Все про резисторы

Что такое резистор

Классификация резисторов

Три резистора разных номиналов для поверхностного монтажа (SMD), припаянные на печатную плату

Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду ВАХ, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологии изготовления.

По назначению:

  • резисторы общего назначения;
  • резисторы специального назначения:
    • высокоомные (сопротивления от десятка МОм до единиц ТОм, рабочие напряжения 100—400 В);
    • высоковольтные (рабочие напряжения — десятки кВ);
    • высокочастотные (имеют малые собственные индуктивности и ёмкости, рабочие частоты до сотен МГц);
    • прецизионные и сверхпрецизионные (повышенная точность, допуск 0,001 — 1 %).

По характеру изменения сопротивления:

Постоянные резисторы (для навесного монтажа).

Переменный резистор.

Подстроечные резисторы.

Прецизионный многооборотный подстроечный резистор.

  • постоянные резисторы;
  • переменные регулировочные резисторы;
  • переменные подстроечные резисторы.

По способу защиты от влаги:

  • незащищённые;
  • лакированные;
  • компаундированные;
  • впрессованные в пластмассу;
  • герметизированные;
  • вакуумные.

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

  • линейные резисторы;
  • нелинейные резисторы:
    • варисторы — сопротивление зависит от приложенного напряжения;
    • терморезисторы — сопротивление зависит от температуры;
    • фоторезисторы — сопротивление зависит от освещённости;
    • тензорезисторы — сопротивление зависит от деформации резистора;
    • магниторезисторы — сопротивление зависит от величины магнитного поля.
    • мемристоры (разрабатываются) — сопротивление зависит от протекавшего через него заряда (интеграла тока за время работы).

По виду используемых проводящих элементов:

Проволочный резистор с отводом.

Плёночный угольный резистор (часть защитного покрытия удалена для демонстрации токопроводного слоя).

  • Проволочные резисторы. Наматываются из проволоки или ленты с высоким удельным сопротивлением на какой-либо каркас. Обычно имеют значительную паразитную индуктивность. Для снижения паразитной индуктивности почти всегда выполняются с бифилярной намоткой. Высокоомные малогабаритные проволочные резисторы иногда изготавливают из микропровода. Иные типы резисторов называются непроволочными резисторами.
  • Непроволочные резисторы. Резистивный элемент представляет собой объёмную структуру физического тела или поверхностного слоя, образованного на изоляционных деталях (тонкую плёнку металлического сплава или композитного материала с высоким удельным сопротивлением, низким коэффициентом термического сопротивления, обычно нанесённую на цилиндрический керамический сердечник). Концы сердечника снабжены напрессованными металлическими колпачками с проволочными выводами для монтажа. Иногда, для повышения сопротивления, в плёнке исполняется винтовая канавка для формирования спиральной конфигурации проводящего слоя. Сейчас это наиболее распространённый тип резисторов для монтажа в отверстия печатных плат. По такому же принципу выполнены резисторы в составе гибридной интегральной микросхемы: в виде металлических или композитных плёнок, нанесённых на обычно керамическую подложку методом напыления в вакууме или трафаретной печати.

По виду применяемых материалов:

  • Углеродистые резисторы. Изготавливаются в виде плёночных и объёмных. Плёнки или резистивные тела представляют собой смеси графита с органическими или неорганическими веществами.
  • Металлопленочные или металлоокисные резисторы. В качестве резистивного материала используется тонкая металлическая лента.
  • Композиционные резисторы.
  • Проволочные резисторы.
  • Интегральный резистор. Резистивный элемент — слаболегированный полупроводник, формируемый в кристалле микросхемы в виде обычно зигзагообразного канала, изолированного от других цепей микросхемы p-n переходом. Такие резисторы имеют большую нелинейность вольт-амперной характеристики. В основном используются в составе интегральных монокристаллических микросхем, где применить другие типы резисторов принципиально невозможно.

Свойства в теории и практике

Главное свойство этого радиокомпонента – сопротивление. Измеряется в омах (Ом).

Начнем с концепции активного сопротивления. Он назван так потому, что он есть во всех материалах (даже в сверхпроводниках, пусть и 0,00001 Ом). А для резисторов он как раз и является основным.

Что говорит теория

Теоретически резистор имеет постоянное сопротивление, которое не зависит от внешних условий (температуры, давления, напряжения и т.д.).

График зависимости тока от напряжения простой.
В идеальных математических условиях резистор имеет только одно активное сопротивление. По типу бывают нелинейные и линейные резисторы.

Что на самом деле

Фактически все резисторы имеют нелинейную зависимость тока от напряжения. То есть его стойкость зависит еще и от внешних условий, в частности, от температуры.
Конечно, эта зависимость не такая, как у полупроводников, но она существует. И что самое главное, у этого радиокомпонента есть емкость и индуктивность. Помимо активного сопротивления существует еще и реактивное сопротивление.

Например, для постоянного тока сопротивление составляет 200 Ом, а при высоких значениях индуктивности на частотах выше 2 кГц сопротивление уже будет 250 Ом.

Поэтому резисторы изготавливаются из разных материалов. Они бывают керамическими, углеродными, проволочными и имеют разные допуски и погрешности. SMD-часть имеет меньшую емкость и индуктивность, чем DIP.

Также существуют специальные типы резисторов с более выраженной нелинейной вольт-амперной характеристикой. Если для обычных резисторов график токового напряжения немного нелинейный, то для данного типа деталей он лавинообразный.

Их стойкость сильно зависит от внешних условий, а не как обычно:

  • Термистор. Сопротивление увеличивается или уменьшается из-за влияния температуры;
  • Варистор. Он меняет свои свойства в зависимости от приложенного напряжения;
  • Фоторезистор. Сопротивление уменьшается, если на него воздействует свет;
  • Экстензометр. При деформации (сжатие, механическое напряжение) его прочность изменяется.

Кроме того, еще одной характеристикой активного сопротивления является выделение тепла при прохождении электрического тока. Когда электрический ток течет по замкнутой цепи, электроны сталкиваются с атомами. И тогда выделяется тепло. Теплота измеряется в мощности. Он рассчитывается на основе напряжения и тока.

Одна из популярных функций резисторов – снижение напряжения и ограничение тока. Например, если через резистор проходит ток 0,25 А и на нем падает напряжение 1 В, мощность, которая будет рассеиваться на нем, составит 0,25 Вт.

Поэтому некоторые детали меняют свое сопротивление, даже если они для этого не предназначены. Это свойства материала. А если резистор проволочный, то при нагревании он расширяется и его проводимость ухудшается. Следовательно, детали имеют допуск, измеряемый в процентах.

И по этой причине бывают резисторы с разной мощностью рассеивания. Вы не можете поставить резистор 0,125 Вт вместо резистора 1 Вт. Он начнет нагреваться, трескаться, потемнеть. И тогда он сгорит. Потому что он не предназначен для такой мощности.

Переменные резисторы

Переменные резисторы, как правило, имеют минимум три вывода: от концов токопроводящего элемента и от щеточного контакта, который может перемещаться по нему. С целью уменьшения размеров и упрощения конструкции токопроводящий элемент обычно выполняют в виде незамкнутого кольца, а щеточный контакт закрепляют на валике, ось которого проходит через его центр.

Таким образом, при вращении валика контакт перемещается по поверхности токопроводящего элемента, в результате сопротивление между ним и крайними выводами изменяется.

В непроволочных переменных резисторах обладающий сопротивлением то-копроводящий слой нанесен на подковообразную пластинку из гетинакса или текстолита (резисторы СП, СПЗ-4) или впрессован в дугообразную канавку керамического основания (резисторы СПО).

В проволочных резисторах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе. Для надежного соединения между обмоткой и подвижным контактом провод зачищают на глубину до четверти его диаметра, а в некоторых случаях и полируют.

Существуют две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования тока в цепи, и тогда регулируемый резистор называют реостатом, в другом — для регулирования напряжения, тогда его называют потенциометром. Показанное на рис. 5 условное графическое обозначение используют, когда необходимо изобразить реостат в общем виде.

Для регулирования тока в цепи переменный резистор можно включить диумя выводами: от щеточного контакта и одного из концов токопроводящего элемента (рис. 6,а). Однако такое включение не всегда допустимо.

Рис. 5. Реостаты и переменные резисторы — условное обозначение.

Если, например, в процессе регулирования случайно нарушится соединение щеточного контакта с токопроводящим элементом, электрическая цепь ока-1 жется разомкнутой, а это может явиться причиной повреждения при

бора. Чтобы исключить такую возможность, второй вывод токопроводящего элемента соединяют с выводом щеточного контакта (рис. 6,б). В этом случае даже при нарушении соединения электрическая цепь не будет разомкнута.

Общее обозначение потенциометра (рис. 6,в) отличается от символа реостата без разрыва цепи только отсутствием соединения выводов между собой.

Рис. 6. Обозначение потенциометра на принципиальных схемах.

К переменным резисторам, применяемым в радиоэлектронной аппаратуре, часто предъявляются требования по характеру изменения сопротивления при повороте их оси.

Так, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между выводом щеточного контакта и правым (если смотреть со стороны этого контакта) выводом токопроводящего элемента изменялось по показательному (обратному логарифмическому) закону.

Только в этом случае наше ухо воспринимает равномерное увеличение громкости при малых и больших уровнях сигнала. В измерительных генераторах сигналов звуковой частоты, где в качестве частотозадающих элементов часто используют переменные резисторы, также желательно, чтобы их сопротивление изменялось по логарифмическому или показательному закону.

Если это условие не выполнить, шкала генератора получается неравномерной, что затрудняет точную установку частоты.

Промышленность выпускает непроволочные переменные резисторы, в основном, трех групп:

  • А — с линейной,
  • Б — с логарифмической,
  • В — с обратно-логарифмической зависимостью сопротивления между правым и средним выводами от угла поворота оси ф (рис. 47,а).

Резисторы группы А используют в радиотехнике наиболее широко, поэтому характеристику изменения их сопротивления на схемах обычно не указывают. Если же переменный резистор нелинейный (например, логарифмический) и это необходимо указать на схеме, символ резистора перечеркивают знаком нелинейного регулирования, возле которого (внизу) помещают соответствующую математическую запись закона изменения.

Рис. 7. Переменный резистор с обратно-логарифмической зависимостью сопротивления.

Резисторы групп Б и В конструктивно отличаются от резисторов группы А только токопроводящим элементом: на подковку таких резисторов наносят токопроводящий слой с удельным сопротивлением, меняющимся по ее длине. В проволочных резисторах форму каркаса выбирают такой, чтобы длина витка высокоомного провода менялась по соответствующему закону (рис. 7,6).

Устройство резисторов

Из школьного курса физики мы знаем, что сопротивление проводника определяется его удельным сопротивлением, длинной и сечением.

Формула сопротивления проводника

В начале статьи приводилась механическая аналогия резистора, как сужения трубы. Это работает и в элекрике: если уменьшить сечение проводника, его сопротивление увеличится.

Поэтому, резисторы делают из тонкой проволоки, из тонких плёнок разных металлов и сплавов, из композитных материалов. При этом, чтобы увеличить эффективную длину, в резистивном слое нарезают различного вида спирали и канавки:

Очень условно показано устройство резистора. Слева: на поверхности цилиндрической основы резистора слой токопроводящего материала, в котором нарезаны канавки для увеличения сопротивления. Справа: плёночный вариант.

Обозначение на схеме

На электрической принципиальной схеме все резисторы обозначаются прямоугольником. Рядом ставится буква R и число, указывающее сопротивление. Если это постоянный, то внутри прямоугольника могут стоять римские цифры, соответствующие мощности этого элемента в ваттах. При мощности менее 1 Вт применяются следующие условные обозначения:

  • одна продольная линия внутри прямоугольника указывает на мощность в 0,5 Вт;
  • одна косая линия говорит о мощности в 0,25 Вт;
  • две косых — 0,125 Вт;
  • три косых — 0,05 Вт.

Для того чтобы можно было отличать один прибор от другого, например, варистор от термистора также используются условные обозначения:

  • постоянный резистор обозначается только прямоугольником;
  • регулировочный — стрелка перечеркивает прямоугольник, центральный вывод подключается к одному из выводов резистора;
  • переменный — к прямоугольнику сверху под прямым углом подходит стрелка, к ней подключаются другие приборы;
  • подстроечный — на прямоугольник сверху ложится буква «т», к этому выводу подключаются другие приборы;
  • подстроечный, как реостат, центральный вывод соединен с одним из выводов прибора — прямоугольник перечеркивает косая буква «т»;
  • термистор (терморезистор) — на прямоугольник под наклоном ложится хоккейная клюшка;
  • варистор — обозначается как термистор, но над рабочей поверхностью клюшки ставится буква U;
  • фоторезистор — сверху к прямоугольнику подходят две наклонные стрелки.

Паразитные характеристики

Но, такой подход, кроме плюсов, даёт ещё и некоторые минусы. Дело в том, что реальный резистор, в отличие от идеального, обладает не только сопротивлением, но и некоторой индуктивностью и ёмкостью. То есть схема реального резистора выглядит примерно так:

Схема замещения резистора

Ёмкость и индуктивность — паразитные характеристики резистора, они искажают его функции в схеме. И само по себе устройство резистора может являться причиной этих паразитных свойств. Спиральные канавки в резистивном слое — чем не витки катушки индуктивности? А между близко расположенными участками проводящего слоя возникает ёмкость.

Хотя эти индуктивность и ёмкость небольшие по величине, но в некоторых ситуациях (например, на высоких частотах) способны вносить заметные искажения.

Поэтому, при изготовлении резисторов применяют различные ухищрения, чтобы снизить паразитные характеристики. Например, нарезают канавки хитрым рисунком. Впрочем, эта тема уже выходит за рамки данной статьи.

Что такое резистор

Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».

Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.

Также есть два вида полупроводников:

  • линейные, сопротивление у которых от тока и напряжения не зависит;
  • нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.

Основным параметром резисторов является номинальное напряжение.

Как выглядит

Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.

Разница во внешнем виде и размерах

Из чего состоит

Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.

Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.

Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.

Для чего используется

Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.

Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.

Обозначение на схемах

В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:

Обозночения постоянных элементов на схеме

Переменные, в том числе подстроечные, а также нелинейные следующим образом:

Обозначения переменных проводников

Применение потенциометров в датчиках давления

Параметры работы различных устройств удобно преобразовывать в электрические сигналы. Потенциометрический датчик давления жидкости или газа применяют в системах подачи топлива в машинах, газа в магистралях и т. п. Обычно это мембранные измерительные приборы.

Под действием перепада давления на обеих сторонах мембраны происходит ее перемещение. При этом также поворачивается ползун. Если давления Р и Ри равны между собой, движок переходит в исходное левое положение, при котором устанавливается начальное сопротивление прибора. Когда Ри уменьшается, мембрана перемещается вправо, а ползунок устанавливает щетку потенциометра в положение, соответствующее перепаду давления.

Чтобы снизить погрешность дискретного изменения сопротивления потенциометра, количество витков на нем делают не менее 100. Ее можно полностью устранить, если перемещать щетку вдоль оси калиброванной проволоки реохорда.

Основные параметры резисторов

Каждый резистор имеет ряд параметров, которыми он характеризуется. Наиболее значимые это: номинальное сопротивление, допустимое отклонение, допустимая мощность рассеяния, температурный коэффициент сопротивления (ТКС)

Существуют и другие параметры, по которым оценивается резистор, но они довольно специфичны и их оценка важно лишь в немногих случаях

Номинальное сопротивление указывается на корпусе резистора в виде маркировки и величина сопротивление пишется в Омах.

Допустимое отклонение от номинальной величины зависит от класса точности. Существует три основных класса точности резисторов:

  • 1 класс с отклонением от номинала 5 % (Е24);
  • 2 класс с отклонением от номинала 10 % (Е12);
  • 3 класс с отклонением от номинала 20 % (Е6).

Также имеются высокоточные резисторы с допустимыми отклонениями 0,01%; 0,02%; 0,05%; 0,1%; 0,2%; 0,5%; 1%; 2% (номинальные ряды Е196, Е96, Е48).

Следующая характеристика это допустимая мощность рассеяния, которая может рассеиваться (выделяться) на резисторе при сохранении его параметров в пределах номинала в течение длительного времени (срока службы). По этому параметру резисторы могут иметь значение от 0,01 до 500 Вт. На условных обозначениях внутри принципиальных схем мощность рассеяния обозначается с помощью горизонтальных, вертикальных и наклонных линий внутри прямоугольника резистора.

Температурный коэффициент сопротивления (ТКС) — это параметр, который характеризующий изменение сопротивления при изменении температуры окружающей среды на 1 °С. У обычных резисторов ТКС отрицательный. Положительный, только у углеродистых резисторов он отрицателен.

Резистор в цепи

На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка “зигзаг” с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.

Мощность может обозначаться полосками на прямоугольнике:

  • 2 Вт — 2 вертикальные черты;
  • 1 Вт — 1 вертикальная черта;
  • 0,5 Вт — 1 продольная линия;
  • 0,25 Вт — одна косая линия;
  • 0,125 Вт — две косые линии.

Допустимо указание мощности на схеме римскими цифрами.

Обозначение переменных резисторов отличается наличием дополнительной над прямоугольником линии со стрелкой, символизирующей возможность регулировки, цифрами может быть указана нумерация выводов.

Полупроводниковые резисторы обозначаются тем же белым прямоугольником, но перечеркнутым косой линией (кроме фоторезисторов) с буквенным указанием типа управляющего воздействия (U — для варистора, P — для тензорезистора, t — для терморезистора). Фоторезистор обозначается прямоугольником в круге, к которому направлены две стрелки, символизирующие свет.

Параметры резистора не зависят от частоты протекающего тока, это означает, что данный элемент одинаково функционирует в цепях постоянного и переменного тока (как низкой, так и высокой частоты). Исключением являются проволочные резисторы, которым свойственна индуктивность и возможность потери энергии вследствие излучения на высоких и сверхвысоких частотах.

В зависимости от требований к свойствам электрической цепи резисторы могут соединяться параллельно и последовательно. Формулы для расчета общего сопротивления при разном соединении цепей существенно отличаются. При последовательном соединении итоговое сопротивление равно простой сумме значений входящих в цепь элементов: R = R1 + R2 +… + Rn.

При параллельном соединении для вычисления суммарного сопротивления необходимо сложить величины, обратные значениям элементов. При этом получится значение, также обратное итоговому: 1/R = 1/R1+ 1/R2 + … 1/Rn.

Общее сопротивление параллельно соединенных резисторов будет ниже наименьшего из них.

Watch this video on YouTube

Устройство переменных резисторов

 Где мы можем наблюдать переменные резисторы в наших бытовых условиях? — Возьмем допустим регулировку звука в радиоприемнике, регулирование звука здесь осуществляется  переменным резистором.

переменный резистор регулятора громкости

Что представляет из себя переменный резистор и как он устроен?

устройство переменного резистора

Переменным резистором при повороте ручки происходит изменение сопротивления,  то есть  при этом создается  деление тока.

Ток в этом примере, изменяется в следствии  величины сопротивления для определенного участка электрической цепи.   Поворотом ручки осуществляется либо падение либо возрастание силы тока.

Чтобы понять зависимость двух физических величин, зависимости силы тока от сопротивления, — вернемся к физике из школьной программы.

реостат

Итак мы вспомнили,  что сила тока возрастает  при падении сопротивления для определенного участка электрической цепи и наоборот, как это можно продемонстрировать  на реостате.

                                              рис.1

Более наглядное представление мы можем получить из  рисунка \рис.1\,  —  понятие о прямой зависимости,  принимаемого значения силы тока от изменения величины сопротивления.     По такому же принципу устроены подстроечные и переменные резисторы.

Устройство постоянных резисторов

постоянный \химический \ резистор

Постоянный  резистор  состоит из керамики цилиндрической формы,   на поверхность которого наносится  тонкий проводящий слой углерода или специальный сплав из металла,  снаружи на поверхность резистора наносится специальный лак.

Резисторы проволочные имеют такую же основу как и химические, сверху только наматывается провод, служащий дополнительным сопротивлением.

                    резистор проволочный

Такой тип резисторов используется в электрических участках \цепях\  с большим значением силы тока.    К основным параметрам резисторов относятся:

  • класс точности;
  • мощность рассеяния;
  • номинальное значение.

На каждом резисторе \на корпусе\  указывается номинальная величина.   Из практики, указанная величина на корпусе, не всегда соответствует данному значению.

Отклонение в числах  называют допуском.     Резисторы делятся на три класса точности:

  • для первого класса — допуск 5%;
  • для второго класса — 10%;
  • для третьего класса — 20%.

Кто увлекался радиотехникой, знают, что для каждого мелкого \миниатюрного\ резистора имеется свой цветовой код, который наносится на резисторе в виде цветных колец либо цветных точек.

цветовой код резисторов

Значение для каждого цвета можно найти в соответствующих таблицах.

рис.2

Возьмем к примеру верхний резистор \рис.2\.     Читаем цветовой код резистора:

На резисторе нанесены три оранжевых кольца.    Оранжевый цвет соответствует цифре 3, первое и второе кольцо у нас будет обозначать число,  получается число 33.

Третье кольцо соответствует количеству нулей.   Из этого следует, что данный резистор имеет номинальное значение сопротивления — 33000 Ом или же — 33 кОм.

Сложного,  в цветовом  коде  с последующей расшифровкой  сопротивления резистора как Вы убедились, — ничего нет.

И следующей особенностью для резисторов является его мощность.   Для чего вообще необходимо учитывать данный показатель или значение мощности?

Дело в том, что при пропускании тока через резистор, выделяется определенное количество тепла — в зависимости от приложенного напряжения и значения сопротивления резистора.   То есть всем нам известно, что при протекании тока для определенного участка электрической цепи с малым значением сопротивления, сила тока будет принимать наибольшее значение, соответствующее  сопротивлению резистора.

Из этого следует, что мощность указанная на резисторе  — это максимальная мощность рассеивания, которую резистор может излучать в виде тепла, при этом не перегреваясь.

   Обозначение мощности резисторов

рис.3

Конечно же важно  запомнить,  что два символа \рис.3\ изображенных на рисунке,  имеют место обозначений:

  • в европейских;
  • американских,

—  электрических схемах, с использованием резисторов.

Более подробная информация о мощности резисторов \рис.4\  представлена в данной таблице.

                                                            рис.4

Ко всему изложенному,   также нужно запомнить обозначения резисторов, встречающихся в электрических схемах  технического паспорта.

рис.5

В  рисунке \рис.5\  даны обозначения:

  • мощности резисторов;
  • переменных резисторов;
  • подстроечных резисторов.

Для расчета,  при котором можно подать максимальное напряжение на резистор  с его определенным значением сопротивления, пользуются  данной формулой.

Итак,  мы вникли в некоторые подробности касающиеся устройства и типов резисторов.    Для чего нам  это все необходимо знать?

— Конечно же для проведения ремонта бытовой:

  • аудио;
  • видео

техники.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: