отрезка по пять метров подключаются опять же параллельно. Пара полос напрямую подключена к контроллеру, вторая пара к нему же, но через усилитель сигнала. При подключении второго блока питания напряжение от него идет напрямую на усилитель. Выглядит подобное подключение примерно как на картинке выше.
Разобравшись с методами подключения контроллеров и их видами, можно попробовать сделать такой прибор своими руками в домашних условиях. Необходимо лишь помнить, что нужно соизмерять мощность устройства и его выходное напряжение с длиной и энергопотребляемостью светодиодной ленты.
Как выполнить подключение RGB ленты через контроллер
Стоит ли игра свеч?
Если рассуждать с точки зрения логики обычного человека, не увлеченного радиотехникой, то, конечно, купить дешевый RGB-контроллер будет ненамного дороже. К тому же при этом не будет потеряно время на изготовление своими руками подобного прибора. Но для настоящего радиолюбителя, а иногда и просто увлеченного человека, собрать подобный прибор самому во сто крат приятнее, нежели приобретать где-то. А потому попробовать изготовить RGB-контроллер своими руками стоит. Ведь удовольствие от проделанной, а к тому же еще и удачной работы не заменит ничто.
Теперь при помощи современных технологий мы имеем возможность украсить любое помещение (чаще всего это бывает детская) светящимися красочными композициями.
А уж новогодняя ёлка буквально в каждом доме переливается разными цветами. Поможет вам в этом светодиодная лента
.
А если для каждой группы красных, зелёных и синих (RGB) диодов собрать электронный блок дистанционного управления, то можно устраивать самые настоящие цветовые симфонии и фейерверки.
В литературе легко найти множество схемных решений, позволяющих решить эту задачу, но современные интегральные микросхемы расширяют функциональные возможности управления. Автор идеи Носов Тимофей из города Саратова, участвуя в конкурсе практического применения электронных модулей фирмы «Мастер Кит» в различных устройствах автоматики и телемеханики, собрал на модуле МР324 контроллер дистанционного управления светодиодной RGB-лентой.
Причём он самостоятельно сформулировал задачу, успешно её решил и стал победителем конкурса.
Контроллер RGB собран на микроконтроллере ATtiny2313 и предназначен для переключения светодиодов по определённому алгоритму.
Управляется контроллер по радио с помощью четырёхканального дистанционного модуля МР324 который может быть использован в различных радиотехнических и бытовых устройствах, например, в радиоуправляемых моделях, в схемах дистанционного открывания дверей, жалюзи и пр.
Его технические характеристики представлены в таблице. Модуль МР324 состоит из платы приёмника и брелка-передатчика, работающих в диапазоне 433 МГц. Приёмник имеет небольшие размеры (50×25 мм) и монтируется непосредственно на плате контроллера.
Кроме того, на этой плате предусмотрена возможность установки резисторов (10-100 кОм) ручного управления переключением светодиодов ленты.
Это позволяет без модуля МР324, путём подачи управляющих сигналов по соответствующим линиям управления создавать любые комбинации цветов и их динамического изменения. При прошивке микроконтроллера ATtiny2313 следует устанавливать следующие фьюзы (fuse bit/bytes). Файл прошивки контроллера можно найти на сайте www.masterkit.ru и скачать его оттуда.
Собранный подобным образом контроллер имеет следующие функции управления RGB-лентой (в соответствии с кнопками пульта дистанционного управления):
1 — включение белого свечения а также его выключение;
2 — последовательный плавный перебор цветов свечения в непрерывном спектре;
3 — плавный перебор цветовых оттенков спектра в обратной последовательности;
4 — включение одного из 4 эффектов:
- автоматический плавный перебор цветов,
- работа в режиме стробоскопа (управление цветом в последовательности предыдущего перебора),
- плавное и равномерное включение основных цветов (красный, зелёный, синий),
- режим случайного цветового перебора (эффект преломления в кристалле).
Разноцветная светодиодная RGB лента – основной тренд 2018-2019 года. Разберем как ее правильно подключить, что такое RGB контроллер, усилитель и зачем они нужны.
Сборка схемы контроллера
Многоцветные светодиоды, или как их еще называют RGB, используются для индикации и создания динамически изменяющейся по цвету подсветки. Фактически ничего особенного в них нет, давайте разберемся, как они работают и что такое RGB-светодиоды.
Внутреннее устройство
На самом деле RGB-светодиод — это три одноцветных кристалла совмещенные в одном корпусе. Название RGB расшифровывается, как Red — красный, Green — зеленый, Blue — синий соответственно цветам, которые излучает каждый из кристаллов.
Эти три цвета являются базовыми, и на их смешении формируется любой цвет, такая технология давно применяется в телевидении и фотографии. На картинке, что расположена выше, видно свечение каждого кристалла по отдельности.
На этой картинке вы видите принцип смешивания цветов, для получения всех оттенков.
Кристаллы в RGB-светодиоды могут быть соединены по схеме:
С общим анодом;
С общим катодом;
Не соединены.
В первых двух вариантах вы увидите, что у светодиода есть 4 вывода:
Или 6-тью выводами в последнем случае:
Вы можете видеть на фотографии под линзой четко видны три кристалла.
Для таких светодиодов продаются специальные монтажные площадки, на них даже указывают назначение выводов.
Нельзя оставить без внимания и RGBW — светодиоды, их отличие состоит в том, что в их корпусе есть еще один кристалл излучающий свет белого цвета.
Естественно не обошлось и без лент с такими светодиодами.
На этой картинке изображена лента с RGB-светодиодами , собранные по схеме с общим анодом, регулировка интенсивности свечения осуществляется путем управления «-» (минусом) источника питания.
Для изменения цвета RGB-ленты используются специальные RGB-контроллеры — устройства для коммутации напряжения подаваемого на ленту.
Вот цоколевка RGB SMD5050:
И ленты, особенностей работы с RGB-лентами нет, всё остается также как и с одноцветными моделями.
Для них есть и коннекторы для подсоединения светодиодной ленты без пайки.
Вот распиновка 5-ти мм РГБ-светодиода:
Как изменяется цвет свечения
Регулировка цвета осуществляется путем регулировки яркости излучения каждым из кристаллов. Мы уже рассматривали .
RGB-контроллер для ленты работает по такому же принципу, в нём стоит микропроцессор, который управляет минусовым выводом источника питания — подключает и отключает его от цепи соответствующего цвета. Обычно в комплекте с контроллером идёт пульт дистанционного управления. Контроллеры бывают разной мощности, от этого зависит их размер, начиная от такого миниатюрного.
Да такого мощного устройства в корпусе размером с блок питания.
Они подключаются к ленте по такой схеме:
Так как сечение дорожек на ленте не позволяет подключать последовательно с ней следующий отрезок ленты, если длина первого превышает 5м, нужно подключать второй отрезок проводами напрямую от РГБ-контроллера.
Но можно выйти из положения, и не тянуть дополнительных 4 провода на 5 метров от контроллера и использовать RGB-усилитель. Для его работы нужно протянуть всего 2 провода (плюс и минус 12В) или запитать еще один блок питания от ближайшего источника 220В, а также 4 «информационных» провода от предыдущего отрезка (R, G и B) они нужны для получения команд от контроллера, чтобы вся конструкция светилась одинаково.
А к усилителю уже подключают следующий отрезок, т.е. он использует сигнал с предыдущего куска ленты. То есть вы можете запитать ленту от усилителя, который будет расположен непосредственно возле неё, тем самым сэкономив деньги и время на прокладку проводов от первичного RGB-контроллера.
Регулируем RGB-led своими руками
Итак, есть два варианта для управления RGB-светодиодами:
Вот вариант схемы без использования ардуин и других микроконтроллеров, с помощью трёх драйверов CAT4101, способных выдавать ток до 1А.
Однако сейчас достаточно дешево стоят контроллеры и если нужно регулировать светодиодную ленту — то лучше приобрести готовый вариант. Схемы с ардуино гораздо проще, тем более вы можете написать скетч, с которым вы будете либо вручную задавать цвет, либо перебор цветов будет автоматическим в соответствии с заданным алгоритмом.
Заключение
RGB-светодиоды позволяют сделать интересные световые эффекты используются в дизайне интерьеров, как подсветка для бытовой техники, для эффекта расширения экрана телевизора. Особых отличий при работе с ними от обычных светодиодов — нет.
Блок питания для RGB
Для того чтобы подключить светодиодную подсветку к сети, обязательно нужно приобрести блок питания. Подключать RGB напрямую к сети 220 В категорически воспрещается, так как это приведет к моментальному перегоранию подсветки. Этот агрегат необходимо приобретать с напряжением, соответствующим этому показателю у светодиодов, то есть 12 В или 24 В.
Одноцветную ленту подключить проще, так как она подсоединяется непосредственно к самому блоку. С RGB дело обстоит иначе, поскольку здесь понадобится контроллер. Он будет выступать в качестве регулятора цветов. Если его не использовать, то функция смены цветов будет утрачена. Контроллер, как и сам блок, должен иметь соответствующее выходное напряжение.
Мощность блока питания должна совпадать с мощностью светодиодов. Производитель обычно указывает этот показатель на 1 метр ленты, например, 14 В. Нетрудно посчитать, что на 8 метров будет приходиться 112 В, значит, и блок должен быть мощностью 112 В. Необходимо, чтобы в нем был запас по току примерно на 20-30%.
Качественный блок питания должен обладать высокой стабильностью выходного напряжения, иметь встроенный фильтр электромагнитных помех и защиту от перепадов напряжения, перегрузок или коротких замыканий. Корпус его должен быть выполнен из перфорированного металла, что способствует хорошей вентиляции и отсутствию перегрева. Если же его температура во время работы достигла 70 градусов, тогда следует снизить нагрузку.
Светодиодная лента в квартиру для основного освещения
Как подключить адресную ленту WS2812B Arduino
Для этого занятия понадобится:
- Arduino Uno / Arduino Nano / Arduino Mega;
- лента WS2812B;
- макетная плата;
- 1 резистор от 100 до 500 Ом;
- провода «папа-папа».
WS2812B светодиоды довольно энергоемкие, один светодиод потребляет до 60 мА при максимальной яркости. Для ленты со 100 диодами потребуется блок питания на 6 и более Ампер. Микроконтроллер Arduino и светодиодная лента могут быть подключены к разным источникам питания, но «земля» должна быть общая. Дело в том, что пин GND тоже участвует в управлении адресной лентой от платы Ардуино Уно.
Схема подключения адресной ленты 5 Вольт к Ардуино
WS2812B | Arduino Uno | Arduino Nano | Arduino Mega |
GND | GND | GND | GND |
5V | 5V | 5V | 5V |
DO | 10 | 10 | 10 |
Для работы с лентой используются три популярные библиотеки — FastLED, AdafruitNeoPixel и LightWS2812. Все библиотеки доступны для скачивания на нашем сайте. Работать с библиотеками FastLED и Adafruit NeoPixel просто, отличаются они в функциональности и объеме занимаемой памяти. После сборки этой простой схемы и установки библиотек, загрузите скетч для адресной светодиодной ленты.
Скетч. Тестирование адресной ленты WS2812b Arduino
#include "Adafruit_NeoPixel.h" // подключаем библиотеку #define PIN 10 // указываем пин для подключения ленты #define NUMPIXELS 3 // указываем количество светодиодов в ленте // создаем объект strip с нужными характеристиками Adafruit_NeoPixel strip (NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); void setup() { strip.begin(); // инициализируем ленту strip.setBrightness(50); // указываем яркость светодиодов (максимум 255) } void loop() { strip.setPixelColor(0, strip.Color(255, 0, 0)); // включаем красный цвет на 1 светодиоде strip.show(); // отправляем сигнал на ленту delay(500); strip.clear(); // выключаем все светодиоды strip.setPixelColor(1, strip.Color(0, 0, 255)); // включаем синий цвет на 2 светодиоде strip.show(); // отправляем сигнал на ленту delay(500); strip.clear(); // выключаем все светодиоды strip.setPixelColor(2, strip.Color(255, 255, 255)); // включаем белый цвет на 3 светодиоде strip.show(); // отправляем сигнал на ленту delay(500); strip.clear(); // выключаем все светодиоды }
Пояснения к коду:
- нумерация светодиодов в ленте начинается с нуля, поэтому если мы хотим включить первый светодиод, то указывать надо «0».
Схема подключения адресной ленты 12 Вольт к Ардуино
Если у вас лента на 12 Вольт, то ее нужно подключать по схеме, размещенной выше. Резистор на цифровом пине защищает его от выгорания (если питание к ленте будет отключено, то она начнет питаться от цифрового пина, при этом пин может выгореть. Также не стоит подключать питание ленты к плате Ардуино, иначе может выгореть защитный диод на Ардуино или USB порт на компьютере (в худшем случае).
Скетч. Управление адресной лентой Ардуино
#include "Adafruit_NeoPixel.h" // подключаем библиотеку #define PIN 10 // указываем пин для подключения ленты #define NUMPIXELS 3 // указываем количество светодиодов в ленте // создаем объект strip с нужными характеристиками Adafruit_NeoPixel strip (NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); void setup() { strip.begin(); // инициализируем ленту strip.setBrightness(50); // указываем яркость светодиодов (максимум 255) } void loop() { // поочередно включаем красный цвет for (int i = -1; i < NUMPIXELS; i++) { strip.setPixelColor(i, strip.Color(255, 0, 0)); strip.show(); delay(100); } // поочередно включаем зеленый цвет for (int i = -1; i < NUMPIXELS; i++) { strip.setPixelColor(i, strip.Color(0, 255, 0)); strip.show(); delay(100); } // поочередно включаем синий цвет for (int i = -1; i < NUMPIXELS; i++) { strip.setPixelColor(i, strip.Color(0, 0, 255)); strip.show(); delay(100); } }
Пояснения к коду:
- с помощью библиотеки Adafruit NeoPixel довольно просто управлять адресной лентой. В примерах к библиотеке можно найти много различных эффектов. Мы продемонстрировали простой вариант с циклом for для включения ленты.
Заключение. В этом обзоре мы рассмотрели лишь подключение и возможность управления адресной лентой от Ардуино. Так как возможности работы с библиотеками FastLED, AdafruitNeoPixel довольно разнообразны. Больше интересных примеров на Arduino и WS2812B размещено в разделе Проекты на Ардуино, где представлены проекты с бегущей строкой на адресной ленте и другие световые эффекты.
Проверяйте напряжение в точке подключения ленты
После установки и подключения светодиодных лент желательно проконтролировать напряжение на всех точках подключения лент, оно не должно быть ниже 22.5 вольт. Замер нужно производить после 10 минут работы ленты на максимальной яркости. Если напряжение на ленте ниже, то нужно проверить качество соединений кабелей и ленты и кабелей и элементов управления в щите, напряжение на выходе блока питания.
Если кабель плохо зажат в наконечник-гильзу, или припаяны к ленте не все «волоски», или клеммник в соединении закручен неплотно, то проблемное место будет греться, а напряжение на нём проседать.
Если лент у вас очень много или вы занимаетесь их установкой постоянно, возможно, имеет смысл приобрести пирометр или даже тепловизор, чтобы сразу видеть проблемные места. Тепловизор также пригодится при строительстве дома и анализе работы отопления, так что пригодится. Если видите, что в подключениях ленты какое-то место греется сильнее других, надо проверить качество этого подключения, при необходимости подтянуть, поджать, подпаять. И имеет смысл иногда смотреть на электрощит в тепловизор в поисках мест нагрева, предварительно повключав побольше приборов и подождав, пока что надо прогреется.
Отдельный вопрос — это подключение управляемых светодиодных лент в щите. Плюсы лент можно подключать на кросс-модуль либо на распределительный блок. Через некоторое время у меня будут фото реализации таких подключений, обязательно поделюсь.
89, всего, сегодня
Похожие посты:
Диммирование освещения с Умного Дома Коснёмся актуального вопроса диммирования светильников с системы Умный Дом, особенно… Подбор оборудования Wirenboard и проектирование системы Расскажу немного о том, как проектировать систему Умный Дом на… Кабели для светодиодных лент Расскажу об одном важном моменте, а именно про то, как… Размещение блоков питания для светодиодных лент Продолжая тему светодиодных лент большой мощности, расскажу о том, как… Монтаж кабеля для Умного Дома Как я уже писал, самым неразумным способом экономии в строительстве… Подключение датчиков движения к Умному Дому Рассмотрим все возможные варианты подключения проводного датчика движения к системе… Диммирование светодиодных ламп Честно скажу: хоть я и сторонник светодиодных ламп, но когда…
Виды контроллеров
Установка светодиодов в нишу
В имеющуюся нишу в потолке необходимо установить цветную светодиодную подсветку. Периметр ниши — 8 м, в мотке имеется 10 м ленты, следовательно, ее необходимо будет укоротить до нужной длины строго по участку среза.
Лучше всего крепить пластичный электроприбор не к стене или коробу ниши, а к заранее приобретенному для этой цели кабелю-каналу. Если же периметр больше, чем длина целого мотка, то от края приклеенной ленты нужно отступить примерно 10 мм и прикрепить еще одну. Получится, что по краям каждого отрезка должны свободно свисать провода, по четыре на каждый.
Так как для подсветки выбраны многоцветные светодиоды, то отрезы оснащены четырьмя проводами, три из которых (красный, зеленый и синий) обозначают цвета, а четвертый (черный) — общий вывод. Одноцветная подсветка имеет только два проводка. Если в месте, где будут располагаться светодиоды, имеются металлические саморезы, то их рекомендуется изолировать при помощи изоленты.
ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ
Что нужно для подключения RGB ленты
Разберемся как правильно подключить светодиодную RGB ленту. Для полноценной схемы освещения нам понадобится:
- Светодиодная лента;
- блок питания;
- RGB-контроллер с пультом управления;
- RGB-усилитель (опционально).
Блок питания
Питание для светодиодной ленты нужно подбирать с учетом предполагаемой нагрузки и его будущего места расположения. Рассмотрим на примере SMD5050 60 led. Потребляемая мощность – 14,4 Вт/м.
При длине в 5 метров, необходимая мощность БП будет:
5м * 14,4Вт * 1,25
(коэффициент запаса)
= 90Вт
Если длина 15 метров, то БП соответственно нужен в 3 раза мощнее – 270W. Если длина ленты 20, 25 и больше метров – целесообразно устанавливать несколько БП меньшей мощности.
Степень защиты зависит от расположения БП. Если располагается в сухом, закрытом помещении достаточно IP20. Если в ванной или других агрессивных условиях, то не ниже IP67.
RGB контроллер
Управление светом осуществляется через специальный контроллер. Он подключается между блоком питания и светодиодами, снабжается проводным или беспроводным пультом.
Контроллер, как и блок питания, подбирается в зависимости от суммарной мощности ленты. С тем отличием, что к необходимой мощности БП добавляют 25-30% запаса, а контроллер подбирают впритык по мощности.
Например
. Нужно подключить 10 метров SMD5050 60 led. Мощность 1 метра – 14,4 Вт, соответственно нам нужен контроллер на 144 Вт.
По принципу управления различают: проводные – чаще монтируются на стену; беспроводные с управлением через:
- Инфракрасный порт (ИК) – пульт должен находиться в зоне прямой видимости;
- радио-канал – позволяет пользоваться в пределах дома;
- Wi-Fi – позволяют как управлять с пульта, так и с приложения на смартфоне.
После установки и подключения, вы сможете:
- Устанавливать цвет вручную. Доступны как чистые цвета, так и смешанные оттенки.
- Регулировать яркость – аналогично обычному диммеру (подробнее про ).
- Автоматические режимы. К ним относится переключение цветов, быстрое мерцание, плавное изменение, плавные затухания и другие алгоритмы.
А если мощности RGB контроллера не хватает, чтобы подключить все освещение (больше 20 метров)? Можно установить 2 контроллера, но управлять светом одной комнаты придется с двух пультов, что не удобно и дорого. Второй (правильный) вариант — использовать RGB усилитель.
RGB усилитель (led amplifier)
Этот прибор позволяет усиливать и передавать дальше по цепи сигнал от контроллера. Таким образом, задействовав несколько усилителей, можно собрать контур освещения любой длины.
Усилитель устанавливается в разрыв ленты и имеет отдельное подключение к блоку питания (про подключение ниже). Мощность подбираем исходя из остатка ленты, которой не хватает мощности контроллера.
Наглядный пример
. Нужно подключить 20м SMD 3528 (14,4 Вт/м), общей мощностью 288 Вт. В наличии у нас только контроллер с мощностью 216 Вт и блок питания на 300W. Соответственно нужен усилитель:
288 Вт — 216 Вт = 72 Вт
Мощность БП 300 Вт, его достаточно для питания контроллера и усилителя. В случае если мощности БП недостаточно (например 250W), нужен отдельный БП для усилителя.
Объяснение программы для Arduino
Полный код программы приведен в конце статьи, здесь же мы кратко рассмотрим его основные фрагменты.
Перед написанием кода программы установите библиотеку FastLED с помощью менеджера библиотек Arduino IDE, либо же скачайте эту библиотеку вручную с репозитория Github. В коде программы мы запрограммируем различные световые эффекты для нашей ленты.
Первым делом в коде программы подключим библиотеку FastLED. Затем укажем осмысленные имена для используемых контактов платы. Если ваша светодиодная лента неправильно отображает цвета вы можете изменить это с помощью COLOR_ORDER в представленном фрагменте кода программы. Объявим другие необходимые переменные и объекты.
Arduino
#include <FastLED.h>
#define LED_PIN 2
#define NUM_LEDS 8
#define BRIGHTNESS 10
#define LED_TYPE WS2812B
#define COLOR_ORDER GRB
CRGB leds;
#define UPDATES_PER_SECOND 100
CRGBPalette16 currentPalette;
TBlendType currentBlending;
extern CRGBPalette16 myRedWhiteBluePalette;
extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM;
1 |
#include <FastLED.h> CRGBledsNUM_LEDS; #define UPDATES_PER_SECOND 100 CRGBPalette16currentPalette; TBlendTypecurrentBlending; externCRGBPalette16myRedWhiteBluePalette; externconstTProgmemPalette16myRedWhiteBluePalette_pPROGMEM; |
В функции setup() мы инициализируем библиотеку FastLED и установим яркость ленты. Также мы установим первую палитру цветов для Rainbow.
Arduino
void setup() {
delay( 3000 ); // power-up safety delay
FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.setBrightness( BRIGHTNESS );
currentPalette = RainbowColors_p;
currentBlending = LINEARBLEND;
}
1 |
voidsetup(){ delay(3000);// power-up safety delay FastLED.addLeds<LED_TYPE,LED_PIN,COLOR_ORDER>(leds,NUM_LEDS).setCorrection(TypicalLEDStrip); FastLED.setBrightness(BRIGHTNESS); currentPalette=RainbowColors_p; currentBlending=LINEARBLEND; } |
В функции loop() мы будем непрерывно в цикле переключать различные эффекты при помощи вызова функции ChangePalettePeriodically(). Эта функция будет изменять шаблоны цвета через определенные промежутки времени. Функция FillLEDsFromPaletteColors будет использоваться для установки цвета каждого пиксела в соответствии с выбранной палитрой. Затем все указанные цвета отображаются на светодиодной ленте или модуле с помощью функции FastLED.show(). Эту функцию необходимо вызывать после того как вы задали цвета для всех светодиодов в ленте.
Arduino
void loop() {
ChangePalettePeriodically();
static uint8_t startIndex = 0;
startIndex = startIndex + 1; /* motion speed */
FillLEDsFromPaletteColors( startIndex);
FastLED.show();
FastLED.delay(1000 / UPDATES_PER_SECOND);
}
1 |
voidloop(){ ChangePalettePeriodically(); staticuint8_tstartIndex=; startIndex=startIndex+1;/* motion speed */ FillLEDsFromPaletteColors(startIndex); FastLED.show(); FastLED.delay(1000UPDATES_PER_SECOND); } |
SPI контроллер и SPI RGB лента – принцип действия.
Формируется управляющий сигнал специальным внешним устройством – SPI контроллером, часто содержащим также импульсный стабилизатор для силового питания. В некоторых моделях его напряжение переключается на 5, 12 и 24 В для совместимости с любой лентой. Амплитуды же сигналов (как и сам протокол) на информационных выходах DATA и CLK унифицированы на всех устройствах под уровни TTL. В некоторых системах для управления используется только один провод DATA, но двухпроводные работают стабильнее, имеют выше частоту обновления и скорость обмена данными, что позволяет воспроизводить более сложные и динамичные световые эффекты.
Кроме соответствия напряжения и мощности, при выборе SPI контроллера для светодиодной ленты следует убедиться, что применяемые в ней драйвера входят в список поддерживаемых контроллером. Обычно их перечень достаточно велик, но лучше всего просто приобретать компоненты от одного производителя, специально сконструированные друг для друга и совместимые априори – от совпадения соединителей и наиболее полной реализации всех возможностей до гармоничного сочетания цвета проводников и корпуса.
SPI контроллер и SPI RGB лента – принципиальная схема.
На SPI RGB лентах изображены стрелки, обозначающие направление передачи управляющих сигналов (так, кстати, легче всего – не разглядывая мелкие буквы – отличать их от обычных RGB лент, концы которых равноправны). Подключение следует производить так, чтобы стрелки указывали в направлении ОТ контроллера к дальнему концу ленты. Другими словами, чтобы выход DATA на SPI контроллере соединялся с входом DI (или DIN) ленты, а её выход DO (или DOUT) – со следующей лентой, если таковая используется. Аналогично при двухпроводном управлении подключаются входы/выходы CLK, CIN и COUT. Вообще суммарная длина подключаемых лент выбирается так, чтобы количество пикселей в них не превышало поддерживаемое данным контроллером. Для значений свыше 1024 существуют контроллеры с несколькими выходными портами.