Метод контурных токов

Основы символического метода расчета. методы контурных токов и узловых потенциалов

4.2 Метод контурных токов

Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11и I22- контурные токи.

Рис. 4.2

Токи в сопротивлениях R1и R2равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11и I22, так как эти токи направлены в ветви с R3встречно.

Порядок расчета

Выбираются независимые контуры, и задаются произвольные направления контурных токов. В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:

Перегруппируем слагаемые в уравнениях

(4.4)

(4.5)

Суммарное сопротивление данного контура называется собственным сопротивлением контура. Собственные сопротивления контуров схемы

,.

Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

,

где R12- общее сопротивление между первым и вторым контурами; R21- общее сопротивление между вторым и первым контурами. E11= E1и E22= E2- контурные ЭДС. В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

,.

Собственные сопротивления всегда имеют знак «плюс». Общее сопротивление имеет знак «минус», если в данном сопротивлении контурные токи направлены встречно друг другу, и знак «плюс», если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11и I22, затем от контурных токов переходим к токам в ветвях. Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви. В схеме нарис. 4.2

Рекомендации

Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам. Контурные токи желательно направлять одинаково (по часовой стрелке или против). Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным. Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

4.3. Метод узловых потенциалов

Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла.

Рис. 4.3

Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов.

Примем для схемы ᵠ4 = 0.

Запишем уравнение по первому закону Кирхгофа для узла 1.

(4.6)

В соответствии с законами Ома для активной и пассивной ветви

,

Где — проводимость первой ветви.

,

Где — проводимость второй ветви.

Подставим выражения токов в уравнение (4.6).

(4.7)

где g11= g1+ g2- собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле. g12= g2- общая проводимость между узлами 1 и 2. Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.

— сумма токов источников, находящихся в ветвях, сходящихся в узле 1. Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком «плюс», если от узла — со знаком «минус». По аналогии запишем для узла 2:

(4.8)

для узла 3:

(4.9)

Решив совместно уравнения (4.7), (4.8), (4.9), определим неизвестные потенциалы φ 1,φ2,φ3, а затем по закону Ома для активной или пассивной ветви найдем токи. Если число узлов схемы — n, количество уравнений по методу узловых потенциалов — (n — 1).

Пример расчёта потокораспределения в сети методом контурных уравнений

Для сети (рис. 3) расчитать потокораспределение без учёта потерь мощности методом контурных уравнений.


Рисунок 3 — Схема исследуемой сети

Исходные данные:

\dot S_{2}=35+j15 МВА,
\dot S_{3}=25+j10 МВА,
\dot S_{4}=-20-j10 МВА,
\dot S_{5}=40+j25 МВА,
\underline Z_{12}=5+j17 Ом,
\underline Z_{24}=4+j16 Ом,
\underline Z_{34}=5+j19 Ом,
\underline Z_{13}=8+j30 Ом,
\underline Z_{35}=7+j26 Ом,
\underline Z_{45}=6+j22 Ом.

Запишем систему следующего вида:

\displaystyle \begin{cases}
\dot S_{I}\hat {Z}_{I,I}+\dot S_{II}\hat {Z}_{I,II}=-\dot B_{I} \\
\dot S_{I}\hat {Z}_{II,I}+\dot S_{II}\hat {Z}_{II,II}=-\dot B_{II}
\end{cases}, где
\underline Z_{I,I}=\underline Z_{12}+\underline Z_{24}+\underline Z_{34}+\underline Z_{13}=(5+j17)+(4+j16)+(5+j19)+(8+j30)=22+j82 Ом,
\underline Z_{II,II}=\underline Z_{34}+\underline Z_{45}+\underline Z_{35}=(5+j19)+(6+j22)+(7+j26)=18+j67 Ом,
\underline Z_{I,II}=\underline Z_{II,I}=-\underline Z_{34}=-5-j19 Ом.


Рисунок 4 — Определение знаков перед сопротивлениями в выражении свободной составляющей

Для записи выражений свободных составляющих \dot B_{I} и \dot B_{II} воспользуемся рисунком №4. Данный рисунок, а также все указанные в нем направления стрелок, необходимы исключительно для формирования \dot B_{I} и \dot B_{II}. Направление перетока всегда от базового узла. Направление контурных мощностей неизменно. Если направление данного перетока совпадает с направлением контурного потока, то сопротивление, по которому протекает данный переток мощности, берется со знаком «+». Если направления не совпадают, то сопротивление берется со знаком «-«. В случае однородной сети, вместо сопротивлений можно использовать длины ЛЭП по вышеобозначенному принципу.

\dot B_{I}=-\hat {Z}_{13}\left(\dot S_{3}+\dot S_{4}+\dot S_{5}+\dot S_{2}\right)-\hat {Z}_{34}\left(\dot S_{4}+\dot S_{2}\right)-\hat {Z}_{24}\left(\dot S_{2}\right)=-(8-j30)(25+j10+(-20-j10)+40+j25+35+j15)-(5-j19)((-20-j10)+35+j15)-(4-j16)(35+j15)=-2390+j2840,
\dot B_{II}=-\hat {Z}_{35}\left(\dot S_{5}\right)+\hat {Z}_{34}\left(\dot S_{4}+\dot S_{2}\right)=-(7-j26)(40+j25)+(5-j19)((-20-j10)+35+j15)=-760+j605.

Решив данную систему уравнений относительно \dot S_{I} и \dot S_{II}, получаем следующие значения:


Рисунок 5 — Результат потокораспределения в исследуемой сети

\dot S_{I}=45,195+j21,835 МВА,
\dot S_{II}=24,095+j14,435 МВА

Мощность, протекающая по хорде (ветви, невходящей в состав дерева) равна соответствующей контурной мощности, поэтому

\dot S_{I}=\dot S_{12}=45,195+j21,835 МВА,
\dot S_{II}=\dot S_{45}=24,095+j14,435 МВА.

Теперь найдем оставшиеся перетоки по ветвям, используя I закон Кирхгофа:

\dot S_{24}=\dot S_{12}-\dot S_{2}=45,195+j21,835-(35+j15)=10,195+j6,835 МВА,
\dot S_{43}=\dot S_{24}-\dot S_{4}-\dot S_{45}=10,195+j6,835-(-20-j10)-(24,095+j14,435)=6,100+j2,400 МВА,
\dot S_{35}=\dot S_{5}-\dot S_{45}=40+j25-(24,095+j14,435)=15,905+j10,565 МВА,
\dot S_{13}=\dot S_{3}+\dot S_{35}-\dot S_{43}=25+j10+15,905+j10,565-(6,100+j2,400)=34,805+j18,165 МВА.


Рисунок 6 — Результат потокораспределения из ПК RastrWin

Проверка. Получившиеся значения перетоков по ветвям, исходящим из базы, должны равняться сумме мощностей узлов нагрузок.

\dot S_{13}+\dot S_{12}=34,805+j18,165+45,195+j21,835=80+j40 МВА,
\dot S_{2}+\dot S_{3}+\dot S_{4}+\dot S_{5}=35+j15+25+j10+(-20-j10)+40+j25=80+j40 МВА.

Суть метода контурных токов

Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.

Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.

Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.

Задача Расчет электрической цепи постоянного тока

Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985

Задача 1 Расчет электрической цепи постоянного тока

Для электрической схемы, изображенной на рисунке, по заданным сопротивлениям и ЭДС выполнить следующее:

1) составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа;

2) найти все токи, пользуясь методом контурных токов;

3) проверить правильность решения, применив метод узлового напряжения. Предварительно упростить схему, заменив треугольник сопротивления R4, R5 и R6 эквивалентной звездой. Начертить расчетную схему с эквивалентной звездой и показать на ней токи;

4) определить ток в резисторе R6методом эквивалентного генератора;

5) определить показание вольтметра и составить баланс мощностей для заданной схемы;

6) построить в масштабе потенциальную диаграмму для внешнего контура.

Источник

Метод узловых (потенциалов) напряжений

ТОЭ › Методы расчета цепей постоянного тока

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие. В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Важно отличать метод узловых напряжений (потенциалов) от метода узлового напряжения (метод двух узлов)

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4 φ4 = 0.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

Аналогично

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Составление контурных уравнений

При составлении системы контурных уравнений воспользуемся вторым законом Кирхгофа и будем полагать, что (рис. 5.4):

  • цепь согласно (5.4) содержит независимых контуров;
  • в цепи имеются источники напряжения с ЭДС
  • все независимых контуров непосредственно связаны друг с другом, т. е. для к-го и 1-го контуров имеется хотя бы один                  элемент который входит в оба эти контура, причём

При этих условиях, выбранных независимых контурах и заданных направлениях отсчётов контурных токов запишем уравнение для первого контура (см. рис. 5.4) согласно второму закону Кирхгофа:

    (5.5)

Выразим напряжения на элементах 1-го контура через токи ветвей по закону Ома:

или в общем виде:

   (5.6)

  • — ток в -ой ветви; 
  •  — напряжение в -ой ветви;
  •   — сопротивление элемента, общего для 1-го и -го контуров.

Подставим (5.6) в (5.5)

        (5.7)

и выразим токи ветвей через контурные токи, нумерация которых осуществляется римскими цифрами и прямыми латинскими буквами. Из рис. 5.4 видно, что:

Произведём замену токов ветвей в выражении (5.7) через соотношения (5.8):

Умножим полученное уравнение на-1, раскроем скобки, приведём подобные члены и перенесём в правую часть известные значения напряжений источников; после выполнения этих действий контурное уравнение принимает вид

Подобное уравнение можно было бы составить и для любого другого контура, поэтому полученный результат позволяет сделать обобщающие выводы:

  • в левую часть каждого из уравнений входит N слагаемых, пропорциональных искомым контурным токам
  • коэффициент при контурном токе -го контура, для которого составляется уравнение, представляет собой арифметическую  сумму сопротивлений этого контура;
  • остальные слагаемые представляют собой произведение сопротивления элемента общего для -го и -го контуров, на контурный ток 1-го контура; эти слагаемые входят в уравнение со знаком «+», если направления токов -го и -го контуров в элементе совпадают; в противном случае они входят в уравнение с отрицательным знаком.

Аналогично записываются узловые уравнения для всех других контуров цепи, в результате чего образуется система контурных уравнений вида:

          (5.9)

где:

  • — собственное сопротивление k-го контура, оно определяется как арифметическая сумма сопротивлений всех элементов -го          контура;
  • — взаимное сопротивление -го и -го контуров цепи , оно является сопротивлением элемента, общего для -го и -го        контуров; слагаемые вида входят со знаком «+» при совпадении направлений токов в этих контурах; если связь между -ым        и -ым контурами осуществляется через несколько элементов активного сопротивления, то представляет собой   арифметическую сумму соответствующих взаимных сопротивлений, причём
  • — контурный ток -го контура цепи;
  • — контурная ЭДС -го контура цепи, представляющая собой алгебраическую сумму ЭДС независимых источников, имеющихся         в контуре; слагаемые этой суммы имеют знак «+», если заданное направление отсчёта ЭДС источника совпадает с выбранным                 направлением отсчёта контурного тока.

Система контурных уравнений (5.9) составлена относительно неизвестных контурных токов и записана в канонической форме, а именно:

  • контурные ЭДС, как свободные члены, записываются в правых частях уравнений;
  • неизвестные контурные токи записываются в левых частях уравнений с последовательно возрастающими индексами;
  • уравнения располагаются в соответствии с порядковыми номерами контуров.

Пример 5.2.

Записать систему контурных уравнений для удлинителя (рис. 5.3).

Решение. Предварительно найдём собственные и взаимные сопротивления трёх контуров:

 I контура:

•    собственное сопротивление
•    взаимные сопротивления: со вторым контуром с третьим контуром

II контура:

•    собственное сопротивление
•    взаимные сопротивления: с первым контуром с третьим контуром

III контура:

•    собственное сопротивление
•    взаимные сопротивления: с первым контуром с третьим контуром 

Заметим, что:

  • направление контурного тока совпадает с направлением контурного тока и противоположно направлению контурного
  •        тока
  • направления контурных токов совпадают;
  • в контуре I имеется контурный независимый источник с ЭДС, равной а два других контура источников не имеют.

Теперь можно записать систему контурных уравнений, руководствуясь указанными ранее правилами:


 

Задачи на правило Кирхгофа с решением

Как решать задачи по правилу Кирхгофа? Прежде, чем приступать к решению задач, обязательно изучите теорию. Также мы подготовили для вас универсальную памятку по решению физических задач.

Задача №1 на эквивалентные преобразования соединений проводников.

Условие

Преобразуйте схему с помощью эквивалентных преобразований.
 

Решение

Кроме основных формул для последовательного и параллельного соединения проводников, существуют формулы для преобразования звезды резисторов в эквивалентный треугольник и наоборот. Треугольник резисторов R2 R3 R4 можно преобразовать в эквивалентную звезду RB RB RD по формулам:

Преобразованная схема будет выглядеть следующим образом:

Ответ: см. выше.

Правила Кирхгофа применяются для сложных цепей(например, для цепей с несколькими источниками питания), когда эквивалентные преобразования не приносят результата.

Задача №2 на первое правило (закон) Кирхгофа

Условие

Необходимо составить уравнения по первому закону Кирхгофа для следующей цепи:

Решение

В данной цепи 4 узла. По первому закону составляем 3 уравнения (на 1 уравнение меньше, чем количества узлов):

Ответ: см. выше.

Для решения задач на правила Кирхгофа необходимо уметь решать системы линейных уравнений. Для решения сложных систем удобно использовать специальные программы: MathCad, MatLab и т.д.

Далее для наглядности рассмотрим задачу с более простой схемой.

Задача №3 на правила Кирхгофа

Условие

Два источника питания E1=2В и E2=1В соединены по схеме, показанной на рисунке. Сопротивление R=5 Ом. Внутреннее сопротивление источников одинаково и равно r1=r2=1 Ом. Определить силу тока, который проходит через сопротивление.

Решение

По первому закону Кирхгофа сумма токов, сходящихся в узле, равна нулю (токи обозначим произвольно):

Выберем направление обхода верхнего контура против часовой стрелки. По второму закону Кирхгофа, сумма падений напряжений в контуре равна сумме ЭДС:

Запишем то же самое для второго контура, обходя его по часовой стрелке:

Объединим уравнения с неизвестными токами в систему:

Чтобы решить систему, выразим силу тока I1 из второго уравнения, а силу тока I2 – из третьего:

Первое уравнение теперь можно записать в виде:

Выражая искомый ток и подставляя значения из условия, получаем:

Ответ: 1,5 А.

Задача №4 на правила Кирхгофа

Условие

Дана схема электрической цепи. Необходимо:

  • обозначить сопротивления, над каждой ветвью указать свой ток и источники ЭДС;
  • указать на схеме направления токов и ЭДС;
  • составить уравнения по первому и второму закону Кирхгофа.

Решение

Приведем схему, обозначив сопротивления, ЭДС и токи:

В схеме 7 токов и 4 узла. Необходимо составить 4 – 1 = 3 уравнения по первому закону Кирхгофа и 7 – 3 = 4 уравнения по второму закону Кирхгофа.

Первый закон Кирхгофа:

Второй закон Кирхгофа (выбранные контуры К1, К2, К3, К4 указаны на рисунке):

Ответ: см. выше.

Задача №5 на правила Кирхнофа

Условие

Определить все токи в ветвях, составив систему уравнений по законам Кирхгофа.

Параметры цепи: E1 = 40 В, E2 = 50 В, E3 = 60 В, R01 = 0,1 Ом, R02 = 0,3 Ом, R03 = 0,2 Ом, R1 = 4,4 Ом, R2 = 4,7 Ом, R3 = 4,6 Ом, R4 = 5,2 Ом, R5 = 7,6 Ом.

Решение

Направления токов в ветвях цепи и направления обхода контуров указаны на схеме. Цепь содержит 3 узла и 3 независимых контура. Таким образом, для расчета токов в ветвях необходимо составить два уравнения по первому закону Кирхгофа и три по второму:

Подставим числовые значения и решим систему уравнений:

Ответ: I1=10,68 А; I2=8,388 А; I3=7,192 А; I4=4,9 А; I5=2,292 А.

Переменный ток.

Переменный синусоидальный ток (или напряжение) задается уравнением: Здесь Im – амплитуда тока. ω – угловая частота, находится как ω = 2⋅π⋅f (обычно в условии задается либо f, либо ω) φ – фаза.

Обычно в задачах условия задают либо в таком формате, либо в действующем значении. Амплитудное больше действующего всегда в √2 раз. Если в условии задано просто значение (например, E1 = 220 В), то это значит, что дано действующее значение.

Если же в условии дано «250⋅sin(314t – 15°), В», то его нужно перевести в действующее комплексное значение.

Про комплексные числа можно подробнее прочитать на нашем сайте.

Для перевода величин к действующим необходимо: ,

Точечка над I означает, что это комплекс.

Чтобы не путать с током, в электротехнике комплексная единица обозначается буквой «j».

Для заданного напряжения имеем:

В решении задач обычно оперируют действующими значениями.

В переменном токе вводятся новые элементы:

Катушка индуктивности L –
Конденсатор С –

Их сопротивления (реактивные сопротивления) находятся как: (сопротивление конденсатора — отрицательное)

Например, имеем схему, она подключена на напряжение 200 В, имеющего частоту 100 Гц. Требуется найти ток. Параметры элементов заданы:

Чтоб найти ток, необходимо напряжение разделить на сопротивление (из закона Ома). Здесь основная задача – найти сопротивление. Комплексное сопротивление находится как:

Напряжение делим на сопротивление и получаем ток.

Все эти действия удобно проводить в MathCad. Комплексная единица ставится «1i» или «1j». Если нет возможности, то:

  1. Деление удобно производить в показательной форме.
  2. Сложение и вычитание – в алгебраической.
  3. Умножение – в любой (оба числа в одинаковой форме).

Также, скажем пару слов о мощности. Мощность есть произведение тока и напряжения для цепей постоянного тока. Для цепей переменного тока вводится еще один параметр – угол сдвига фаз (вернее его косинус) между напряжением и током.

Предположим, для предыдущей цепи нашли ток и напряжение (в комплексной форме).

Также мощность можно найти и по другой формуле:

В этой формуле — сопряженный комплекс тока. Сопряженный – значит, что его мнимая часть (та, что с j) меняет свой знак на противоположный (минус/плюс). Re – означает действительная часть (та, что без j).

Это были формулы для активной (полезной) мощности. В цепях переменного тока существует так же и реактивная мощность (генерируется конденсаторами, потребляется – катушками).

Реактивная мощность цепи:

Im – мнимая часть комплексного числа (та, что с j).

Зная реактивную и активную мощность можно подсчитать полную мощность цепи:

Для упрощенного расчета цепей постоянного и переменного тока, содержащих большое число ветвей, пользуются одним из упрощенных методов анализа цепей. Рассмотрим подробнее метод контурных токов.

Переменный ток.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Последним этапом находим действительные токи, для этого нужно записать для них выражения. Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением 1.

Определим параметры электрической цепи рис. Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику; управляемые — семейство характеристик.

Определить ток I1 в заданной по условию схеме с источником тока, используя метод эквивалентного генератора. Чтобы решить такую систему можно воспользоваться программой MathCad. В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Читайте дополнительно: Нормы прокладки кабеля под землей

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

Уравнения по второму закону составляют для независимых контуров. Определим параметры электрической цепи рис. Контурный ток равен действительному току, который принадлежит только этому контуру. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Направление обхода контура совпадает с направлением контурных токов. Режим работы электрической цепи рис. Переменный синусоидальный ток или напряжение задается уравнением: Здесь Im — амплитуда тока. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.

Определить токи во всех ветвях схемы на основании метода наложения.

Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Следовательно, схема источника тока рис. Вычислим коэффициент подобия.

Составить баланс мощностей в исходной схеме схеме с источником тока , вычислив суммарную мощность источников и суммарную мощность нагрузок сопротивлений. Рекомендуется узлы схемы a, b, c, d заменить на 1, 2, 3, 4 соответственно. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. В нашем случае эти токи направлены по часовой стрелке. Законы Кирхгофа — Теория и задача

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: