Люминесцентное освещение: принцип работы, история появления и преимущества применения

Принцип работы люминесцентной лампы, или как работает лампа дневного света.

УТИЛИЗАЦИЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

Стандартные люминесцентные лампы содержат не менее 3 мг паров ртути и нуждаются в бережном обращении при хранении, транспортировке, эксплуатации или утилизации.

По нормам ФЗ №89 поврежденные или отработанные колбы относятся к отходам с 1 классом опасности и не могут просто выбрасываться с другим мусором. Порядок действий при их утилизации регламентирован СанПиН 2.1.7.1322-03, постановлением №681 от 3.09.2010 г и другими нормативными актами РФ.

В частности, граждане, купившие люминесцентную лампу обязаны осторожно обращаться с их корпусом при транспортировке или установке и сдавать неработающие колбы в упакованном виде в специальные пункты приема. Места их расположения уточняются в точках продажи ламп (закрытые контейнеры для сбора и утилизации таких отходов устанавливаются в строительных гипермаркетах тип IKEA или Леруа Марлен), управляющих компаниях МКД или органах местного самоуправления

Дополнительных расходов на утилизацию физлица не несут.

Места их расположения уточняются в точках продажи ламп (закрытые контейнеры для сбора и утилизации таких отходов устанавливаются в строительных гипермаркетах тип IKEA или Леруа Марлен), управляющих компаниях МКД или органах местного самоуправления. Дополнительных расходов на утилизацию физлица не несут.

У предприятий и юр.лиц отработанные люминесцентные лампы (как и бой и мусор, возникающий при уборке возможных осколков) собирают специализированные организации, работающие по разовым или постоянным договорам.

Сбор и вывоз выполняется в специальной таре или закрытых контейнерах, не допускающих дополнительного повреждения ламп и внешнего загрязнения. Услуга является платной, при ее получении заказчику всегда выдается паспорт переработки опасных отходов.

При необходимости утилизации ламп с целыми трубками проблем не возникает. Изделие просто аккуратно выкручивается и заворачивается в бумагу, тонкий гофрокартон или фирменную упаковку.

При разрушении колбы следует:

  • открыть окна и покинуть помещение на 15 мин;
  • убрать порошок с помощью липкой ленты или влажной тряпки;
  • вымыть помещение с применением хлорсодержащих препаратов;
  • утилизировать пакет с осколками и мусором, возникшим при уборке помещения (в том числе с текстилем, на который попал люминофорный порошок).

В ходе этих работ категорически запрещается использование веника, пылесоса или щеток. По их окончании в помещении проверяется концентрация паров ртути при ПДК в пределах 0,0003 мг/м3.

  *  *  *

2014-2023 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Как утилизируют люминесцентные лампы

Внутри колб люминесцентных ламп находится ртуть. Это вещество по ядовитости относится к первому классу опасности.

Содержание ртути в лампе находится в пределах 1÷70 мг (доходит до 1 г). Но даже такой дозы достаточно, чтобы при повреждении колбы нанести вред здоровью человека и другим живым организмам. При регулярном воздействии ядовитых паров ртути происходит ее накапливание в теле, что вызывает развитие различных заболеваний.

Законодательная база

По этой причине в законодательной области разработаны правила обращения и утилизации электронного и электротехнического оборудования, содержащего ртуть:

  • на территории Европейского Союза с 2006 года действует Директива RoHS;
  • в России – правительственное постановление от 3.09.2010 №681, классификация операций сектора государственного управления (КОСГУ 2020 года подстатьи 225, 226, 244), общероссийский классификатор продукции (ОКПД), ГОСТы (например, 6825-91 – «Лампы трубчатые для общего освещения») и другие нормативные акты.

По закону утилизацию и вывоз ртутьсодержащего оборудования могут выполнять только фирмы, у которых есть на это лицензия. Частные предприниматели и предприятия обязаны делать паспорта на ядовитые отходы и сдавать их на переработку.

Предварительно они должны заключить договор (на 1 год) с утилизирующей фирмой и дать заявку на переработку. При этом стоимость утилизации зависит от вида ламп, а периодичность вывоза отходов устанавливается по договоренности с каждой обслуживаемой организацией отдельно.

Храниться рабочие и отработавшие ртутьсодержащие светильники должны в специально оборудованных складских помещениях с хорошей вентиляцией. Предприятия и предприниматели должны вести журнал хранения, эксплуатации, переработки и замены люминесцентных ламп.

Методы утилизации

На территории РФ широкое распространение получил термовакуумный метод утилизации. Порядок переработки при этом следующий:

  • собранные лампочки дробятся прессом;
  • раздробленный материал помещают в камеру с большой температурой;
  • образующийся при нагреве газ собирается в вакуумной ловушке.

При аналогичном методе на испаряющийся газ воздействуют жидким азотом. Это вызывает затвердение ртути и упрощает ее сбор.

На практике применяется также способ утилизации с помощью химических реагентов. Ими обрабатывают раздробленные светильники. В результате реакции с ртутью образуются устойчивые соединения. Они гораздо безопаснее.

Полученную ртуть используют повторно. Выделенный люминофор отправляют для захоронения на полигонах.

Процесс утилизации люминесцентных ламп

В некоторых городах есть целые полигоны, где утилизируют токсические вещества. В Москве, например, ртутьсодержащие лампочки, используемые в быту, можно бесплатно сдавать в районные отделения ЖЭКов. По всей стране вышедшие из строя лампы принимают в магазинах IKEA, и других специализированных точках продаж.

Согласно статистике только около 10 % лампочек перерабатывают по правилам, а 90 % утилизируют без их соблюдения. Утилизация вредных отходов является актуальной проблемой сегодняшнего дня из-за ухудшения экологии. В этом деле важна привычка и ответственное отношение к себе и окружающей природе.

По своим техническим характеристикам люминесцентные лампы превосходят лампочки накаливания. Их энергосберегающие показатели и разнообразие вызвали широкое использование таких светильников в общественных и в бытовых условиях.

Сравнительно простое устройство и понятный принцип работы делают возможным при минимальных навыках и знаниях обслуживать эти устройства. Понимание маркировки позволяет самостоятельно заменять вышедший из строя элемент схемы аналогичным по характеристикам. Но постоянно следует помнить и соблюдать технику безопасности.

https://youtube.com/watch?v=SU4dzAsRUUM

Люминесцентная лампа: принцип действия, достоинства и недостатки

— Принцип действия люминесцентных ламп

— Достоинства и недостатки люминесцентных ламп

Принцип действия Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500. 2000 В на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.В своем движении электроны встречаются с нейтральными атомами газа — заполнителя полости трубки — и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии. Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света: . трубки с гелием светятся светло-желтым или бледно-розовым светом; • трубки с неоном — красным светом; трубки с аргоном — голубым светом. Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения. Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.

Достоинства люминесцентных ламп. Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются: . более высокий коэффициент полезного действия (15. 20%), высокая световая отдача и в несколько раз больший срок службы. Таким образом, при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания; . правильный выбор ламп по цветности может создать освещение, близкое к естественному; о благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи; . люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено. Лампы накаливания (очень чувствительные к повышениям напряжения) быстро перегорают; . малая себестоимость; . низкая яркость поверхности и ее низкая температура (до 50 °С) Недостатки люминесцентных ламп Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются: « сложность схемы включения; • ограниченная единичная мощность (до 150 Вт); • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться); » значительное снижение светового потока к концу срока службы; • вредные для зрения пульсации светового потока; » акустические помехи и повышенная шумность работы; в при снижении напряжения сети более чем на 10% от номинального значения лампа не зажигается; » дополнительные потери энергии в пускорегулирующеи аппаратуре, достигающие 25. 35% мощности ламп; • наличие радиопомех; • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.

Устройство люминесцентных ламп.

Люминесцентная лампа представляет собой стеклянную герметически закрытую трубку, внутренняя поверхность которой покрыта тонким слоем люминофора. Из трубки удален воздух и в нее введены небольшое количество газа (аргона) и дозированная капля ртути.

Внутри трубки на ее концах, в стеклянных ножках, укреплены биспиральные электроды из вольфрама, соединенные с двухштырьковыми цоколями, служащими для присоединения лампы к электрической сети посредством специальных патронов. При подаче электрического токак лампе между электродами возникает электрический разряд в парах ртути, в результате электролюминесценции паров лампа излучает свет.

И если раньше люминесцентные лампы выглядели в основном как длинные белые трубочки различной длины, то теперь повсеместно встречаются люминесцентные лампы с обычными цоколями для использования в стандартных светильниках и люстрах. Это так называемые энергосберегающие лампы, приобретающие все более широкое использование наряду с галогенными лампамии светодиодными светильниками.

Конструктивные особенности

Что собой представляет этот осветительный прибор? По сути, это стеклянная трубка, запаянная с двух сторон. Ее внутренняя поверхность обработана люминофором, из нее выкачан воздух и добавлен газ – аргон. Также внутрь добавлена всего лишь одна капля ртути. Она под действием температуры превращается в пары.

Чтобы лампа светилась, необходимо подать внутрь ее конструкции электрический ток, который поднимет температуру. Поэтому в стеклянную трубку установлены электроды, которые представляют собой вольфрамовые проволочки, скрученные в виде спирали. Вольфрам покрыт специальным сплавом из оксида солей бария или стронция. Именно этот слой увеличивает срок эксплуатации электродов. Здесь же параллельно спирали установлены два так называемых жестких электрода. Они никелевые. Каждый такой электрод одним концом соединен с одним из концов спирали.

Устройство люминесцентного светильника

Конструктивно люминесцентный светильник состоит из:

Который закрывает и защищает все элементы электрической схемы, а также несет на себе крепежные элементы как для монтажа светильника на стену или потолок, так и для сборки всех составляющих осветительного прибора в единое целое.

2. Металлической монтажной панели – основания.

На ней располагаются все электронные составляющие, необходимые для работы светильника, а также фурнитура для установки люминесцентных ламп.

3. Светопрозрачного рассеивателя.

Который создает более комфортное для нашего зрения освещение, так как равномерно распределяет световой поток люминесцентных ламп.

Кроме этих основных компонентов, из которых состоит светильник, в комплекте поставки обычно присутствуют:

— крепежные элементы для установки люминесцентного светильника на стены или потолок.

— Фиксаторы, соединяющие светопрозрачный рассеиватель с корпусом. Позволяющие достаточно просто получать доступ к внутренностям светильника, в первую очередь к лампам, для их замены.

— Заглушки – мембраны. Которыми закрываются неиспользуемые вводные отверстия в светильник, а также герметизируется место ввода питающего кабеля.

Обратите внимание! Люминесцентные лампы, чаще всего, не входят в комплект поставки светильника и их необходимо покупать отдельно

Разновидности

Первоначально в качестве ПРА для люминесцентной лампы использовались электромагнитные дроссели (балласты) со стартерами. Этот комплект назывался электромагнитным пускорегулирующим аппаратом – ЭмПРА. Позже появились электронные аналоги ЭмПРА на транзисторах и микросхемах, выполняющие ту же функцию. Они получили название ЭПРА (электронный пускорегулирующий аппарат), или просто «электронный балласт». Рассмотрим конструкцию и принцип работы этих пускорегулирующих устройств.

Нередко под ЭмПРА подразумевают только электромагнитный дроссель, что не совсем верно. ЭмПРА – это дроссель и стартер – два отдельных узла.

Электромагнитный

ЭмПРА – это обычный дроссель – катушка, намотанная на магнитопроводе, и газоразрядная малогабаритная лампочка со встроенными биметаллическими контактами (рабочими электродами).

Рассмотрим процессы, происходящие в светильнике с ЭмПРА. При включении в колбе стартера зажигается разряд, который нагревает электроды из биметалла. В результате электроды замыкаются и подключают к питающей сети через дроссель спирали электродов ЛЛ. При этом тлеющий разряд в колбе лампочки-стартера гаснет.

Спирали люминесцентной лампы разогреваются, их способность испускать электроны многократно увеличивается. После остывания контактов стартера они размыкаются. В результате на электродах ЛЛ появляется импульс высокого (до 1 кВ) напряжения, создаваемого самоиндукцией дросселя.

На схеме буквами обозначены:

  • А – люминесцентная лампа.
  • В – сеть переменного тока.
  • С – стартер.
  • D – биметаллические электроды.
  • Е – искрогасящий конденсатор.
  • F – нити накала катодов.
  • G – электромагнитный дроссель (балласт).

Высокое напряжение пробивает газовый промежуток. В колбе ЛЛ начинается разряд. При этом ртуть переходит в парообразное состояние, сопротивление газового промежутка резко падает. Чтобы разряд не перешел в неуправляемый дуговой, ток через лампу ограничивается дросселем с большим индуктивным сопротивлением. Поэтому его называют балластом.

Электронный

Внешне электронный балласт для люминесцентных ламп похож на электромагнитный. У него серьезные конструктивные отличия и другой принцип работы.

Как видно на фото, в электронном балласте много радиоэлементов. Рассмотрим типовую структурную схему ЭПРА и узнаем, как он работает.

Переменное сетевое напряжение проходит через фильтр электромагнитных помех, выпрямляется, сглаживается и подается на инвертор. Задача инвертора – обеспечить напряжение для работы ЛЛ. Сформированное инвертором напряжение через схему ограничения тока (балласт) подается на лампу. Схема запуска служит только для пуска ЛЛ. После выполнения своей функции в дальнейшей работе она не участвует.

Узлы инвертора, балласта и пуска на структурной схеме разделены условно. Часто функции балласта выполняет инвертор, дополнительно являющийся стабилизатором тока. В некоторых схемах он играет роль стартера, самостоятельно принимая решение о подогреве спиралей лампы и о подаче на них запускающего высоковольтного импульса.

Более простые схемы запуска представляют собой обычный конденсатор, образующий со спиралями и выходными дросселями колебательный контур. Последний настроен на частоту работы инвертора. Возникающий при погашенной лампе резонанс повышает напряжение на электродах лампы до единиц и даже десятков киловольт и зажигает разряд в колбе без предварительного подогрева спиралей (холодный пуск).

Что даёт такая схема? Прежде всего, мерцание. Обычный электромагнитный дроссель питает лампу переменным током частотой 50 Гц. Люминофор имеет малую инерционность и в промежутках между полуволнами заметно теряет яркость свечения. В результате люминесцентная лампа заметно мерцает. Это плохо для зрения.

Особенно заметно мерцание на изношенных лампах, люминофор которых теряет свойства инерционности.

Инвертор, питающий ЛЛ, работает на частотах десятка и даже сотни кГц. При этом инерционности люминофора достаточно, чтобы «переждать» паузы между питающими импульсами без заметной потери яркости. То есть благодаря ЭПРА у люминесцентной лампы малый коэффициент пульсаций.

Далее электронная схема обеспечивает стабильным питанием лампу, даже если сетевое напряжение отличается от номинального. К примеру, ЭПРА POSVET (фото см. выше) позволяет работать ЛЛ при напряжении в сети от 195 до 242 В. У лампы, подключённой через ЭмПРА, при таких напряжениях либо сократится срок эксплуатации, либо она не запустится.

Плюсы и минусы

В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.

К преимуществам люминесцентных устройств следует отнести:

  • Достаточно высокая эффективность, в сравнении с теми же лампами накаливания выдают на порядок больший световой поток на каждый ватт потребленной электроэнергии;
  • Имеет несколько вариантов цветового спектра, что делает обоснованным их применение для различных целей;
  • Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же показатель у ламп накаливания и галогенок;
  • Достаточно большое разнообразие конструкций – компактные, большие, удлиненные и т.д.

Однако и недостатков у люминесцентных ламп существует немало:

  • Гораздо более высокая стоимость;
  • Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
  • Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
  • Стабильность работы во многом зависит от температуры и влажности окружающей среды;
  • Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
  • В сравнении со светодиодными светильниками, бояться механических повреждений;
  • Не поддаются классическим методам управления яркостью.

Классификация

Разновидностей люминесцентных лам существует много, ведь они используются не только для освещения помещений, но и для специфических целей. К примеру, лечебных. Они отличаются по вариантам исполнения, что также влияет на сферу применения.

Варианты исполнения

Изначально такие лампы были исключительно линейными, но с развитием технологий появились и компактные. Оба вида имеют одинаковые свойства, негативные и положительные стороны. Данную группу можно назвать общие, так как, по сути, они отличаются формой колбы и в определенной мере конструкцией.

Линейные лампы

Это ртутная лампа прямого, кольцевого или U-образного исполнения. Такие имеют классификацию по:

  1. Длине.
  2. Диаметру колбы.

При этом чем больше по габаритам лампа, тем она мощнее. Для линейных ламп используется цоколь G13, а диаметр колбы: Т4, Т5, Т8, Т10, Т12. Цифры после «Т» означают диаметр стеклянного элемента, выраженный в дюймах. Указанные выше типоразмеры считаются стандартными.

Основное отличие подобной конфигурации в том, что она имеет вваренные электроды по краям, которые направлены внутрь изделия. Снаружи установлены цоколи с контактными штырьками для подключения ее в цепь.

Линейные лампы преимущественно используют в офисах, торговых центрах, транспорте, других общественных местах. Все потому что они потребляют не больше 15% электроэнергии, если брать за 100% потребления энергию лампочкой накаливания.

Компактные

Компактные классифицируются по:

  • Форме и размеру колбы.
  • Размеру и типу цоколя.

В основном колба в них изогнутая, и «сложена» в виде спирали или в другую форму. За счет этого они и компактны. Использование в бытовых условиях очень удобное и практичное. Ведь можно найти изделие со стандартным цоколем (е27) и устанавливать в любой бытовой светильник без какой-либо его переделки. Кроме того, цоколи бывают: g-11, g23 и другие.

Есть ЛЛ с улучшенной светопередачей. Эта их особенность достигается за счет нанесения нескольких слоев люминофора. Как результат, они качественней ретранслируют цвета. Могут быть как линейного, так и компактного исполнения.

Специальные

Основное отличие их от стандартных люминесцентных ламп дневного света – это спектр излучения. Существуют такие специальные:

  • Лампы дневного света, отвечающие повышенным требованиям по цветопередаче. Используются для типографий, музеев, картинных галерей.
  • Источники света со спектральным излучением близким к солнечному. Часто используются в медицинских целях для проведения светотерапии.
  • Для растений (рассады в том числе) и аквариумов, обозначаются fluora. Для них характерен усиленный спектральный диапазон синего и красного. Он оказывает положительное влияние на фотобиологические процессы. Могут использоваться даже в саду или в собственной теплице.

  • Аквариумные с преобладанием синего спектра и ультрафиолета. Они помогают создать оптимальные условия для роста кораллов. Отдельные виды способны при таком освещении флуоресцировать.
  • Изделия для освещения помещений, в которых содержаться птицы. Их спектр излучения характеризуется присутствием ближнего ультрафиолета. Это способствует созданию оптимальных условий для птиц, очень приближенных к естественным, применять их стараются в домашних условиях в холодное время года, а на фабриках круглогодично.
  • Лампы с разной цветностью: зеленые, синие, фиолетовые, красные, желтые и др. Активно используются для создания световых эффектов, к примеру, в ночных клубах и других развлекательных заведениях. Достигается световой эффект за счет окрашивания колбы или покрытия ее специальным составом люминофора изнутри. Подобные цветные лампы розового оттенка активно используются для подсветки мясных витрин в магазинах. Они делают мясо привлекательным для глаз, а значит, покупатель с большей вероятностью его купит.
  • Лампы для соляриев. Еще одно направление среди специальных люминесцентных осветительных элементов.
  • УФ лампы из черного стекла, переносные. Используются в сфере лабораторных исследований.
  • Лампы для стерилизации и озонирования – ртутно-кварцевые и бактерицидные, гигиенические.

Важно! Разные типы ЛЛ специального назначения активно используются в механике, текстильном, пищевом производстве, криминалистике, сельскохозяйственной сфере

ПОДКЛЮЧЕНИЕ ЛЮМИНЕСЦЕНТНОЙ ЛАМЫ

Двумя элементами, без которых функционирование люминесцентной лампы является невозможным, являются стартер и дроссель.

Стартер представляет собой небольшую неоновую лампочку с расположенными в ней двумя биметаллическими электродами, которые в нормальном положении разомкнуты. После подачи электроэнергии электроды в стартере замыкаются. Электроэнергия передается на дроссель, в результате чего сила тока возрастает почти в три раза, практически моментально разогревая электроды внутри колбы.

Остывая, биметаллические контакты размыкаются. В момент их размыкания дроссель создает высоковольтный запускающий импульс, благодаря самоиндукции, возникающей в его обмотке. Этот импульс приводит к возникновению разряда в газоконденсатной среде внутри колбы, зажигая ее.

Существуют стартеры на 127 Вольт, которые работают в двухламповых схемах и на 220 Вольт, предназначенные для одной ламповых схем. Они НЕ взаимозаменяемы, так что перед установкой необходимо прочитать маркировку.

Стартер является элементом, который наиболее часто выходит из строя. Если в осветительном приборе погасла одна или несколько ламп необходимо, прежде всего, заменить стартеры.

Данная схема запуска характерна для светильников использующих электромагнитный балласт или по другому – электромагнитный пускорегулирующий аппарат (ЭмПРА). Его применение довольно широко распространено, однако системы подключения основанные на ЭмПРА, на данный момент являются морально устаревшим оборудованием.

Они имеют следующие недостатки:

  • довольно долгий запуск 1-3 сек, в зависимости от степени износа изделия;
  • неприятный звук, возникающий в процессе функционирования пластин дросселя, который со временем усиливается;
  • мерцание (эффект стробоскопа), негативно влияющее на зрение.

Подключение люминесцентной лампы при помощи электронного пускорегулирующего устройства (ЭПРА) имеет принципиально другую схему активации. Прежде всего ЭПРА функционирует в высокочастотном диапазоне 25-133 кГц, используя выходной каскад на транзисторах и трансформатор.

Применение ЭПРА имеет следующие преимущества:

  • отсутствие мерцания и шума в процессе функционирования;
  • отсутствие стартеров в схеме управления;
  • увеличение срока службы и экономия электроэнергии до 20%;
  • некоторые модели выпускаются с возможностью регулировки яркости свечения.

Применение люминесцентных ламп, безусловно, даст положительный экономический эффект в любой организации, частном доме или квартире. Кроме того, можно довольно точно подобрать цвет к уже использующимся образцам.

Однако стремительное распространение светодиодных ламп составило значительную конкуренцию, так как они превосходят люминесцентные по многим параметрам кроме стоимости.

На данный момент наиболее популярными производителями являются:

  • Космос (Россия);
  • OSRAM (Германия);
  • PHILIPS (Голландия);
  • General Electric (США);
  • Sylvania (Бельгия).

Утилизация люминесцентных ламп.

Классификатор относит люминесцентные лампы к отходам, которые необходимо сортировать и собирать отдельно, и к которым применимы особые требования к эксплуатации и утилизации. В связи с тем, что в состав изделия входит ртуть, относящаяся к первому классу опасности.

Хранить вышедшие из строя, отработанные и потерявшие целостность люминесцентные лампы необходимо хранить в герметичных контейнерах. При этом необходимо вести журнал учета, где отмечены дата выхода из строя, а также дата передачи партии нерабочих изделий специализированной организации для утилизации.

2012-2023 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Пускорегулирующая аппаратура

Любые типы газоразрядных ламп не могут быть напрямую подключены к электрической сети. Находясь в холодном состоянии, они обладают высоким уровнем сопротивления и для создания разряда им требуется импульс высокого напряжения. После того как появляется разряд в осветительном устройстве возникает сопротивление с отрицательным значением. Для его компенсации нельзя обойтись простым включением сопротивления в цепи. Это приведет к короткому замыканию и выходу из строя источника освещения.

Для преодоления энергетической зависимости, вместе с лампами дневного света применяются балласты или пускорегулирующая аппаратура.

С самого начала и до сих пор в светильниках применяются устройства электромагнитного типа – ЭмПРА. Основой прибора служит дроссель, обладающий индуктивным сопротивлением. Он подключается вместе со стартером, обеспечивающим включение и выключение. Параллельно подключается конденсатор с высокой емкостью. Он создает резонансный контур, с помощью которого формируется продолжительный импульс, зажигающий лампу.

Существенным недостатком такого балласта является высокое потребление электроэнергии дросселем. В некоторых случаях работа устройства сопровождается неприятным гудением, возникает пульсация люминесцентных ламп, отрицательно влияющая на зрение. Данная аппаратура отличается большими размерами, имеет значительный вес. Она может не запуститься при отрицательных температурах.

Все негативные проявления, в том числе и пульсации люминесцентных ламп удалось преодолеть с появлением электронного балласта – ЭПРА. Вместо громоздких компонентов здесь использованы компактные микросхемы на основе диодов и транзисторов, что позволило заметно снизить их вес. Данное устройство также обеспечивает лампу электрическим током, доводя его параметры до нужных значений, снижая разницу в потреблении. Создается нужное напряжение, частота которого отличается от сетевой и составляет 50-60 Гц.

На некоторых участках частота достигает 25-130 кГц, что позволило устранить мигание, негативно влияющее на зрение и снизить коэффициент пульсации. Прогрев электродов осуществляется за короткий промежуток времени, после чего лампа сразу же загорается. Использование ЭПРА существенно увеличивает срок годности и нормальной эксплуатации люминесцентных источников света.

Устройство люминесцентной лампы

На двух торцах люминесцентной лампы рис.2 расположены вваренные стеклянные ножки, на каждой ножке смонтированы электроды 5, электроды выведены к цоколю 2 и соединены с контактными штырьками, на самих электродах по обеим торцам лампы закреплена вольфрамовая спираль.

На внутреннюю поверхность лампы нанесен тонкий слой люминофора 4, колба лампы 1 после откачки воздуха заполняется аргоном с небольшим количеством ртути 3.

Для чего нужен дроссель в люминесцентной лампе

Дроссель в схеме люминесцентного светильника служит для броска напряжения. Рассмотрим отдельную электрическую схему рис.3, которая не относится к схеме люминесцентного светильника.

Для данной схемы, при размыкании ключа, лампочка на короткое мгновение загорится ярче и затем погаснет. Явление это связано с возникновением ЭДС самоиндукции катушки правило Ленца. Чтобы увеличить свойства проявления самоиндукции, катушку наматывают на сердечник — для увеличения электромагнитного потока.

Схематическое изображение рисунка 4 дает нам полное представление об устройстве дросселя для отдельных типов светильников с люминесцентными лампами.

Магнитопровод сердечник дросселя собирается из пластин электротехнической стали, две обмотки в дросселе — между собой соединены последовательно.

Принцип работы стартера люминесцентной лампы

Стартер в электрической схеме выполняет работу быстродействующего ключа, то-есть им создается замыкание и размыкание электрической цепи.

стартеры для люминесцентного свтильника

При включении стартера замыкании ключа происходит разогрев катодов, а при размыкании цепи создается импульс напряжения, необходимый для зажигания лампы. Стартер в разобранном виде представляет из себя так называемую лампу тлеющего разряда с биметаллическими электродами.

Принцип работы люминесцентного светильника

По двум предоставленным схемам люминесцентных светильников рис.5 можно понять, — в каком соединении состоят каждые отдельные элементы.

Все элементы двух светильников состоят в последовательном соединении, — кроме конденсаторов. Когда мы включаем люминесцентный светильник, происходит прогревание биметаллической пластинки стартера. Пластинка при прогревании изгибается и стартер замыкается, тлеющий разряд при замыкании пластинок гаснет и пластинки начинают остывать, при остывании — пластинки размыкаются. Когда пластинки размыкаются в парах ртути происходит дуговой разряд и лампа зажигается.

В настоящее время имеются более усовершенствованные люминесцентные светильники — с электронным балластом, принцип работы которых тот-же самый что и у люминесцентных светильников, которые были рассмотрены в этой теме.

Предоставленные для Вас записи вносятся мною в сайт из личных конспектов, почерк в которых очень плохой, часть информации берется из собственных знаний. Фотоснимки и электрические схемы подбираются для темы — из интернета. Чтобы предоставить свои записи с личными фотоснимками при выполнении каких-либо работ, нужно наверное иметь личного фотографа или непосредственно обращаться с просьбой к кому-либо, а обращаться с такой просьбой просто не хочется.

На этом пока все друзья. Следите за рубрикой.

04.03.2015 в 16:41

Всегда помогу Борис полезной информацией по части электротехники как Вам так и Вашим друзьям, и знакомым. Виктор.

26.02.2015 в 08:58

Здравствуйте, Виктор! Спасибо за эл.ликбез,помогает! У меня такой случай: погас сначала один потолочный светильник встроенный в систему Армстронг, потом другой. Обратился за помощью к специалисту и получил ответ: светильники надо выбросить и заменить на новые целиком, т.к. сейчас идут светильники без стартеров и т. д. Я заменил светильники и задумался, что этот путь очень дорогой, новый светильник стоит 1400рублей. Если можно, скажите пожалуйста как проверить начинку светильника? дроссели, стартеры, конденсатор. Светильник 4-х ламповый, с 4-мя стартерами, двумя дросселями, одним конденсатором, другими словами как найти неисправный прибор? Прибор-тестор у меня есть. И ещё, в каком магазине можно купить в Тюмени составные части начинки? Заранее благодарю Вас. Спасибо. Борис. 26.02.15.

04.03.2015 в 16:35

Здравствуйте Борис. По люминесцентным светильникам я составлю дополнительную отдельную тему и отвечу на интересующие Ваши вопросы. Следите за рубрикой Борис, я просто стал редко заходить на свой сайт и Ваше письмо прочитал 4 марта, постараюсь ответить на вопросы в полном объеме.

17.03.2015 в 12:57

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: