Вакуумный выключатель: устройство и принцип работы + нюансы выбора и подключения

Особенности установки выключателя

Установка вакуумного выключателя выполняется в уже имеющиеся ячейки, шкафы КРУ, остающиеся из-под масляных или воздушных выключателей, или монтируются в новую ячейку на этапе строительства распредустройства, подстанции или электроустановки. Болтовые крепления к металлическим конструкциям должны плотно затягиваться, обеспечивая и неподвижность коммутационного аппарата при интенсивных динамических колебаниях.

Весь процесс должен осуществляться в строгом соответствии с требованиями, как указаний завода изготовителя, так и нормативных документов, регламентирующих работу устройств в соответствующей отрасли. Обязательными для применения в любых цепях являются нормативные величины, устанавливаемые ПУЭ. Где указаны расстояния от токоведущих частей до заземленных конструкций, электрические параметры и прочие требования к установке вакуумных выключателей.

После завершения установки и подключения управленческих цепей к блоку контроля выключателем или приводу, необходимо осуществить ряд манипуляций и проверок:

  • Очистить поверхность наружных изоляторов от всевозможных засорителей для исключения возможности протекания токов утечки;
  • Проверка работоспособности привода, ручное отключение и соответствие обозначения флажка на нем действительному положению –вкл/выкл;
  • Испытание изоляционных свойств смонтированного устройства посредством подачи напряжения промышленной частоты;
  • Измерение величины переходного сопротивления между контактами;

В случае хранения вакуумного устройства на складе более двух лет, перед подключением к коммутационным цепям необходимо производить комплекс испытаний, чтобы убедиться в прочности промежутка на случай отключения токов кз.

Вакуумный выключатель: полюса и камеры, привод

В вакуумных выключателях внутренней установки используются литые из эпоксидного компаунда полюса. В выключателях наружной установки – цельнолитые полюса в кремнийорганической изоляции. Полюса комплектуются самыми современными вакуумными камерами, которые специально разработаны и оптимальным образом подходят для использования в литых полюсах.

Контакты вакуумных камер выполнены из специальных легированных сплавов. Горение дуги, которая возникает при разведении контактов при отключении нагрузки, поддерживается металлическими парами за счет испарения электродного материала. Электрическая дуга мягко гасится при естественном переходе тока через ноль, поэтому исключается возможность возникновения перенапряжений при коммутации большинства видов нагрузок.

В вакуумных выключателях применяется универсальный электромагнитный привод. Для удержания выключателя во включенном или отключенном положениях используется энергия мощных постоянных магнитов. Фиксация происходит за счет использования принципа «магнитной защелки», а именно, замыкания магнитной цепи включения или отключения якорем, который механически связан с подвижными контактами вакуумных камер.

Для управления приводом используется электронный блок управления, которым оснащен вакуумный высоковольтный выключатель. Блок управления может быть встроен в корпус выключателя или изготовлен в выносном исполнении. Отключение происходит за счет энергии предварительно заряженных конденсаторов.

В выключателях также применяются пружинные приводы, которые помимо нормированного включения/отключения выключателя обеспечивают возможность ручного включения и отключения.

Номинальное напряжение, кВ 10 27,5 35 110
Наибольшее рабочее напряжение, кВ 12 30,5 40,5 126
Номинальный ток, А 630–3 150 1 600; 2 000 1 600 2 500; 3 150
Номинальный ток отключения, кА 20–40 25 25 31,5; 40
Ток термической стойкости , кА (3 с) 20–40 25 25 31,5; 40
Ток электродинамической стойкости, кА 52–102 64 64 81; 102
Полное время отключения, мс, не более 57–70 70 80 47
Собственное время включения, мс, не более 90–120 100 80 80
Собственное время отключения, мс, не более 35–55 30–55 60 32
Механический ресурс, циклов ВО 30 000–100 000 30 000 25 000 10 000
Коммутационный ресурс при номинальных токах, циклов ВО 30 000–50 000 30 000 20 000 10 000
Коммутационный ресурс при номинальных токах отключения, циклов ВО 40–100 30 30 25
Масса, кг 65–285 270 640 1 645

У нас вы можете посмотреть полный каталог вакуумных выключателей, а также выбрать продукты, оптимальным образом отвечающие вашим текущим потребностям.

Также рекомендуем ознакомиться с нашими статьями про вакуумную коммутационную аппаратуру и вакуумный выключатель BB.

Чтобы узнать какова цена на вакуумные выключатели в Екатеринбурге, Москве, Новосибирске или других городах Вы можете

Отправить заявку

Эксплуатация и техническое обслуживание

     Неприхотливые в обслуживании вакуумные выключатели рекомендуется проверять не реже 1 раза в 4 года. Но периодичность может быть иная. Все зависит от конструктивного исполнения коммутационного аппарата и регламентируется в технической документации.

     Обслуживание вакуумных выключателей подразумевает проверку изоляторов на наличие трещин, сколов, загрязнения и следов разрядов.

     Камера полюса герметичная, вакуум сохраняется весь срок службы устройства. Поэтому полюса не ремонтируют, а заменяют целиком.

     Вдобавок проводятся различные электротехнические испытания:

• Измерение сопротивления изоляции.

• Испытание повышенным напряжением.

• Проверка механических частей.

• Замер времени срабатывания.

• Осмотр состояния контактов (метод основан на измерении сопротивления постоянному току).

     После всех проведенных испытаний составляется нормативный документ, свидетельствующий о работоспособности аппарата или его непригодности к дальнейшей эксплуатации.

ОБЩИЕ СВЕДЕНИЯ

Вакуумные выключатели BB/TEL (далее — выключатели) предназначены для работы в комплектных распределительных устройствах (КРУ) и камерах стационарного одностороннего обслуживания (КСО) внутренней и наружной установки класса напряжения до 20 кВ трёхфазного переменного тока 50 Гц для систем с изолированной и заземлённой нейтралью.
В основе конструктивного решения выключателя лежит использование пофазных электромагнитных приводов с «магнитной защёлкой», механически связанных общим не несущим нагрузку, валом-синхронизатором. Параллельно соединённые катушки электромагнитных приводов фаз выключателя при выполнении команд подключаются к предварительно заряженным конденсаторам в блоках управления (далее БУ/TEL). Такая конструкция позволила достичь следующих отличительных особенностей по сравнению с традиционными вакуумными выключателями (ВВ) (см. табл. 2.1):

  1. высокий механический и коммутационный ресурс;
  2. малое энергопотребление по шинам оперативного напряжения (заряд и поддержание в параметрах конденсаторных ёмкостей «ВКЛ», «ОТКЛ»);
  3. малые габариты и вес;
  4. лёгкость и простота адаптации в любые типы КРУ, КСО;
  5. возможность использования в широком диапазоне питающего оперативного напряжения вторичных цепей;
  6. необслуживаемость на протяжении всего срока эксплуатации;
  7. низкая трудоёмкость производства и, как следствие, умеренная цена.

Для управления выключателями отделение устройств управления промышленной группы «Таврида Электрик» выпускает блоки управления серий BU/TEL, БУ/ТЕL.
Структура условного обозначения выключателей:

BB/TEL-X-X/X-XX-X

Выключатель вакуумный
   Наименование серии
      Номинальное напряжение, кВ
         Номинальный ток отключения, кА
            Номинальный ток, А
               Климатическое исполнение и категория размещения
                  Конструктивное исполнение по каталогу

Пример записи обозначения выключателя напряжением 10 кВ с номинальным током отключения 12,5 кА, номинальным током 630 А, климатического исполнения У2, конструктивного исполнения по каталогу:

Выключатель вакуумный

Включение

В отключенном положении выключателя контакты вакуумной камеры (ВДК) удерживаются в разомкнутом состоянии действием отключающей пружины, которое передаётся на подвижный контакт ВДК посредством тягового изолятора. Для включения модуля на обмотку электромагнитного привода разряжается на предварительно заряженный включающий конденсатор блока управления. Импульс тока, протекающий по обмотке электромагнитного привода в результате разряда конденсатора, создаёт магнитное поле в зазоре между якорем и плоским магнитопроводом.
По мере роста тока в обмотке электромагнитного привода сила электромагнитного притяжения между якорем и плоским магнитопроводом возрастает до величины, превышающей силу удержания, создаваемую пружиной отключения. В этот момент якорь привода начинает двигаться по направлению к магнитопроводу, толкая тяговый изолятор и подвижный контакт ВДК.
В процессе движения якоря по направлению к магнитопроводу воздушный зазор уменьшается, благодаря чему сила притяжения якоря увеличивается. Быстро растущая электромагнитная сила стремительно ускоряет движущиеся части модуля до скорости примерно 1 м/с. Такая скорость является оптимальной для процесса включения и позволяет избежать дребезга контактов при их соударении, существенно снижая при этом вероятность пробоя вакуумного промежутка до момента замыкания контактов.
Ускоряющий якорь генерирует в витках обмотки электромагнитного привода противо ЭДС, которая препятствует дальнейшему нарастанию тока в обмотке и даже несколько снижает его.
В момент замыкания контактов подвижный контакт останавливается, а якорь продолжает своё движение ещё на 2 миллиметра, поджимая контакты через пружину дополнительного поджатия контактов.
Достигнув плоского магнитопровода, якорь останавливается, примагнитившись к магнитопроводу привода. В момент остановки якоря он перестаёт индуцировать противо-ЭДС, что приводит к росту тока, необходимого для насыщения кольцевого постоянного магнита до достижения им необходимых магнитных свойств.
Намагниченный до насыщения кольцевой магнит создаёт мощный остаточный магнитный поток, достаточный для удержания якоря привода (и соответственно, контактов модуля) во включенном положении даже после отключения включающего тока вспомогательным контактом.
Испытания на стойкость к механическим воздействиям показали, что усилие удержания, развиваемого постоянным магнитом, достаточно для того, чтобы удерживать модуль во включенном положении так долго, как это необходимо по условиям эксплуатации, даже при воздействии вибрационных и ударных нагрузок.
Отключающая пружина привода также сжимается в процессе движения якоря, накапливая потенциальную энергию для выполнения операции отключения модуля.
Перемещение якоря передаётся на синхронизирующий вал, поворачивая его в процессе перемещения на угол 44°, для обеспечения индикации состояния модуля, управления вспомогательными контактами и приведения в действие блокировочных механизмов распредустройства.

Вакуумные выключатели ВВР-10 (20кА)

Вакуумные выключатели серии ВВР-10 о встроенным пружинно-моторным приводом предназначены для коммутации электрических цепей при нормальных и аварийных режимах в сетях трехфазного переменного тока с изолированной нейтралью частоты 50Гц с номинальным напряжением 10кВ. Выключатели серии ВВР-10 устанавливается в шкафах КРУ (комплектных распределительных устройств), а также используется для замены маломасляных и электромагнитных выключателей. Принцип работы выключателя основан на гашении электрической дуги, возникающей между контактами в вакууме, обладающей высокой электрической прочностью. Операция включения осуществляется за счет энергии пружин включения, а отключение за счет отключающих пружин и пружин поджатия контактов, которые срабатывают при воздействии одного из электромагнитов отключения или кнопки отключения на защелку привода, удерживающую выключатель во включенном положении.

Исполнения вакуумных выключателей серии ВВР-10
Вакуумный выключатель ВВР-10-20/630А УХЛ2, 100В, 50Гц (015-08)
Примечание: межфазное расстояние 150мм
Вакуумный выключатель ВВР-10-20/630А УХЛ2, 220В, 50Гц (015-08)
Примечание: межфазное расстояние 150мм
Вакуумный выключатель ВВР-10-20/630А УХЛ2, 100В, 50Гц (017-08)
Примечание: межфазное расстояние 180мм
Вакуумный выключатель ВВР-10-20/630А УХЛ2, 220В, 50Гц (017-08)
Примечание: межфазное расстояние 180мм
Вакуумный выключатель ВВР-10-20/630А УХЛ2, 100В, 50Гц (028-09)
Примечание: межфазное расстояние 200мм
Вакуумный выключатель ВВР-10-20/630А УХЛ2, 220В, 50Гц (028-09)
Примечание: межфазное расстояние 200мм
Вакуумный выключатель ВВР-10-20/1000А УХЛ2, 100В, 50Гц (015-09)
Примечание: межфазное расстояние 150мм
Вакуумный выключатель ВВР-10-20/1000А УХЛ2, 220В, 50Гц (015-09)
Примечание: межфазное расстояние 150мм
Вакуумный выключатель ВВР-10-20/1000А УХЛ2, 100В, 50Гц (017-09)
Примечание: межфазное расстояние 180мм
Вакуумный выключатель ВВР-10-20/1000А УХЛ2, 220В, 50Гц (017-09)
Примечание: межфазное расстояние 180мм
Вакуумный выключатель ВВР-10-20/1000А УХЛ2, 100В, 50Гц (028-10)
Примечание: межфазное расстояние 200мм
Вакуумный выключатель ВВР-10-20/1000А УХЛ2, 220В, 50Гц (028-10)
Примечание: межфазное расстояние 200мм
Вакуумный выключатель ВВР-10-20/1600А УХЛ2, 100В, 50Гц (028-11)
Примечание: межфазное расстояние 200мм
Вакуумный выключатель ВВР-10-20/1600А УХЛ2, 220В, 50Гц (028-11)
Примечание: межфазное расстояние 200мм

Вакуумные выключатели серии ВВР-10, прошедшие процедуру обязательного декларирования, обладают знаками соответствия стандартам качества. Применение вакуумных выключателей серии ВВР-10 позволяет полностью отказаться от затрат на обслуживание выключателя, так как на протяжении всего срока службы, выключатели серии ВВР-10 не требуют проведения средних и капитальных ремонтов. Весь ассортимент продукции производимый нашей компанией прошел процедуры сертификации стандартам качества.

Руководство по эксплуатации на вакуумные выключатели серии ВВР-10 —

Что это такое и для чего нужно

Назначение этих коммутационных аппаратов заклю чается в следующем :

  • О беспечении надежной коммутации электрической цепи в рабочем и аварийном режиме за минимально возможное время.
  • Л иквидации аварийных отключений воздушных линий за счет возможности автоматического повторного включения.

Разработка первых образцов началась в 30-х годах прошлого века. В это время еще не было совершенных технологических решений, позволяющих создавать аппаратуру, способную поддерживать глубокий вакуум. Поэтому первые образцы коммутационных аппаратов позволяли отключать только незначительные токи при напряжении до 40 кВ .

После проведенной обширной исследовательской работы к 1957 г. удалось объяснить процессы, происходящие при появлении электрической дуги в разреженном газе. Дальнейшие усилия исследователей в течение 20 лет были направлены на поиск способов, позволяющих предотвратить появление перенапряжений, вариантов предотвращения загрязнения внутренних частей дугогасящей камеры частицами металла, проблем герметичности, методов экранирования.

Результатом работы исследователей стало создание вакуумных выключателей — высоковольтных коммутационных аппаратов, способных работа ть в трехфазных сетях переменного тока. Диапазон напряжений, при котором используются такие выключатели, охватывает электроустановки как до 1000 В, так и до 220 к В.

Воздушные выключатели

В воздушных выключателях гашение дуги происходит сжатым воздухом при давлении 2-4 МПа, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами. Конструктивные схемы воз-душных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительное устройство.

В выключателях на большие номинальные токи имеется главный и дугогасительный контур подобно маломасляным выключателям МГ и МГГ. Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто. При отключении выключателя главные контакты размыкаются первыми, после чего весь ток проходит по дугогасительным контактам, заключенным в камере 2. К моменту размыкания этих контактов в камеру подается сжатый воздух из резервуара 1, создается мощное дутье, гасящее дугу. Дутье может быть продольным или поперечным.

Необходимый изоляционный промежуток между контактами в отключенном положении создается в дугогасительной камере путем разведения контактов на достаточное расстояние. Выключатели, выполненные по конструктивной схеме с открытым отделителем, изготовляются для внутренней установки на напряжение 15 и 20 кВ и ток до 20000 А (серия ВВГ). В данном типе выключателей после отключения отделителя 5 прекращается подача сжатого воздуха в камеры и дугогасительные контакты замыкаются.

Конструктивные схемы воздушных выключателей 1 – резервуар со сжатым воздухом; 2 – дугогасительная камера; 3 – шунтирующий резистор; 4 – главные контакты; 5 – отделитель; 6 – емкостный делитель напряжения на 110 кВ – два разрыва на фазу (г)

В воздушных выключателях для открытой установки на напряжение 35 кВ (ВВ-35) достаточно иметь один разрыв на фазу.

В выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5 и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения. При этом в дугогасительную камеру сжатый воздух не подается и контакты в ней замыкаются.

По данной конструктивной схеме созданы выключатели серии ВВ на напряжение до 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше должно быть разрывов в дугогасительной камере и в отделителе.

По конструктивной схеме рис, г выполняются воздухонаполненные выключатели серии ВВБ. Напряжение модуля ВВБ 110 кВ при давлении сжатого воздуха в гасительной камере 2 МПа. Номинальное напряжение модуля выключателя серии ВВБК (крупномодульного) составляет 220 кВ, а давление воздуха в гасительной камере 4 МПа. Аналогичную конструктивную схему имеют выключатели серии ВНВ: модуль напряжением 220 кВ при давлении 4 МПа.

Для выключателей серии ВВБ количество дугогасительных камер (модулей) зависит от напряжения (110 кВ – одна; 220 кВ – две; 330 кВ – четыре; 500 кВ – шесть; 750 кВ – восемь), а для крупномодульных выключателей (ВВБК, ВНВ) количество модулей соответст-венно в два раза меньше.

Как работает вакуумный выключатель

При отключении и включении значительных нагрузок между контактами коммутационных аппаратов возникает электрическая дуга, приводящая к повреждению самих контактов и к перекрытию дугой соседних токоведущих частей. Такая ситуация провоцирует серьезные аварии или пожар.

Для предотвращения этого в конструкции имеется специальная камера. В ней происходит гашение дуги. Высоковольтные выключатели оборудуются дугогасящими камерами, где дуга разрывается под воздействием масла, потоком сжатого воздуха или в среде элегаза.

Одно из перспективных направлений – создание высоковольтных выключателей с вакуумной дугогасящей камерой. В этой статье рассмотрен вакуумный выключатель, его устройство и принцип работы наиболее распространенных моделей, их достоинства и недостатки.

МЕРЫ БЕЗОПАСНОСТИ

При испытании изоляции промежутка между контактами полюса выключателя (контакты камеры разомкнуты) вне КРУ напряжением промышленной частоты 32 кВ и выше для защиты персонала от возможного воздействия рентгеновского излучения, в случае пробоя изоляции по поверхности или внутри ВДК, установить защитный экран, выполненный из стального листа толщиной не менее 2 мм или из стекла марки ТФ-5 по ГОСТ 9541-75 толщиной не менее 12,5 мм. Экран должен быть установлен между обслуживающим персоналом и выключателем, на расстоянии 0,5 м от выключателя.
В нормальных эксплуатационных условиях защита обслуживающего персонала от рентгеновского излучения не требуется.
Во время выполнения работ по техническому обслуживанию запрещается работа людей на участке схемы, отключённой только вакуумным выключателем. Обязательно дополнительное отключение участка схемы разъединителем с видимым разрывом электрической цепи.
При проведении работ на выключателе руководствоваться требованиями действующих «Правил безопасной эксплуатации электроустановок», «Правил технической эксплуатации электрических станций и сетей», «Правил устройства электроустановок».

ПРИЛОЖЕНИЕ 1

Таблица – Учет расходования коммутационного ресурса выключателя

№п/п

Учет количества коммутаций

Учет отключенных токов к.з.

Дата записи

Причина, период

Значение тока

Количество коммутаций

Дата записи

Причина

Значение тока к.з.

Количество коммутаций

1

2

3

4

5

6

7

8

9

ПРИЛОЖЕНИЕ 2

Таблица – Характеристики выключателя BB/TEL

Устройство и конструктивные особенности

Кроме дугогасящей камеры с контактами в конструкцию полюса вакуумного выключателя входит привод и тяговый изолятор. Для сохранения вакуума внутри дугогасящей камеры применяют сильфон. Он не позволяет проникать другим газам внутрь при движении контакта.

Рисунок 3. Конструкция вакуумного выключателя

Один из контактов закреплен неподвижно, второй – подвижный. Он получает движение через тяговый изолятор посредством электромагнитного привода. Меняя полярность постоянного тока, подаваемого на электромагнит, можно размыкать или замыкать контакты. Для удержания деталей привода в выбранном положении используется постоянный круговой магнит.

Для обеспечения оптимальной скорости движения якоря и уменьшения переходного сопротивления контактов применяется пружинная система. Привод выключателя собран в одном корпусе, куда также входят кинематическая и электрическая схемы для контроля и управления работой. У в ыключателя три полюса, которые разделены между собой.

Управление выключателем осуществляется через блок управления, который выносится на отдельную панель (шкаф) или располагается в корпусе выключателя. Блок управления может быть микропроцессорным или работать на электромеханических реле.

Ресурс по включению и отключению контактов – не менее 20 000 операций. Во время всего срока службы выключатель не требует сложного технического обслуживания. Дугогасящая камера не подлежит ремонту и при необходимости заменяется новой. Конструкция привода предусматривает возможность включения и отключения выключателя вручную.

По исполнению вакуумные выключатели выпускаются для установки как в закрытых распределительных устройствах, так и в открытых. Вакуумные выключатели, предназначенные для установки в закрытых распредустройствах, могут быть выкатного или стационарного исполнения. В этом случае они отделяются от токоведущих частей видимым разрывом, осуществляемым при помощи линейного и шинного разъединителей.

Схемы электрические принципиальные работы выключателей

Назначение схемы управления:

  • оперативное включение и отключение выключателя;
  • блокирование против повторения операций включения и отключения выключателя, когда команда на включение остается поданной после автоматического отключения;
  • сигнализация положения выключателя с помощью коммутирующих контактов для внешних вспомогательных цепей и для цепей контроля.

Описание работы схемы

Подготовка схемы к включению

Для подготовки схемы к включению подается переменное оперативное напряжение или постоянное (выпрямленное) на клеммы ХТ:26 и ХТ:27 (цепи мотор-редуктора заводки пружины включения). Мотор-редуктор взводит пружину включения. После завершения взвода срабатывают блок-контакты положения привода SQM1,2, размыкая цепь питания мотор-редуктора.

Также при этом срабатывает реле повторения сигнала положения привода KV1 по цепи: клемма ХТ:26, блок-контакт положения привода SQM1-2, диодный мост VD4, обмотка реле блокировки KBS, блок-контакт положения привода SQM2-2, клемма ХТ:27. Реле своими контактами KV1-3 подготавливает цепь включения, контактами KV1-2 подготавливает внешние цепи контроля (РКВ), контактами KV1-1 разрывает цепи блокировки от повторного включения.

Вакуумный выключатель ВВР-10-20/630 Нажмите на картинку для увеличения

Включение выключателя

Для включения, переменное оперативное напряжение или постоянное (выпрямленное) подается на контакты ХТ:23 и ХТ:25, при этом напряжение питания через выпрямитель на диодном мосте VD1 подается на катушку электромагнита включения YAC по цепи: ХТ:23, н.з. контакты реле блокировки KBS, н.о. контакты реле повторения сигнала положения привода KV1.3, н.з. контакты положения выключателя Q6.1, диодный мост VD1, самовосстанавливающийся предохранитель FU1, контакт ХТ:25.

Советуем изучить Экспертный обзор всех существующих вариантов соединения проводов

Электромагнит включения YAC срабатывает, выключатель включается. При включении срабатывают и блок-контакты выключателя Q1…Q10. Блок-контакты Q7.1, Q8.1 подготавливают команду отключения.

Отключение выключателя

Для отключения, переменное оперативное напряжение или постоянное (выпрямленное) подается на контакты ХТ:28 и ХТ:29, при этом напряжение питания через выпрямитель на диодном мосте VD5 подается на катушку электромагнита включения YAТ по цепи: ХТ:28, н.з. контакты положения выключателя Q8.2, диодный мост VD5, самовосстанавливающийся предохранитель FU3, контакт ХТ:29.

Электромагнит отключения YAТ срабатывает и выключатель отключается.

Отключение выключателя также может производиться от токовых электромагнитов YAA1 и YAA2 для схем с дешунтированием или электромагнитом отключения YAV независимого источника питания.

Для отключения выключателя может использоваться конденсатор С3, установленный в схеме выключателя. Конденсатор С3 заряжается после подачи напряжения на контакты 26,27 блока зажимов выключателя. Для отключения выключателя необходимо внешними цепями управления соединить контакт ХТ:32 с контактом ХТ:28 блока зажимов(при этом контакты ХТ:26 И ХТ:29 должны быть объединены в общую цепь). Отключение выключателя произойдет по цепи (+) С3, самовостанавливающийся предохранитель FU2, ХТ:32, ХТ:29, Q7.1, Q8.1, VD5, YAT, ХТ:27(ХТ:29). Для отключения от конденсатора можно использовать и другие электромагниты, установленные в схеме выключателя (кроме токовых).

Принцип работы

Вакуумный выключатель (10 кВ, 6 кВ, 35 кВ – не имеет значения) обладает определенным принципом работы. Когда размыкаются контакты, в промежутке (в вакууме) ток коммутации создает электрический разряд – дугу. Ее существование поддерживается за счет испаряющегося металла с поверхности самих контактов в промежуток с вакуумом. Образованная парами ионизированного металла плазма – проводящий элемент. Она поддерживает условия протекания электрического тока. В тот момент, когда кривая переменного тока проходит через ноль, электрическая дуга начинает гаснуть, а пары металла фактически мгновенно (за десять микросекунд) восстанавливают электрическую прочность вакуума, конденсируясь на поверхностях контактов и внутренностях дугогасящей камеры. В это время восстанавливается напряжение на контактах, которые к тому моменту уже разведены. Если остаются после восстановления напряжения перегретые локальные участки, то они могут стать источниками эмиссии частичек заряженных, что вызовет пробой вакуума и протекание тока. Для этого используют управление дугой, поток тепла равномерно распределяют на контактах.

Вакуумный выключатель, цена на который зависит от фирмы-производителя, благодаря своим эксплуатационных свойствам, может сэкономить значительное количество ресурсов. В зависимости от напряжения, изготовителя, изоляции цены могут колебатся от 1500 у.е. до 10000 у.е.

Выводы

Вакуумные выключатели с номинальным напряжением 6, 10 и 35 кВ являются одним из наиболее востребованных сегодня типов коммутационного оборудования высоковольтных сетей. Они более надежны в эксплуатации, долговечны и безопасны для обслуживающего персонала и окружающей среды. Вакуумные выключатели от других видов устройств отличаются относительной простой и надёжной структурой. Поэтому этот вид оборудования служит длительное время без особых нареканий.

Ресурс естественного износа определяется числом операций, равным не менее 20000. При условии своевременного производства технического обслуживания этот ресурс возрастает на 5-10%. Между тем, техническое обслуживание ВВ ограничивается небольшим количеством лёгких операций.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: