Правила кирхгофа для электрической цепи, понятным языком

Электротехника-основы  теории.

Три закона спектроскопии Кирхгофа

Ученый разработал набор законов, описывающих, как ведет себя излучение света раскаленными объектами:

1- Горячий твердый объект излучает свет в непрерывном спектре.

2- Разрезанный газ излучает свет со спектральными линиями на дискретных длинах волн, которые зависят от химического состава газа.

3- Твердый объект при высокой температуре, окруженный разреженным газом при более низких температурах, излучает свет в непрерывном спектре с промежутками на дискретных длинах волн, положение которых зависит от химического состава газа.

Три закона спектрографии Кирхгофа позже стали основой возникновения квантовой механики.

Закон Ома для полной цепи

Подробности
Просмотров: 453

«Физика — 10 класс»

Сформулируйте закон Ома для участка цепи.Из каких элементов состоит электрическая цепь?Для чего служит источник тока?

Рассмотрим простейшую полную (т. е. замкнутую) цепь, состоящую из источника тока (гальванического элемента, аккумулятора или генератора) и резистора сопротивлением R (рис. 15.10). Источник тока имеет ЭДС Ε и сопротивление r.

В генераторе r — это сопротивление обмоток, а в гальваническом элементе сопротивление раствора электролита и электродов.

Сопротивление источника называют внутренним сопротивлением в отличие от внешнего сопротивления R цепи.

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи R + r. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля—Ленца (15.14).

Пусть за время Δt через поперечное сечение проводника проходит электрический заряд Δq. Тогда работу сторонних сил при перемещении заряда Δq можно записать так: Аст = ΕΔq. Согласно определению силы тока (15.1) Δq = IΔt. Поэтому

Аст = ΕIΔt.         (15.17)

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых г и Я, выделяется некоторое количество теплоты. По закону Джоуля—Ленца оно равно:

Q = I2RΔt + I2rΔt.         (15.18)

По закону сохранения энергии Аст = Q, откуда получаем

Ε = IR + 1r.         (15.19)

Произведение силы тока и сопротивления участка цепи называют падением напряжения на этом участке.

Таким образом, ЭДС равна сумме падений напряжения на внутреннем и внешнем участках замкнутой цепи.

Закон Ома для замкнутой цепи:

Сила тока в замкнутой цепи равна отношению ЭДС источника тока к полному сопротивлению цепи.

Согласно этому закону сила тока в цепи зависит от трёх величин: ЭДС Ε сопротивлений R внешнего и г внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R >> r). При этом напряжение на зажимах источника примерно равно ЭДС: U = IR = Ε — Ir ≈ Ε

При коротком замыкании, когда R ≈ 0, сила тока в цепи и определяется именно внутренним сопротивлением источника и при электродвижущей силе в несколько вольт может оказаться очень большой, если r мало (например, у аккумулятора r ≈ 0,1 — 0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.

Если цепь содержит несколько последовательно соединённых элементов с ЭДС Ε1, Ε2, Ε3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов.

Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура.
На рисунке (15.11) положительным (произвольно) считают направление обхода против часовой стрелки.

Если при обходе цепи данный источник стремится вызвать ток в направлении обхода, то его ЭДС считается положительной: Ε > 0. Сторонние силы внутри источника совершают при этом положительную работу.

Если же при обходе цепи данный источник вызывает ток против направления обхода цепи, то его ЭДС будет отрицательной: Ε < 0. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображённой на рисунке 15.11, при обходе контура против часовой стрелки получаем следующее уравнение:

Εп = Ε1 + Ε2 + Ε3 = lΕ1| — |Ε2| + |Ε3|

Если Εп > 0, то согласно формуле (15.20) сила тока I > 0, т. е. направление тока совпадает с выбранным направлением обхода контура. При Εп < 0, наоборот, направление тока противоположно выбранному направлению обхода контура. Полное сопротивление цепи Rп равно сумме всех сопротивлений (см. рис. 15.11):

Rп = R + r1 + r2 + r3.

Для любого замкнутого участка цепи, содержащего несколько источников токов, справедливо следующее правило: алгебраическая сумма падений напряжения равна алгебраической сумме ЭДС на этом участке (второе правило Кирхгофа):

I1R1+ I2R2 + … + InRn = Ε1 + Ε2 + … + Εm

Следующая страница «Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»»

Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Электрический ток. Сила тока —
Закон Ома для участка цепи. Сопротивление —
Электрические цепи. Последовательное и параллельное соединения проводников —
Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» —
Работа и мощность постоянного тока —
Электродвижущая сила —
Закон Ома для полной цепи —
Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

Формулировка правил

Сразу необходимо внести ясность. Хотя во многих технических текстах используется слово закон, на самом деле это правило. В чем различие? Закон основывается на фундаментальных истинах, фактах, правило несет более абстрактное понимание. Чтобы это лучше понять рассмотрим основы этого метода.

Из-за сложности вычислений его лучше использовать там, где схема имеет узлы и контуры. Узлом называется место соединения более двух цепей. Это как если взять три и более обычных нитки и связать их вместе. Контуром называется замкнутая цепь, включающая в себя три и более таких узла.

Отдельная ветвь может содержать сколько угодно резисторов, под которыми подразумеваются нагрузки с активным сопротивлением. Все они объединяются в один общий резистор, так как это упрощает решение задачи. Также в цепи может быть один или несколько источников питания, которые также объединяются в один элемент, либо их может и не быть. Тогда цепь будет состоять только из сопротивления.

Контур всегда начинается и заканчивается одним и тем же узлом. Поскольку узлы обозначаются латинскими или русскими буквами, то в уравнении будет на одну букву больше, чем самих соединений. Например, участок состоит из узлов A, B, C, D. Тогда обозначение этой петли будет следующим: A, B, C, D, A. На самом деле, начинать отсчет можно с любой буквы петли, например, C, D, A, B, C, просто в первом варианте легче будет не запутаться.

Определения

Как уже было сказано ветвь – это отрезок электрической цепи, в которой направление движения заряда происходит в одну сторону. Сходящиеся в узле ветви имеют разное направление токов. Контур может состоять из нескольких внутренних контуров, ветви и узлы которых также относятся к этому контуру. Сам закон Кирхгофа по существу содержит два правила, относящиеся к узлу и контуру. Самым главным и сложным является составление уравнений, учитывающих все составляющие этой формулы.

Первый закон

Первое правило говорит о сохранении заряда. Согласно ему, в узле напряжение должно быть равно нулю. Это возможно только в том случае, если все входящие токи в эту точку заходят через одни ветви, а выходят через другие. Соотношение входящих и выходящих токов может быть разным, но суммарная составляющая положительных и отрицательных потенциалов всегда одинакова.

Предположим, в узел входят токи по трем ветвям, а выходят по двум. Суммарная величина входящих токов будет точно равняться суммарной величине выходящих. Если отобразить это математически, то сумма положительных векторов I1, I2 и I3 будет равняться сумме отрицательных векторов I4 и I5.

Второй закон

Это правило связано с сохранением энергии в контуре. Другими словами, энергия источников э. д. с, входящих в контур или рассматриваемый участок, равна падению напряжения на сопротивлениях этого участка. Если выбранный участок не имеет источников питания, то суммарное падение напряжения на всех нагрузках будет равно нулю. Прежде чем переходить к расчетам, следует ознакомиться еще с некоторыми моментами.

Закон кирхгофа расчет цепи

МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА

Метод эквивалентного генератора рационально применять в том случае, когда требуется определить ток (или найти его аналитическое выражение) лишь в одной ветви цепи, без нахождения токов в остальных ветвях.

В основе метода лежит замена части цепи, подключенной к зажимам заданной ветви, эквивалентным источником и определение параметров этого источника. В зависимости от выбора вида эквивалентного источника различают метод эквивалентного генератора напряжения (источник ЭДС) или эквивалентного генератора тока (источник тока).

Расчёт методом эквивалентного генератора напряжения заключается в определении ЭДС и внутреннего сопротивления эквивалентного источника и состоит в следующем.

Применим на практике закон Ома

Проверим на практике, действительно ли «работает» закон Ома. Возьмем батарейку или аккумулятор напряжением около 9 вольт. Нам нужно узнать, какой ток будет протекать, если мы замкнем цепь, подключив к ней резистор 10 кОм. Кружок с надписью «mA» на схеме обозначает наш мультиметр (тестер), настроенный на измерение амперов.

Вначале проверяем теоретически. Для этого используем известные нам формулы:

U = 9 В, R = 10 кОм , I =?

I = U / R = 9 В / 10000 Ом = 0,0009 A = 0,9 мА

Значит тестер нам должен показать около 0,9 мА . Теперь соберите данную схему на макетной плате. В случае возникновения проблем вы можете использовать пример ниже. Просто будьте осторожны, чтобы не допустить короткого замыкания в цепи при установке компонентов, при замыкании можно повредить аккумулятор.

Не забудьте правильно настроить мультиметр при измерении тока!

Результат измерения в указанной выше цепи составляет 0,95 мА . Почему по расчетам у нас получилась одна цифра, а на практике, после измерения тестером, другая? Не следует забывать, что измерения имеют погрешность. Как вы помните, из предыдущей статьи, все резисторы имеют погрешность около 5%, также, сопротивление щупов и самого мультиметра, и к тому же, батарея или аккумулятор может быть не заражена на все 9В! В среднем получается, что результат верный!

Теперь, для теста, нам нужно проверить, что произойдет, если мы подключим другой резистор, а именно 1 кОм , вместо резистора 10 кОм. Держа в голове закон Ома, мы уже должны предугадать, что подключение резистора с в 10 раз меньшим сопротивлением должно давать в 10 раз больший ток. Проверим:

Формулировка правил

Каждое правило Кирхгофа обладает универсальными свойствами. Как первое, так и второе, хоть и не относятся к фундаментальным законам, но твёрдо обоснованы.

Определения

Прежде, чем рассматривать простые принципы и смысл решения СУ (систем уравнений), нужно определиться с применяемыми формулировками. В типологии цепей пользуются следующими понятиями:

  • ветвь;
  • узел;
  • контур.

Всё это – элементы электрической цепи (ЭЦ).


Элементы ЭЦ

Часть электроцепи, через которую проходит электричество одной и той же величины, называется ветвью. Место, в котором соединяются три и более ветви, именуют узлом. Обычно на схемах узлы обозначаются крупными точками. Контуром называется путь, по которому протекает электрический ток, проходя через несколько участков ЭЦ, включающих в себя узлы и ветви.

Важно! Ток (I), выходя из одной точки контура и единожды проходя по разветвлениям и узлам, должен обязательно вернуться в начало. Контур – это замкнутая цепь

Узлы и ветви, подлежащие изучаемому в определённый момент контуру, могут входить в состав других контуров: являться общими для нескольких замкнутых ЭЦ одновременно.

Первое правило

Первая закономерность Кирхгофа звучит так: «Сумма всех токов в узлах ЭЦ равна нулю». Если придать направление токам, текущим сквозь пересечения проводников, имеющих общий контакт (узел), то можно промаркировать стрелками, указывающими на узел, втекающие токи. Стрелками, имеющими направленность от узла, удобно отмечать вытекающие токи:

I1 + I2 – I3 – I4 – I5 = 0


Изображение направления движения электричества

Условно считая, что входящие I имеют плюсовой знак, а выходящие – минусовой, можно перефразировать утверждение. Согласно закону сохранения заряда, алгебраические суммы входящих в узел и выходящих из него I по значению равны.


Первый закон

Убедиться в истинности первого правила можно, собрав смешанную схему включения резисторов, в качестве нагрузки, для источника питания U = 3 В.

Включенные в ветви амперметры позволяют визуально зафиксировать значения токов, входящих и выходящих из первого узла. Их алгебраическая сумма (учитывая знаки) будет равна нулю.


Схема цепи с установкой амперметров

Второе правило

Его называют правилом напряжений, оно утверждает, что сумма всех E (ЭДС), входящих в контур, равняется сумме падений напряжений на резистивных элементах, при условии, что контур замкнутый:

ΣE = ΣI*R.

Например, для цепи с элементом питания и резистором напряжение на резисторе U = I*R будет равно ЭДС батарейки. По второму определению Кирхгофа выражение будет иметь вид:

E = I*R.


Схема с одной ЭДС и одним резистором

По аналогии, если количество резисторов увеличить, то падение напряжения на них распределится так, что в сумме они сравняются со значением ЭДС источника питания:

E = I*R1 + I*R2 + I*R.


Включение одной ЭДС и трёх резисторов одного номинала

Объяснение было бы не полным, если не рассмотреть схему с несколькими ЭДС, входящими в контур. В этом случае выражать равенство следует следующим образом:

E1 + E2 = I*R1 + I*R2 + I*R3.

К сведению. При подключении нескольких источников в один контур необходимо соблюдать полярность, выполняя последовательное соединение плюса одного источника с минусом другого, таким образом, значения ЭДС будут суммироваться.


Включение двух источников в контур

Алгебраическая сумма разностей потенциалов

Закон напряжения по Густаву Кирхгофу — второй закон этого автора, используемый для анализа электрической схемы. Вторым законом Кирхгофа утверждается, что для последовательного замкнутого контура алгебраическая сумма всех напряжений по кругу любой замкнутой цепи равна нулю. Утверждение обусловлено тем, что контур цепи является замкнутым проводящим путём, где потери энергии исключаются. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равняется нулю:

ΣV = 0

Следует обратить внимание: под термином «алгебраическая сумма» имеется в виду учёт полярностей и признаков источников ЭДС, а также падения напряжений по кругу контура. Эта концепция закона Кирхгофа, известная как «сохранение энергии», как движение по кругу замкнутого контура или схемы, утверждает логику возврата к началу цепи и к первоначальному потенциалу без потери напряжения по всему контуру

Отсюда следует вывод: применяя Второй закон Кирхгофа к определенному элементу электрической схемы, важно обращать особое внимание на алгебраические знаки падений напряжения на элементах (источниках ЭДС), иначе вычисления оборачиваются ошибкой

Одиночный контурный элемент — резистор

Простым примером с резистором предположим — ток протекает в том же направлении, что и поток положительного заряда. В этом случае поток тока через резистор протекает от точки A до точки B. Фактически — от положительной клеммы до отрицательной клеммы. Таким образом, поскольку движение положительного заряда отмечается в направлении аналогичном направлению течения тока, на резистивном элементе зафиксируется падение потенциала, которое приведет к падению минусового потенциала на резисторе (— I * R).

Если же поток тока от точки B до точки A протекает в противоположном направлении относительно потока положительного заряда, тогда через резистивный элемент отметится рост потенциала, поскольку имеет место переход от минусового потенциала к потенциалу плюсовому, что даёт падение напряжения (+ I * R). Таким образом, чтобы правильно применить закон Кирхгофа по напряжению к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.

Направление потока тока по замкнутому контуру допустимо определять либо по часовой стрелке, либо против часовой стрелки, и любой вариант допустим к выбору. Если выбранное направление отличается от фактического направления тока, соответствие закону Кирхгофа получится корректным и действительным, но приведет к результату, когда алгебраический расчёт будет иметь знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть ещё один пример с одним контуром цепи на соответствие Второму Закону Кирхгофа.

Одиночный контур электрической цепи

Второй закон Кирхгофа утверждает — алгебраическая сумма разностей потенциалов любого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутого контура с двумя резисторами и одним источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одного контура. Соответственно, одинаковый ток протекает через каждый из резисторов.

Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2, дают напряжение по Второму закону Кирхгофа:

V = I * Rs

где: Rs = R1 + R2.

Очевидно: применение Второго закона Кирхгофа к одиночному замкнутому контуру даёт формулу эквивалентного или полного сопротивления для последовательной цепи. Допустимо расширить эту формулу, чтобы найти значения падений потенциалов по кругу контура:

I = V / Rs

Vr1 = V * (R1 / R1 + R2)

Vr2 = V * (R2 / R1 + R2)

Есть три резистора номинальным сопротивлением 10, 20, 30 Ом, соответственно. Все три резистивных элемента соединены последовательно к 12-вольтовому аккумулятору.

Требуется рассчитать:

  • общее сопротивление,
  • ток цепи,
  • ток через каждый резистор,
  • падение напряжения на каждом резисторе.

Рассчитаем общее сопротивление:

Ro = R1 + R2 + R3  =  10Ω + 20Ω + 30Ω = 60Ω

Ток цепи:

I = V / Ro = 12 / 60 = 0,2A (200 мА)

Ток через каждый резистор:

I * R1 = I * R2 = I * R3 = 0,2A (200 мА)

Падение потенциала на каждом из резисторов:

VR1 = I * R1 = 0.2 * 10 = 2В

VR2 = I * R2 = 0.2 * 20 = 4В

VR3 = I * R3 = 0.2 * 30 = 6В

Таким образом, Второй закон Кирхгофа справедлив, учитывая что индивидуальные падения напряжения, отмеченные по кругу замкнутого контура, в итоге составляют сумму напряжений.

Закон Ома для участка цепи.

Для участка замкнутой электрической цепи, справедливой является следующая зависимость:

J=U/R.

Это математическое соотношение носит название — закон Ома для участка цепи.
С помощью этой формулы, можно вычислить значение любого из свойств цепи, зная
значения двух остальных.
Пользуясь «Треугольником Ома», изображенным на рисунке ниже,
можно наглядно представить как это делается.


Закрываем пальцем неизвестную величину, требующую определения.
Положение величин оставшихся не закрытыми, подскажет нам, что делать.
Как вы сами видите, здесь как раз, возможны три варианта.
1.Чтобы найти силу тока делим величину напряжения на величину сопротивления —
вертикальная линия внутри, символизирует деление.
2. Для нахождения сопротивления необходимо разделить величину напряжения
на величину тока.
3. Неизвестную величину значения напряжения, получаем умножая величину
силы тока на величину сопротивления.

Напряжение измеряется в вольтах(1 вольт), сила тока в амперах(1 ампер), сопротивление в омах(1 ом).

Пример вычисления.
Нам известно напряжение источника электроэнергии(U)-2.5 вольт, сопротивление приемника(R) — 10 ом.
Требуется узнать силу тока(J). Итак, подставляя известные значения в формулу закона Ома получаем:
J=2.5/10; J=0.25 Полученое значение — 0,25 ампер.


Зная силу тока(J) и напряжение(U) можно узнать, мощность(P) потребляемую приемником электроэнергии.
P=U*J; P=0.25*2.5; P=1
Итак, мощность нашего приемника(лампочки) — 1 ватт.

Общие понятия и описание второго закона Кирхгофа

Второй закон Кирхгофа описывает алгебраическую зависимость между электродинамической силой и напряжением в замкнутой электроцепи. В любом замкнутом контуре сумма электродинамической силы равна сумме падания напряжения на сопротивлениях, относящихся к данному контуру.

Для написания формул, определяющих второй закон Кирхгофа, берут положительное значение электродинамической силы и падение напряжений, если направление на относящихся к ним отрезках контура совпадает с произвольным направлением обхода контура. А если же направление электродинамической силы и токов противоположны выбранному направлению, то эти электродинамические силы и падение напряжений берут отрицательными:

Алгоритм определения знака величины электродинамической силы и падения напряжений:

  1. Выбираем направление обхода контурных цепей. Тут возможны несколько вариантов: либо по часовой стрелке, либо против часовой стрелки.
  2. Произвольным образом выбираем направление движения токов протекающих через элементы контурных цепей.
  3. И наконец, расставляем знаки для электродинамической силы и падения напряжений (не забывая о совпадении или несовпадении направления электродинамической силы с направлением движения обхода контура)

Пример вышеописанной формулы второго закона :

Области применения

Закономерности Кирхгофа применяются на практике для сложных контурных цепей, для выяснения распределений и значений токов в этих электроцепях.

С помощью уравнений, положенных в основу этих закономерностей моделируется система контурных напряжений и токов, после решения которой можно сказать какое направление электротока необходимо выбрать. Первое и Второе правило Кирхгофа получили огромное применение при построении параллельных и последовательных контурных цепей.

При последовательном строении электроцепи (в качестве примера отлично подойдёт новогодняя ёлочная гирлянда) сопротивление на каждом последующем элементе падает согласно закону Ома.

При параллельном строении напряжение равно подаётся на все элементы электроцепи, и для определения значений токов в любом месте электроцепи используется второй закон Кирхгофа. Также часто эти правила сочетаются с другими приёмами, такими как принцип суперпозиции и метод эквивалентного электрогенератора и составления потенциальной диаграммы.

Интересные факты:

  • Существует множество заблуждений о третьем, четвертом и т.д. правилах Кирхгофа. Густав Кирхгофф был всесторонне развитым человеком, который изучал множество наук;
  • Он сделал несколько открытий в области теоретической механики для абсолютно упругих тел, в области химии, физики, термодинамике. Именно к этим открытиям относятся эти законы, а с электродинамикой и контурными электрическими цепями не имеют ничего общего;
  • В его честь назван один из кратеров на Луне;
  • Еще один величайший изобретатель Джеймс Максвелл основывал свои идеи именно на этих двух главных закономерностях электродинамики.

Что такое делитель напряжения?

Делитель напряжения — не что иное, как одно из практических применений вышеуказанных законов. На практике все очень просто — последовательно соединяем два резистора и запитываем их.

Напряжение на ножках каждого из них будет пропорционально меньше, но их сумма будет равна напряжению питания. Это не что иное, как иллюстрация действия второго закона Кирхгофа. Другими словами, эта система позволяет разделить напряжение питания, благодаря чему, мы можем получить, например, 6В от батареи 9В.

Это описывается следующей формулой:

Uвход — это напряжение, питающее наш делитель. В числитель ставится номинал резистора, на котором мы хотим узнать падение напряжения. Знаменатель — это сумма обоих сопротивлений. Такое подключение мы уже производили, поэтому повторяться сейчас не будем — самое главное запомнить формулу, которая позволяет рассчитать напряжение, которое должно появиться на резисторе.

Например, посчитаем значение напряжения, которое мы получаем на делителе, состоящем из резисторов 1 кОм и 220 Ом, питаемый от 3 В. Схема будет выглядеть так:

В этом случае расчет напряжения Uвыход будет выглядеть так:

Теперь сделайте свои собственные расчеты для делителя напряжения, состоящего из резисторов 1 кОм и 330 Ом, питаемых батарекой 9 В. Рассчитайте Uвыход на резисторе 1 кОм. Соберите такую ​​схему самостоятельно на макетной плате и измерьте напряжение. В случае проблем вернитесь к примеру выше.

Алгебраическая сумма разностей потенциалов

Закон напряжения по Густаву Кирхгофу – второй закон этого автора, используемый для анализа электрической цепи. Второй закон Кирхгофа гласит, что для последовательной замкнутой цепи алгебраическая сумма всех напряжений в круге любой замкнутой цепи равна нулю. Претензия связана с тем, что петля петли представляет собой замкнутый токопроводящий путь, где потери энергии исключены. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равна нулю:

V = 0

Примечание. Термин «алгебраическая сумма» означает учет полярностей и знаков источников ЭДС, а также падения напряжения в цепи. Эта концепция закона Кирхгофа, известного как «сохранение энергии», как движение по контуру или замкнутому контуру, подтверждает логику возврата к началу цепи и к исходному потенциалу без потери напряжения во всей цепи.

Итак, вывод следует: при применении второго закона Кирхгофа к определенному элементу электрической цепи важно обращать особое внимание на алгебраические признаки падений напряжения на элементах (источниках ЭДС), иначе расчеты обернутся ошибкой

Одиночный контурный элемент — резистор

В качестве простого примера с резистором предположим, что ток течет в том же направлении, что и поток положительного заряда. В этом случае ток протекает через резистор от точки A к точке B. Действительно, от положительной клеммы к отрицательной. Следовательно, поскольку движение положительного заряда отмечается в направлении, аналогичном направлению протекания тока, на резистивном элементе будет зафиксировано падение потенциала, что приведет к падению отрицательного потенциала на резисторе (- I * R).

Если ток, протекающий из точки B в точку A, течет в направлении, противоположном потоку положительного заряда, вы заметите увеличение потенциала через резистивный элемент, поскольку происходит переход от отрицательного потенциала к положительному потенциалу, что дает падение напряжения. (+ I * R). Следовательно, чтобы правильно применить закон Кирхгофа к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.

Направление протекания тока в замкнутом контуре можно определять по или против часовой стрелки, и любой вариант допустим на выбор. Если выбранное направление отличается от фактического направления тока, соблюдение закона Кирхгофа будет правильным и действительным, но приведет к результату, когда алгебраический расчет имеет знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть еще один пример с петлевой петлей на соответствие второму закону Кирхгофа.

Одиночный контур электрической цепи

Второй закон Кирхгофа гласит, что алгебраическая сумма разностей потенциалов каждого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутой цепи с двумя резисторами и источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одной цепи. В результате через каждый из резисторов протекает одинаковый ток.

Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2 дают напряжение согласно второму закону Кирхгофа:

V = I * Rs

где: Rs = R1 + R2.

Очевидно, что применение второго закона Кирхгофа к одиночному замкнутому контуру дает формулу для эквивалента или импеданса для последовательной цепи. Допускается расширить эту формулу для нахождения значений капель потенциала по контурной окружности:

I = V / Rs

Vr1 = V * (R1 / R1 + R2)

Vr2 = V * (R2 / R1 + R2)

Есть три резистора с номинальным сопротивлением 10, 20, 30 Ом соответственно. Все три резистивных элемента соединены последовательно с батареей на 12 вольт.

Необходимо рассчитать:

  • полное сопротивление,
  • ток цепи,
  • ток через каждый резистор,
  • падение напряжения на каждом резисторе.

Рассчитываем полное сопротивление:

Ro = R1 + R2 + R3 = 10 Ом + 20 Ом + 30 Ом = 60 Ом

Ток цепи:

I = V / Ro = 12/60 = 0,2 А (200 мА)

Ток через каждый резистор:

I * R1 = I * R2 = I * R3 = 0,2 А (200 мА)

Потенциальное падение на каждом из резисторов:

VR1 = I * R1 = 0,2 * 10 = 2 В

VR2 = I * R2 = 0,2 * 20 = 4 В

VR3 = I * R3 = 0,2 * 30 = 6 В

Таким образом, действует Второй закон Кирхгофа, поскольку отдельные падения напряжения, обнаруживаемые по окружности замкнутого контура, в конечном итоге являются суммой напряжений.

дальнейшее чтение

  • Клаус Хентшель : Густав Роберт Кирхгоф и сеть Zusammenarbeit mit Роберт Вильгельм Бунзен, в: Karl von Meyenn (Hrsg.) Die Grossen Physiker , Мюнхен: Beck, vol. 1 (1997), стр. 416–430, 475–477, 532–534.
  • Тексты в Викиисточнике:
    • « Кирхгоф, Густав Роберт ». Энциклопедия Американа . 1920 г.
    • « Кирхгоф, Густав Роберт ». Справочная работа нового студента . 1914 г.
    • « Кирхгоф, Густав Роберт ». Британская энциклопедия (11-е изд.). 1911 г.
    • « Кирхгоф, Густав Роберт ». Новая международная энциклопедия . 1905 г.
    • « Эскиз Густава Роберта Кирхгофа ». Ежемесячный научно-популярный журнал . Vol. 33. Май 1888 г.
    • « Кирхгоф, Густав Роберт ». Американская циклопедия . 1879 г.
Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: