Проводники в электрическом поле — формулы и определение с примерами

В чём отличие проводников от диэлектриков, их свойства и сфера применения

Характеристики и физические свойства материалов

Параметры проводников определяют область их применения. Основные физические характеристики:

  • удельное электрическое сопротивление — характеризует способность вещества препятствовать прохождению электрического тока;
  • температурный коэффициент сопротивления — величина, характеризующая изменение показателя в зависимости от температуры;
  • теплопроводность — количество тепла, проходящее в единицу времени через слой материала;
  • контактная разность потенциалов — происходит при соприкосновении двух разнородных металлов, применяется в термопарах для измерения температуры;
  • временное сопротивление разрыву и относительное удлинение при растяжении — зависит от вида металла.

При охлаждении до критических температур удельное сопротивление проводника стремится к нулю. Это явление называется сверхпроводимостью.

Свойства, характеризующие проводник:

  • электрические — сопротивление и электропроводимость;
  • химические — взаимодействие с окружающей средой, антикоррозийность, способность соединения при помощи сварки или пайки;
  • физические — плотность, температура плавления.

Особенность диэлектриков — противостоять воздействию электротока. Физические свойства электроизоляционных материалов:

  • диэлектрическая проницаемость — способность изоляторов поляризоваться в электрическом поле;
  • удельное объёмное сопротивление;
  • электрическая прочность;
  • тангенс угла диэлектрических потерь.

Изоляционные материалы характеризуются по следующим параметрам:

  • электрические — величина пробивного напряжения, электрическая прочность;
  • физические — термостойкость;
  • химические — растворимость в агрессивных средствах, влагостойкость.

Понятие электроемкости проводника

Емкость также подразумевает соответствующее накопление электрической энергии. Если электрический заряд передается между двумя изначально незаряженными проводниками, оба становятся одинаково заряженными: один положительно, другой отрицательно, и между ними устанавливается разность потенциалов. Емкость C представляет собой отношение величины заряда q на любом проводнике к разности потенциалов V между проводниками, или выражается: 

Этот отрицательный заряд на пластине 2 уменьшит потенциал на пластине 1. В то же время положительный заряд на пластине 2 будет пытаться увеличить потенциал пластины 1. Однако эффект более близкой стороны пластины 2, удерживающей отрицательный заряд, будет больше. Это приводит к снижению потенциала пластины 1. Итак, теперь на пластину 1 можно подать больше заряда, если мы заземлим внешнюю сторону второй пластины. Тогда положительный заряд с этой стороны пойдет на Землю. С помощью этой пластины 1 сможет удерживать еще больше положительного заряда. Таков принцип работы конденсатора.

Понятие потенциала в физике

Из курса физики известно, что работа некоторых сил, например силы тяжести, не зависит от траектории движения тела, а зависит лишь от величины перемещения.

Такие силы и силовые поля, в которых они действуют, называют потенциальными или консервативными.

Сила, действующая на заряд, помещенный в однородное электростатическое поле, также относится к потенциальным и определяется формулой:

Формула 1

F→=q·E→,

где q — электрический заряд, Кл;

E→ — напряженность электрического поля, В.

В механике работа определяется как произведение силы на расстояние между точками – началом и концом движения и косинусом угла α между векторами силы и скорости. Аналогично выведем формулу для определения работы электростатического поля при перемещении заряда из одного положения в другое.

Формула 2

A=F→·Δr·cosα=q·E→·Δr·cosα=q·E→·(r2-r1)·cosα=(q·E→·r2-q·E→·r1)·cosα.

Величину q·E→·r1 называют потенциальной энергией поля.

Определение 1

Потенциальная энергия является мерой работы, которую совершат силы при перемещении объекта в потенциальном поле.

Работа зависит от разницы потенциальных энергий в начальной и конечной точке. Тогда работу можно представить как:

Формула 3

A=-(W2-W1).

Примечание

Знак «минус» в выражении для работы означает, что если уменьшить потенциальную энергию с помощью силового воздействия, работа поля будет положительной. Если потенциальную энергию увеличить — работа будет отрицательной.

Поместим в некоторую точку неподвижный заряд q, чтобы создать электростатическое поле. Когда заряд q1 попадает в это поле, заряды q и q1 не взаимодействуют друг с другом, на заряд q1 действует само поле. Чтобы ввести новую характеристику поля, не зависящую от помещенных в него зарядов, необходимо поделить потенциальную энергию на заряд q. Полученную величину называют потенциалом.

Определение 2

Потенциал (от слова potentia — сила, возможность) — скалярная величина в физике, равная отношению потенциальной энергии к величине заряда.

В электрике принято следующее обозначение потенциала: φ.

Формула 4

φ=Wq.

Нулевым принято считать потенциал бесконечно удаленной точки (r→∞).

Ток в цепи всегда течет от большего потенциала к меньшему.

Формула для потенциала одного заряда приведена выше. На практике любое заряженное тело можно разделить на несколько элементов, каждый из которых будет иметь свой потенциал. Тогда потенциал системы, состоящей из двух и более зарядов:

Формула 5

φ=φ1+φ2+φ3+…

Сила порождаемая электрическими зарядами

Напряженность электрического поля является векторной величиной, а значит имеет численную величину и направление. Величина напряженности электрического поля имеет свою размерность, которая зависит от способа ее вычисления.

Электрическая сила взаимодействия зарядов описывается как бесконтактное действие, а иначе говоря имеет место дальнодействие, то есть действие на расстоянии. Для того, чтобы описать такое дальнодействие удобно ввести понятие электрического поля и с его помощью объяснить действие на расстоянии.

Давайте возьмем электрический заряд, который мы обозначим символом Q. Этот электрический заряд создает электрическое поле, то есть он является источником действия силы. Так как во вселенной всегда имеется хотя бы один положительный и хотя бы один отрицательный заряд, которые действую друг на друга на любом, даже бесконечно далеком расстоянии, то любой заряд является источником силы, а значит уместно описание создаваемого ими электрического поля. В нашем случае заряд Q является источником электрического поля и мы будем его рассматривать именно как источник поля.

Напряженность электрического поля источника заряда может быть измерена с помощью любого другого заряда, находящегося где-то в его окрестностях. Заряд, который используется для измерения напряженности электрического поля называют пробным зарядом, так как он используется для проверки напряженности поля. Пробный заряд имеет некоторое количество заряда и обозначается символом q.

При помещении пробного заряда в электрическое поле источника силы (заряд Q), пробный заряд будет испытывать действие электрической силы — или притяжения, или отталкивания. Силу можно обозначить как это обычно принять в физике символом F. Тогда величину электрического поля можно определить просто как отношение силы к величине пробного заряда.

Если напряженность электрического поля обозначается символом E, то уравнение может быть переписано в символической форме как

Стандартные метрические единицы измерения напряженности электрического поля возникают из его определения. Таким образом напряженность электрического поля определяется как сила равная 1 Ньютону (Н) деленному на 1 Кулон (Кл). Напряженность электрического поля измеряется в Ньютон/Кулон или иначе Н/Кл. В системе СИ также измеряется в Вольт/метр. Для понимания сути такого предмета как напряженность электрического поля гораздо важнее размерность в метрической системе в Н/Кл, потому как в такой размерность отражается происхождение такой характеристики как напряженность поля. Обозначение в Вольт/Метр делает понятие потенциала поля (Вольт) базовым, что в некоторых областях удобно, но не во всех.

В приведенном выше примере участвуют два заряда Q (источник) и q пробный. Оба этих заряда являются источником силы, но какой из них следует применять в вышеприведенной формуле? В формуле присутствует только один заряд и это пробный заряд q (не источник).

Напряженность электрического поля не зависит от количества пробного заряда q. На первый взгляд это может привести вас в замешательство, если, конечно, вы задумаетесь над этим. Беда в том, что не все имеют полезную привычку думать и пребывают в так называемом блаженном невежестве. Если вы не думаете, то и замешательства такого рода у вас и не возникнет. Так как же напряженность электрического поля не зависит от q, если q присутствует в уравнении? Отличный вопрос! Но если вы подумаете об этом немного, вы сможете ответить на этот вопрос. Увеличение количества пробного заряда q — скажем, в 2 раза — увеличится и знаменатель уравнения в 2 раза. Но в соответствии с Законом Кулона, увеличение заряда также увеличит пропорционально и порождаемую силу F. Увеличится заряд в 2 раза, тогда и сила F возрастет в то же количество раз. Так как знаменатель в уравнении увеличивается в два раза (или три, или четыре), то и числитель увеличится во столько же раз. Эти два изменения компенсируют друг друга, так что можно смело сказать, что напряженность электрического поля не зависит от количества пробного заряда.

Таким образом, независимо от того, какого количества пробный заряд q используется в уравнении, напряженность электрического поля E в любой заданной точке вокруг заряда Q (источника) будет одинаковой при измерении или вычислении.

Где применяются диэлектрики и проводники

Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.

Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.

Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.

Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.

Жидкие диэлектрики используют в конденсаторах, силовых кабелях, циркулирующих системах охлаждения турбогенераторов и высоковольтных масляных выключателей. Материалы применяют в качестве заливки и пропитки.

Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.

Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.

Магнитное поле: источники, свойства, характеристики и применение

Что такое электрический ток простыми словами

Какая проводка лучше — сравнение медной и алюминиевой электропроводки

Как проверить диэлектрические перчатки?

Что такое диэлектрическая проницаемость

Что такое конденсатор, где применяется и для чего нужен

Электризация тел

Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.

Способы электризации:

  • трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
  • через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
  • при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
  • при ударе;
  • под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.

Что такое проводники и диэлектрики

Проводники — вещества, со свободными электрическими зарядами, способными направленно перемещаться под воздействием внешнего электрического поля. Такими особенностями обладают:

  • металлы и их расплавы;
  • природный углерод (каменный уголь, графит);
  • электролиты — растворы солей, кислот и щелочей;
  • ионизированный газ (плазма).

Главное свойство материалов: свободные заряды — электроны у твёрдых проводников и ионы у растворов и расплавов, перемещаясь по всему объёму проводника проводят электрический ток. Под воздействием приложенного к проводнику электрического напряжения создаётся ток проводимости. Удельное сопротивление и электропроводимость — основные показатели материала.

Свойства диэлектрических материалов противоположны проводникам электричества. Диэлектрики (изоляторы) — состоят из нейтральных атомов и молекул. Они не имеют способности к перемещению заряженных частиц под воздействием электрического поля. Диэлектрики в электрическом поле накапливают на поверхности нескомпенсированные заряды. Они образуют электрическое поле, направленное внутрь изолятора, происходит поляризация диэлектрика.

В результате поляризации, заряды на поверхности диэлектрика стремятся уменьшить электрическое поле. Это свойство электроизоляционных материалов называется диэлектрической проницаемостью диэлектрика.

Виды и классификация диэлектрических материалов

Изоляторы подразделяются на группы по нескольким критериям.

Классификация по агрегатному состоянию вещества:

  • твёрдые — стекло, керамика, асбест;
  • жидкие — растительные и синтетические масла, парафин, сжиженный газ, синтетические диэлектрики (кремний- и фторорганические соединения хладон, фреон);
  • газообразные — воздух, азот, водород.

Диэлектрики могут иметь природное или искусственное происхождение, иметь органическую или синтетическую природу.

К органическим природным изоляционным материалам относят растительные масла, целлюлоза, каучук. Они отличаются низкой термо и влагостойкостью, быстрым старением. Синтетические органические материалы — различные виды пластика.

К неорганическим диэлектрикам естественного происхождения относятся: слюда, асбест, мусковит, флогопит. Вещества устойчивы к химическому воздействию, выдерживают высокие температуры. Искусственные неорганические диэлектрические материалы — стекло, фарфор, керамика.

Почему диэлектрики не проводят электрический ток

Низкая проводимость обусловлена строением молекул диэлектрика. Частицы вещества тесно связаны друг с другом, не могут покинуть пределы атома и перемещаться по всему объёму материала. Под воздействием электрического поля частицы атома способны слегка расшатываться — поляризоваться.

В зависимости от механизма поляризации, диэлектрические материалы подразделяются на:

  • неполярные — вещества в различном агрегатном состоянии с электронной поляризацией (инертные газы, водород, полистирол, бензол);
  • полярные — обладают дипольно-релаксационной и электронной поляризацией (различные смолы, целлюлоза, вода);
  • ионные — твёрдые диэлектрики неорганического происхождения (стекло, керамика).

Диэлектрические свойства вещества непостоянны. Под воздействием высокой температуры или повышенной влажности электроны отрываются от ядра и приобретают свойства свободных электрических зарядов. Изоляционные качества диэлектрика в этом случае понижаются.

Надёжный диэлектрик — материал с малым током утечки, не превышающим критическую величину и не нарушающим работу системы.

Характеристики электрического поля

Электрическое поле описывается векторной величиной – напряженностью. Стрелка, направление которой совпадает с силой, действующей в точке на единичный положительный заряд, длина пропорциональна модулю силы. Физики находят удобным пользоваться потенциалом. Величина скалярная, проще представить на примере температуры: в каждой точке пространства некоторое значение. Под электрическим потенциалом понимают работу, совершаемую для перемещения единичного заряда из точки нулевого потенциала в данную точку.

Электрический потенциал

Поле, описываемое указанным выше способом, называется безвихревым. Иногда именуют потенциальным. Функция потенциала электрического поля непрерывная, изменяется плавно по протяженности пространства. В результате выделим точки равного потенциала, складывающие поверхности. Для единичного заряда сфера: дальше объект, слабее поле (закон Кулона). Поверхности называют эквипотенциальными.

Для понимания уравнений Максвелла заимейте представление о нескольких характеристиках векторного поля:

Градиентом электрического потенциала называется вектор, направление совпадает с наискорейшим ростом параметра поля. Значение тем больше, чем быстрее изменяется величина. Направлен градиент от меньшего значения потенциала к большему:

  1. Градиент перпендикулярен эквипотенциальной поверхности.
  2. Градиент тем больше, чем ближе расположение эквипотенциальных поверхностей, отличающихся друг от друга на заданную величину потенциала электрического поля.
  3. Градиент потенциала, взятый с обратным знаком, является напряженностью электрического поля.

Электрический потенциал. Градиент “взбирается в гору”

  • Дивергенция является скалярной величиной, вычисляемой для вектора напряженности электрического поля. Является аналогом градиента (для векторов), показывает скорость изменения величины. Необходимость во введении дополнительной характеристики: векторное поле лишено градиента. Следовательно, для описания требуется некий аналог – дивергенция. Параметр в математической записи схож с градиентом, обозначается греческой буквой набла, применяется для векторных величин.
  • Ротор векторного поля именуется вихрем. Физически величина равна нулю при равномерном изменении параметра. Если ротор отличен от нуля, возникают замкнутые изгибы линий. У потенциальных полей точечных зарядов по определению вихрь отсутствует. Не обязательно линии напряжённости в этом случае прямолинейны. Просто изменяются плавно, не образуя вихрей. Поле с ненулевым ротором часто называют соленоидальным. Часто применяется синоним – вихревое.
  • Полный поток вектора представлен интегралом по поверхности произведения напряженности электрического поля на элементарную площадь. Предел величины при стремлении емкости тела к нулю представляет собой дивергенцию поля. Понятие предела изучается старшими классами средней школы, ученик может составить некоторое представление на предмет обсуждения.

Уравнения Максвелла описывают изменяющееся во времени электрическое поле и показывают, что в таких случаях возникает волна. Принято считать, одна из формул указывает отсутствие в природе обособленных магнитных зарядов (полюсов). Иногда в литературе встретим особый оператор – лапласиан. Обозначается как квадрат набла, вычисляется для векторных величин, представляет дивергенцией градиента поля.

Подобные аксиомы легко положим в основу описания процессов, происходящих в реальных существующих устройствах. Антигравитационный, вечный двигатель были бы неплохим подспорьем экономике. Если реализовать на практике теорию Эйнштейна никому не удалось, наработки Николы Тесла исследуются энтузиастами. Отсутствуют ротор, дивергенция.

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Что такое проводники и диэлектрики в электростатическом поле

Поведение заряженного объекта зависит от того, изготовлен ли объект из проводящего или непроводящего материала.

Объект, изготовленный из проводящего материала, позволит передавать заряд по всей поверхности объекта. Если заряд передается объекту в заданном месте, этот заряд быстро распределяется по всей поверхности объекта.

Распределение заряда является результатом движения электронов. Поскольку проводники позволяют переносить электроны от частицы к частице, заряженный объект всегда будет распределять свой заряд до тех пор, пока общие силы отталкивания между избыточными электронами не будут сведены к минимуму. Если заряженный проводник прикоснется к другому объекту, проводник может даже передать свой заряд этому объекту. Передача заряда между объектами происходит легче, если второй объект изготовлен из проводящего материала. Проводники обеспечивают передачу заряда за счет свободного движения электронов.

Примеры проводников

Примеры проводников включают металлы, водные растворы солей (т.е. ионные соединения, растворенные в воде), графит и человеческое тело. Они также включают пластмассы, пенополистирол, бумагу, резину, стекло и сухой воздух. Разделение материалов на категории проводников и изоляторов является несколько искусственным разделением. Более уместно думать о материалах как о размещенных где-то вдоль континуума.

  1. Те материалы, которые являются сверхпроводящими (известными как сверхпроводники), будут размещены на одном конце.
  2. Наименее проводящие материалы (лучшие изоляторы) будут размещены на другом конце.

Вдоль континуума проводников и изоляторов можно было бы найти человеческое тело где-то ближе к проводящей стороне середины. Когда тело приобретает статический заряд, оно имеет тенденцию распределять этот заряд по всей поверхности тела. Учитывая размеры человеческого тела по сравнению с размерами типичных объектов, используемых в электростатических экспериментах, потребуется аномально большое количество избыточного заряда, прежде чем его эффект станет заметным. Воздействие избыточного заряда на организм часто демонстрируется с помощью генератора Ван де Граафа.

Нейтральные неполярные виды имеют сферически симметричное расположение электронов в своих электронных облаках. При наличии электрического поля их электронные облака могут искажаться. Легкость этого искажения определяется как поляризуемость атома или молекулы.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: