Плюс и минус у светодиода. определяем полярность led

Как просто проверить светодиод мультиметром

Недостатки анодной протекторной защиты от коррозии

Если сдвиг потенциала анода в отрицательную сторону превысит определённое значение, возможна так называемая перезащита, которая приводит к выделению водорода на катоде, к изменению состава приэлектродного слоя и к другим процессам.  Все эти процессы способствуют отслаиванию защитного (изоляционного) покрытия в баке и ускорению коррозии защищаемого металла.

Чтобы исключить перезащиту и не допустить недозащиту, величина разности потенциалов  анода и катода должна находиться в определенных пределах в зависимости от целого ряда факторов, которые могут меняться. Причем, в случае значительного изменения этих факторов необходимо менять и величину потенциала анода. То есть, величину разности потенциалов между анодом и катодом необходимо измерять, контролировать и регулировать.

В водонагревателях высокой ценовой категории применяют более совершенную, регулируемую катодную защиту от коррозии. Сдвиг потенциала защищаемого металлического объекта осуществляется с помощью внешнего источника постоянного тока. Разность потенциалов между титановым анодом и баком водонагревателя регулируется электроникой по заданной программе.

Практика эксплуатации бюджетных водонагревателей с протекторной защитой свидетельствует о том, что не всегда удается исключить перезащиту, используя, рекомендуемый производителем, магниевый анод.

Для простого, протекторного способа защиты водонагревателей, единственный способ не допустить перезащиту и уменьшить потенциал — это заменить магниевый анод на электрод из алюминия.

Расчет подключения светодиодов в схемах на 12 и 220 воль т

Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит. Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад — питающее и падающее напряжения, I — ток, проходящий по цепи, 0,75 — коэффициент надежности светодиода, являющийся постоянной величиной.

В качестве примера можно взять схему, используемую при подключение светодиодов на 12 воль т в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:

  • Uпит = 12В — напряжение в автомобильном аккумуляторе;
  • Uпад = 2,2В — питающее напряжение светодиода;
  • I = 10 мА или 0,01А — ток отдельного светодиода.

В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 — 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора. Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 воль там. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.

В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт). Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 воль т. Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.

Расчет осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В. Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора — 30 кОм.

Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54В.

Для определения используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.

Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду. Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света. Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.

Ещё раз о трёх важных моментах

Прямой номинальный ток – главный параметр любого светодиода. Занижая его, мы теряем в яркости, а завышая – резко сокращаем срок службы. Поэтому лучшим источником питания является светодиодный драйвер, при подключении к которому через светодиод всегда будет протекать постоянный ток нужной величины.
Напряжение, приведенное в datasheet к светодиоду, не является определяющим и лишь указывает на то, сколько вольт упадёт на p-n-переходе при протекании номинального тока

Его значение необходимо знать для того, чтобы правильно вычислить сопротивление резистора, если светодиод будет работать от обычного БП.
Для подключения мощных светодиодов важно не только надёжное электропитание, но и качественная система охлаждения. Установка на радиатор светодиодов с мощностью потребления более 0,5 Вт станет залогом их стабильной и продолжительной работы.

Определение мультиметром

Как и любой диод, выполненный на основе p-n перехода, светоизлучающий диод можно проверить мультиметром, используя свойство проводить ток только в одну сторону. У современных цифровых тестеров есть специальный режим проверки диодов, при котором измерительное напряжение оптимально для данной процедуры.

Чтобы определить расположение выводов светодиода, надо произвольным образом подключить его ножки к щупам мультиметра и определить результат по показаниям дисплея.


Неправильная полярность подключения LED к тестеру.

Если элемент подключен неверно, то результатом измерения будет зашкаливание значения сопротивления (OL — overload, перегрузка). Надо поменять местами зажимы мультиметра.


Правильная полярность подключения LED к тестеру.

Если светодиод исправен и подключен правильно, то будет индицироваться какое-то сопротивление (конкретное значение зависит от типа излучающего элемента). В этом случае анодом будет вывод, присоединенный к плюсу мультиметра (красный провод), а катодом – к минусу (черный провод).

Некоторые тестеры в режиме проверки диодов выдают напряжение, достаточное для зажигания светоизлучающего элемента. В этом случае правильное подключение можно контролировать по свечению.


Свечение светодиода АЛ307 при проверке тестером.

Если в обоих вариантах подключения на дисплее будет индицироваться overload, это может означать:

  • неисправность светодиода;
  • измерительного напряжения не хватает для открытия p-n перехода (тестер рассчитан на «прозвонку» кремниевых диодов, а большинство светоизлучающих элементов делаются на основе арсенида галлия).

В первом случае полупроводниковый прибор можно утилизировать. Во втором – попробовать другой способ.

Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов  отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Все о цветовой маркировке конденсатора вы можете узнать здесь.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

О том, как проверить конденсатор мультиметром, читайте здесь.

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.

Если плюсовой щуп мультиметра был соединен с «+» конденсатора, то разница в показаниях должна быть незначительной. В случае если полярность перепутана (плюс на минус), то отличие результатов измерений будет существенной.

 Рекомендация.  Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

Когда требуется определение полярностей LED-лампочек

Малогабаритные светодиоды широко используются в различных областях, связанных с освещением и индикацией:

  • общественное освещение: рекламные щиты, парковое освещение;
  • бытовые элементы искусственного освещения: подсветка рабочих панелей, периметральный подвесной потолок, встроенная мебель и т д.;
  • индикация режимов включения/выключения электроприборов: самодельные умные розетки и др;
  • детские игрушки;
  • пульты дистанционного управления и многое другое.

При выходе из строя лампочки мастер прибегает к ее замене. В этом случае требуется определить анод и катод светодиода. В противном случае элемент просто не будет давать света.

На разных форумах есть информация, что нет смысла искать, где «прячется» плюс и минус светодиода. Нередки суждения, что лампочку можно подключить без соблюдения полярности. Здесь есть нюансы. Даже если мастеру повезет и стихия родит, в итоге это будет иметь следующие последствия:

  • Срок службы неправильно подключенной лампочки, заявленный производителем, значительно сократится. Например, при гарантированном режиме работы в 45 000 часов светодиод будет работать вдвое меньше.
  • Показатели (интенсивность, яркость света) снизятся значительно, чем должны быть. На общей схеме это будет видно невооруженным глазом.

Такие игры с полярностями и вероятность срабатывания диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.

Средний срок службы светодиодных ламп составляет 10 лет. Благодаря защите от влаги IP67 и выше элементы можно безопасно использовать для уличного освещения. Чтобы светодиоды проработали заявленный срок, необходимо соблюдать полярность при их подключении и определять их до проведения ремонтных работ, а не после.

Назначение диода

Полупроводниковые диодные элементы присутствуют практически во всех бытовых приборах. Светодиоды используются в производстве осветительных приборов и светодиодных телевизоров.

Полупроводниковые диоды классифицируют по:

  • кристаллический материал (кремний, селен, фосфид индия, германий);
  • размеры (микросплавы, точечные, плоские);
  • технологии изготовления pn-переходов (диффузионные, сплавные, эпитаксиальные);
  • частотный (низкочастотный, высокочастотный, сверхвысокочастотный, импульсивный);
  • области применения (выпрямительные и специальные).

Выпрямительные диоды предназначены для преобразования переменного напряжения в постоянное. Они установлены в схеме в виде диодного моста, который можно использовать в радиоаппаратуре, блоке питания, зарядном устройстве.

Внимание! Готовые диодные мосты (диодные сборки) продаются в виде коробочек с четырьмя ножками. Выпрямители делятся на:

Выпрямители делятся на:

  • малый ток (до 0,3 ампера);
  • средней мощности (0,3-10 ампер);
  • мощность (10-100 000 А, до 6 кВ).

Полупроводниковые специальные диодные элементы:

  • варикапы (емкостные диоды);
  • тиристоры (с дополнительным выводом для перехода в открытое состояние);
  • симисторы (ток проходит в 2-х направлениях);
  • стабилитроны (стабилизатор напряжения 2 вольта в состоянии пробоя, отдельный тип стабилизатора (нормистор) на напряжение 0,7-2 вольта);
  • диоды Шоттки (для низковольтных цепей в паре со стабилитроном);
  • туннельные диодные элементы (с малым отрицательным сопротивлением);
  • динисторы (не содержат управляющих электродов, установлены на переключателях);
  • магнитодиоды (изменение вольт-амперных характеристик в магнитном поле, устанавливаемые на датчики движения, устройства управления);
  • фотодиоды (преобразовывают световую энергию в электрическую);
  • светодиоды (преобразуют электрическую энергию в свет).

Справка! Светодиоды, излучающие инфракрасный свет, называются инфракрасными. Их устанавливают в камеры видеонаблюдения, системы беспроводной связи, оборудование дистанционного управления.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: