Основные свойства простейших цепей переменного тока

Контур, узел, ветвь

Для описания и анализа схем используются следующие термины:

  • Ветвь — участок с одним или несколькими компонентами соединенными последовательно;
  • Узел — место соединения двух и более ветвей;
  • Контур — совокупность ветвей, образующих для тока замкнутый контур. Один из узлов в контуре должен быть и началом и концом пути. Остальные узлы должны встречаться не более одного раза.

Очень полезным элементом электрической цепи является предохранитель. Он предотвращает перегорание элементов цепи в случае перегрева. Предохранитель содержит легкоплавкий проводник, который перегорает в случае превышения допустимых параметров. Поменять предохранитель легче, чем найти сгоревший элемент среди сотен подобных элементов.

Рис. 3. Примеры участков схем: ветвь, узел, контур:.

Что мы узнали?

Итак, мы узнали что такое электрическая цепь и ее составные части. Все электрические цепи состоят из источников, проводников, потребителей и переключающих устройств.

  1. /5

    Вопрос 1 из 5

Цепи переменного тока

Переменным называют электрический ток, способный менять направление своего движения периодически, за определенные промежутки времени.

Поскольку у него происходит изменение во времени, здесь невозможно применять расчеты, подходящие для цепей постоянного тока. При наличии высокой частоты, заряды совершают колебательное движение. Они переходят в цепи из одних мест в другие и в обратном направлении. При переменном в отличие от постоянного, последовательно соединенные проводники могут иметь неодинаковые значения. Этот эффект усиливается наличием емкостей в цепи. Здесь же наблюдается эффект самоиндукции, возникающий при использовании катушек с большой индуктивностью даже при низкой частоте.

Рассмотрим свойства цепи, подключаемой к генератору с переменным синусоидальным током. Роль конденсатора при подключении его в цепи постоянного и переменного тока совершенно различная. При постоянном, конденсатор заряжается до тех пор, пока его не сравняется с ЭДС источника тока. В этом случае зарядка прекращается и он падает до нуля. Если такую же цепь подключить к генератору переменного тока, то электроны будут перемещаться из одной части конденсатора в другую. Эти электроны и есть переменный ток с одинаковой силой с обеих сторон конденсатора.

В случае необходимости, с помощью выпрямителя, происходит преобразование переменного тока в постоянный.

Приветствую всех на нашем сайте в рубрике “Электроника для начинающих”!

В предыдущей статье мы обсудили понятия , но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным Итак, переходим от слов к делу!

Давайте для начала выясним какова же область применения цепей переменного тока
. А область довольно-таки обширна Смотрите сами – все бытовые электронные приборы, компьютеры, телевизоры и т. д. являются потребителями переменного тока, соответственно, все розетки в нашем доме работают именно с переменным током.

Почему же для данных целей не используется постоянный ток? На этот вопрос можно дать сразу несколько ответов.

Во-первых, гораздо проще преобразовать напряжение переменного тока одной величины в напряжение другой величины, чем произвести аналогичные “махинации” с постоянным током. Данные преобразования осуществляются при помощи трансформаторов, о которых мы обязательно поговорим в рамках нашего курса.

Зачем вообще нужно изменять напряжение переменного тока
? С этим тоже все просто и логично. Давайте для примера рассмотрим ситуацию передачи сигнала с электростанции в отдельно взятый дом.

Как видите, с электростанции “выходит” высоковольтное переменное напряжение, затем оно преобразуется в низковольтное (к примеру, 220В), а затем уже по низковольтным линиям передачи достигает своей цели – а именно потребителей.

Возникает вопрос – к чему такие сложности? Что ж, давайте разберемся…

Задачей электростанции является генерировать и передавать сигнал большой(!) мощности (ведь потребителей много). Поскольку величина мощности прямо пропорциональна и значению тока и значению напряжения, то для достижения необходимой мощности нужно, соответственно, либо увеличивать ток, либо напряжение сигнала. Увеличивать значение тока, протекающего по проводам довольно проблематично, ведь чем больше ток, тем больше должна быть площадь поперечного сечения провода. Это связано с тем, что чем меньше сечение проводника, тем больше его сопротивление (вспоминаем формулу из статьи про ). Чем больше сопротивление, тем больше будет нагреваться провод и, соответственно, рано или поздно он прогорит. Таким образом, использование токов огромной величины нецелесообразно, да и экономически невыгодно (нужны “толстые” провода). Поэтому мы логически приходим к выводу, что абсолютно необходимо передавать сигнал с большим значением напряжения. А поскольку в домах у нас требуются низковольтные цепи переменного тока, то сразу же становится понятно, что преобразование напряжения просто неизбежно =) А из этого и вытекает преимущество переменного тока над постоянным (именно для данных целей), поскольку как мы уже упомянули – преобразовывать напряжение переменного тока на порядок легче, чем постоянного.

Ну и еще одно важное преимущество переменного тока – его просто проще получать. И раз уж мы вышли на эту тему, то давайте как раз-таки и рассмотрим пример генератора переменного тока

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Слайд 9В схеме содержащей n параллельных ветвей ток In в ветви

Rn равен произведению общего тока Iобщ и частного от деления

эквивалентного сопротивления параллельной цепи Rэ на сопротивление Rn:In=Iобщ(Rэ/Rn) Если два резистора R1 и R2 соединены параллельно, то протекающий через резистор R1 ток определяется по формуле:I1=Iобщ(R2/(R1+R2)) Протекающий через резистор R2 ток определяется по формуле:I2=Iобщ(R1/(R1+R2)) Ток в ветви обратно пропорционален ее сопротивлению. Ветвь с большим сопротивлением “пропускает” меньший ток, и наоборот.

Электрические цепи с параллельным соединением резисторов могут выступать в роли делителей токов. Принцип деления тока применим только к параллельным схемам, где ко всем элементам приложено одно и то же напряжение.

Электрическая цепь с постоянным током

В электрической цепи постоянного тока электродвижущая сила, которая направлена внутрь источника электроэнергии от отрицательного полюса к положительному, возбуждает электрический ток такого же направления. Его можно определить по закону Ома для всей цепи:

$I = \frac {E}{R + R_{BT}}$, где:

  • $R$ — это сопротивление внешней цепи, которая состоит из соединительных проводов и приемника;
  • $ R_{BT} $ — сопротивление внутренней цепи, которая состоит из источника электрической энергии.

Определение 1

Если все элементы электрической цепи и их сопротивления не зависят от направления и значения тока и электродвижущей силы, то такие элементы называют линейными.

Стоит отметить, что в одноконтурной постоянной электрической цепи, что имеет один источник электрической энергии, ток прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению цепи.

Из этого следует, что $E-R_{BT} L = RI$, откуда:

$I = \frac {(E – R_{BT} l)}{R}$ или $I = \frac {U}{R} $, где:

$U = E – R_{BT} l$ — это напряжение источника электроэнергии, которое направляется от положительного полюса к отрицательному.

При неизменной электродвижущей силе, напряжение зависит только от электрического тока, который определяет падение напряжения $ R_{BT} l$ внутри источника электроэнергии, но только в том случае, если сопротивление внутренней электрической цепи $ R_{BT} = const $.

Выражение $I = \frac {U}{R} $ — это закон Ома для участка электрической цепи, к зажимам которого приложено напряжение $U$, что совпадает с электрическим током $I $ этого же участка цепи.

Зависимость напряжения от электрического тока $U (I)$ при $E — const$ и $ R_{BT} = const $ называется внешней (вольтамперной характеристикой линейного источника электроэнергии). По данной характеристике можно определить соответствующее напряжение для любого тока, а по формулам, что приведены ниже, — рассчитать мощность приемника электроэнергии:

$P_2 = RI^2 = \frac {E2R}{(R + R_{BT} )^2}$

Мощность источника электроэнергии:

$P_1 = (R + R_{BT} ) I^2 = \frac {E^2}{R + R_{BT} }$

КПД установки в цепи постоянного тока:

$\eta = \frac {P_2}{P_1} = \frac {R}{R + R_{BT} } = \frac {1}{ 1 +\frac {R_{BT} }{R}} $

Точка Х вольтамперной характеристики источника электроэнергии соответствует режиму холостого хода при разомкнутой электрической цепи. В таком случае электрический ток $l_X = 0$, а напряжение $U_X = E$.

Точка К необходима для того, чтобы охарактеризовать режим короткого замыкания, который возникает при соединении зажимов источников электроэнергии. Внешнее сопротивление приравнивается нулю $R=0$. В этом случае формируется электрический ток короткого замыкания $I_K = \frac {E}{R_{BT} }$, который в несколько раз превышает номинальный ток $I_HOM$. Это случается по причине того, что внутреннее сопротивление источника электроэнергии $R_{BT}

Точка С соответствует согласованному режиму, при котором сопротивление внешней электрической цепи приравнивается сопротивлению внутренней цепи $ R_{BT} $ источника электроэнергии. В таком режиме формируется электрический ток $I_c = \frac {E}{2R_{BT} }$ внешней цепи и отвечает наибольшей мощности $R2_max = \frac {E2}{4R_{BT} }$. Коэффициент полезного действия в таком случае приравнивается нулю: $\eta c = 0$.

Учитывая все вышеизложенное, согласован режим, при котором:

$\frac {P2}{P2_max} = \frac {4R^2}{(R + R_{BT} )^2} = 1$ и $I_c = \frac {E}{2R} = 1$

Режимы электрических цепей в электроэнергетических установках значительно отличаются от согласованного режима и характеризуются токами, которые обуславливают сопротивление приемников $R$ и $ R_{BT} $. В результате этого работа систем на высоком КПД.

Изучение явлений, которые протекают в электрических цепях, упрощается, если происходит их замена на схемы замещения. Эти схемы представлены в виде математических моделей с идеальными элементами. Данные схемы подробно отображают свойства электрической цепи и при соблюдении конкретных условий делают анализ электрического состояния цепей значительно проще.

Опыт 2. Измерение мощности в цепи трёхфазного тока с активной симметричной нагрузкой.

С помощью одного
демонстрационного ваттметра можно
произвести опыт по измерению активной
мощности трёхфазного тока при равномерной
нагрузке всех фаз (т.е. когда в каждую
фазу включены одинаковые нагрузки).

Для проведения
этого опыта собирают электрическую
цепь, как показано на рисунке 7.

В каждую фазу в
качестве нагрузки включают по одной
электрической лампе одинакового
сопротивления.

Измерительные
приборы используются те же, что и в
предыдущем опыте.

Пределы ваттметра
(по току и напряжению) устанавливаются
в зависимости от напряжения и мощности
электрических ламп.

Рис.
7 Схема электрической цепи в опыте 2.

По показаниям
приборов устанавливают, что мощность
одной фазы равна произведению фазного
напряжения на ток в фазе.

Учитывая полную
симметрию цепи трёхфазного тока,
приведённой на рисунке 4, высчитывают
мощность всей цепи, умножив показания
ваттметра на 3.

Приветствую всех на нашем сайте в рубрике “Электроника для начинающих”!

В предыдущей статье мы обсудили понятия , но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным Итак, переходим от слов к делу!

Давайте для начала выясним какова же область применения цепей переменного тока
. А область довольно-таки обширна Смотрите сами – все бытовые электронные приборы, компьютеры, телевизоры и т. д. являются потребителями переменного тока, соответственно, все розетки в нашем доме работают именно с переменным током.

Почему же для данных целей не используется постоянный ток? На этот вопрос можно дать сразу несколько ответов.

Во-первых, гораздо проще преобразовать напряжение переменного тока одной величины в напряжение другой величины, чем произвести аналогичные “махинации” с постоянным током. Данные преобразования осуществляются при помощи трансформаторов, о которых мы обязательно поговорим в рамках нашего курса.

Зачем вообще нужно изменять напряжение переменного тока
? С этим тоже все просто и логично. Давайте для примера рассмотрим ситуацию передачи сигнала с электростанции в отдельно взятый дом.

Как видите, с электростанции “выходит” высоковольтное переменное напряжение, затем оно преобразуется в низковольтное (к примеру, 220В), а затем уже по низковольтным линиям передачи достигает своей цели – а именно потребителей.

Возникает вопрос – к чему такие сложности? Что ж, давайте разберемся…

Задачей электростанции является генерировать и передавать сигнал большой(!) мощности (ведь потребителей много). Поскольку величина мощности прямо пропорциональна и значению тока и значению напряжения, то для достижения необходимой мощности нужно, соответственно, либо увеличивать ток, либо напряжение сигнала. Увеличивать значение тока, протекающего по проводам довольно проблематично, ведь чем больше ток, тем больше должна быть площадь поперечного сечения провода. Это связано с тем, что чем меньше сечение проводника, тем больше его сопротивление (вспоминаем формулу из статьи про ). Чем больше сопротивление, тем больше будет нагреваться провод и, соответственно, рано или поздно он прогорит. Таким образом, использование токов огромной величины нецелесообразно, да и экономически невыгодно (нужны “толстые” провода). Поэтому мы логически приходим к выводу, что абсолютно необходимо передавать сигнал с большим значением напряжения. А поскольку в домах у нас требуются низковольтные цепи переменного тока, то сразу же становится понятно, что преобразование напряжения просто неизбежно =) А из этого и вытекает преимущество переменного тока над постоянным (именно для данных целей), поскольку как мы уже упомянули – преобразовывать напряжение переменного тока на порядок легче, чем постоянного.

Ну и еще одно важное преимущество переменного тока – его просто проще получать. И раз уж мы вышли на эту тему, то давайте как раз-таки и рассмотрим пример генератора переменного тока

ИМПЕДАНС

ИМПЕДАНС (англ. impedance, от лат. impedire препятствовать) — физ. величина, характеризующая сопротивление среды для колебаний различного происхождения.

В зависимости от вида колебания различают И. электрический, И. механический и И. акустический.

Электрический импеданс представляет собой полное (комплексное) сопротивление электрической цепи переменному току. В общем виде И. электрический (Z) представляет собой геометрическую сумму активного сопротивления электрической цепи (R) и реактивного сопротивления (X):

Активное сопротивление В является величиной, обратной величине электропроводности ткани, и мало зависит от частоты переменного тока. Реактивная составляющая X комплексного сопротивления Z для различных электропроводящих биол, субстратов in vivo и in vitro зависит от частоты электрического тока. За единицу измерения И. электрического в Международной системе единиц принят Ом (Ω, ом).

Измерение величины электрического И. применяется для характеристики электрических свойств тканей, органов, отдельных клеток (см. Электропроводность биологических систем). Электрический И. биол, тканей уменьшается при увеличении частоты приложенного электрического поля, что связано с наличием емкостной составляющей И., обусловленной в основном явлением поляризации (см.).

И. тканей организма зависит, в частности, от состояния кровообращения (кровенаполнения сосудов). Поэтому измерение И. отдельных участков тела, чаще конечностей, положено в основу изучения периферического кровообращения — так наз. метод реографии (см.). При реографии используется переменный ток частотой 20—30 кгц.

Электрический И. биол, тканей изменяется в зависимости от их функц, состояния. Слабый переменный ток, проходящий через объект при измерении, не вызывает повреждения ткани, поэтому наблюдаемые изменения в нем при тех или иных условиях можно связать со структурными и ионными изменениями в ткани. Изучение составляющих электрического И. взвеси клеток позволяет определить электрические параметры как самих клеток, так и их поверхностных мембран, судить об изменении их проницаемости (см.).

Измерение импеданса на высоких частотах (выше 1 МГц) позволяет оценивать суммарную концентрацию свободных электролитов в клетках и тканях (см. Кондуктометрия). Измерение И. электрического позволяет также регистрировать изменения физ.-хим. структуры живых тканей в норме и патологии. Поэтому этот метод можно использовать для изучения динамики изменений, происходящих при различных заболеваниях и травмах, а также для оценки эффективности их лечения.

Акустический импеданс — величина комплексного сопротивления, вводимая для характеристики сопротивления каких-либо акустических систем распространению звуковых колебаний.

Учет акустического И. важен при изучении распространения звука, акустических свойств как физ. (трубы переменного сечения, рупоры, излучатели и приемники звука, их диффузоры, мембраны и т. д.), так и биол, систем (органы слуха, речи и т. д.), а также при создании аппаратов, корригирующих органы слуха и речи.

Акустический И., так же как и электрический, включает активную и реактивную составляющие. Активная составляющая связана с потерями энергии на излучение звука акустической системой и с потерями на трение. Реактивная составляющая (реактивное сопротивление) характеризует силы инерции и упругости, действующие в системе. В соответствии с этим реактивное сопротивление называют также инерционным или упругим сопротивлением.

В системе СИ акустический И. измеряют в ньютон-секундах на метр в пятой степени (Н-с/м 5 ), а в системе СГС — в динах-секундах на сантиметр в пятой степени (дин-сек/см 5 ). Последнюю единицу называют иногда акустическим омом.

Механический импеданс характеризует сопротивление среды распространению различных колебаний (звуковых, ультразвуковых и т. д.). Измерение величины механического И. используется в мед.-биол, исследованиях при изучении вибрации и ее действия на организм в производственных условиях.

Единицей измерения механического И. в системе СИ является ньютон-секунда на метр (Н-с/м). И. акустический (Za) и механический (Zm) связаны соотношением:

где S — площадь акустической системы.

Библиография: Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, М., 1968, библиогр.; С кучи к Е. Основы акустики, пер. с англ., т. 1—2, М., 1976.

Слайд 15Сопротивление электрической цепи,полное электрическое сопротивление, величина, характеризующая сопротивление цепи электрическому

току; измеряется в Омах. В случае синусоидального переменного тока С.

э. ц. выражается отношением амплитуды напряжения на зажимах цепи к амплитуде тока в ней и равно , где r — сопротивление активное, х — сопротивление реактивное

Сопротивление активное электрическое, величина, характеризующая сопротивление цепи (её участка) переменному току, обусловленное необратимым превращением электрической энергии в др. формы энергии (преимущественно в тепловую); выражается отношением активной мощности, поглощаемой на участке цепи, к квадрату действующего значения тока на этом участке; измеряется в Омах.

Взаимосвязь параметров электрического тока

Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.

Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.

Собственно, из уравнения видно, что напряжение имеет прямую зависимость от силы тока и сопротивления (U=I х R), а величина силы тока обратно пропорциональна сопротивлению.

Последовательное соединение элементов электрической сети постоянного тока

Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).

Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.

Параметры электрической цепи. Параллельное соединение элементов

Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.

Параметры цепи при смешанном соединении в электрической цепи

Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения. Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.

Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Стабилизатор напряжения

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания, который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Намотать на него лакированного медного провода и зачистить выводы:

Замеряем индуктивность нашей катушки с помощью LC метра:

132 микрогенри.

Теперь собираем все это вот по такой схеме:

где

L — катушка индуктивности

La — лампочка накаливания на напряжение 12 Вольт

Bat — блок питания, с выставленным напряжением 12 Вольт

Лампочка засветилась!

Как вы помните из , конденсатор у нас не пропускал  постоянный электрический ток:

Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам  провод, из которого намотана катушка.

Ток постоянный и переменный

В розетке ток постоянный или переменный

Электроны в проводниках движутся от плюса к минусу. Движение равномерное, всё время с постоянной величиной. Если задаться вопросом, какие токи носят определение постоянных, сначала нужно хорошо представлять, куда течёт ток.

Значит, постоянный ток – это направленное перемещение заряженных частиц, несущих в себе положительный заряд, которые не меняют свои величину и направление с течением времени. Все остальные токи – переменные. В этом их разница.

Alternative Current – AC, так обозначается переменный ток на приборах. Direct Current – DC, это понятное обозначение постоянного тока.

Формулировка закона Ома следующая:

Величина силы тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна его сопротивлению.

Эту зависимость можно выразить формулой:

Где I – сила тока, U – напряжение, приложенное к участку цепи, а R – электрическое сопротивление участка цепи.Так, если известны две из этих величин можно легко вычислить третью.Понять закон Ома можно на простом примере. Допустим, нам необходимо вычислить сопротивление нити накаливания лампочки фонарике и нам известны величины напряжения работы лампочки и сила тока, необходимая для ее работы (сама лампочка, чтобы вы знали имеет переменное сопротивление, но для примера примем его как постоянное). Для вычисления сопротивления необходимо величину напряжения разделить на величину силы тока. Как же запомнить формулу закона Ома, чтобы правильно провести вычисления? А сделать это очень просто! Вам нужно всего лишь сделать себе напоминалку как на указанном ниже рисунке.Теперь закрыв рукой любую из величин вы сразу поймете, как ее найти. Если закрыть букву I, становится ясно, что чтобы найти силу тока нужно напряжение разделить на сопротивление.Теперь давайте разберемся, что значат в формулировке закона слова « прямо пропорциональна и обратно пропорциональна. Выражение «величина силы тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку» означает, что если на участке цепи увеличится напряжение, то и сила тока на данном участке также увеличится. Простыми словами, чем больше напряжение, тем больше ток. И выражение «обратно пропорциональна его сопротивлению» значит, что чем больше сопротивление, тем меньше будет сила тока.Рассмотрим пример с работой лампочки в фонарике. Допустим, что для работы фонарика нужны три батарейки, как показано на схеме ниже, где GB1 – GB3 – батарейки, S1 – выключатель, HL1 – лампочка.

Примем, что сопротивление лампочки условно постоянно, хотя нагреваясь её сопротивление увеличивается. Яркость лампочки будет зависеть от силы тока, чем она больше, тем ярче горит лампочка. А теперь, представьте, что вместо одной батарейки мы вставили перемычку, уменьшив тем самым напряжение.Что случится с лампочкой?Она будет светить более тускло (сила тока уменьшилась), что подтверждает закон Ома:чем меньше напряжение, тем меньше сила тока.

Вот так просто работает этот физический закон, с которым мы сталкиваемся в повседневной жизни.Бонус специально для вас шуточная картинка не менее красочно объясняющая закон Ома.

Закон Ома, в отличие от, например, закона Кулона, это не фундаментальный закон физики. Он имеет практическое значение.В природе существуют вещества, проводящие электрический ток – проводники и не проводящие – диэлектрики.В проводниках есть свободные заряды – электроны. Для того, чтобы электроны начали дружно перемещаться в одном направлении, необходимо электрическое поле, которое и «заставит» их перемещаться от одного конца проводника к другому.Простейшим образом создать поле может обыкновенная батарейка. Если на конце проводника недостаток электронов, то он знаком «+», если , то «-». Электроны, имеющие всегда отрицательный заряд, естественно, устремятся к плюсу. Так в проводнике рождается электрический ток, т. е. направленное перемещение электрических зарядов. Чтобы его увеличить, необходимо усилить электрическое поле в проводнике. Или, как говорят, приложить к концам проводника большее напряжение.Электрический ток принято обозначать буквой I, а напряжение – буквой U.

Но проводники, по которым перемещаются свободные электроны, могут иметь разное электрическое сопротивление R. Сопротивление показывает меру противодействия материала проводника прохождения по нему электрического тока. Оно зависит только от геометрических размеров, материала проводника и его температуры.Каждая из этих величин имеет свои единицы измерения: Сила тока I измеряется в Амперах (А); Напряжение U измеряется в Вольтах (В); Сопротивление измеряется в Омах (Ом).

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: