Схема индикатора заряда аккумулятора на светодиодах

Накладной индикатор напряжения (заряда) для модернизации литиевых батарей и сборок

Готовые варианты с Aliexpress

Если нет желания или возможности заниматься самостоятельным изготовлением устройства индикации, можно приобрести готовые изделия на Алиэкспресс. Этот недорогой индикатор предназначен для контроля литий-ионного аккумулятора и имеет пятиступенчатую дискретную индикацию (четыре сегмента плюс рамка).

Индикатор для контроля заряда li-ion батареи

Это устройство может работать как с единичным элементом, так и с батареей, содержащей до 8 ячеек. При единичном аккумуляторе минимальное напряжение индикации (сегменты погашены рамка мигает) составляет 2,7 вольт. Ниже устройство отключается – не хватает напряжения питания. Напряжение переключения при одной ячейке указано в таблице, при увеличении количества банок уровни соответственно масштабируются.

Остаточный заряд, % 100 75 50 25 <25%
Соответствующее напряжение, В 3,9 3,7 3,5 3,3 2,7..3,3
Индикация 4 сегмента 3 сегмента 2 сегмента 1 сегмент Мигающая рамка

В Интернете можно найти и другие образцы схем индикаторов для самостоятельной сборки, в том числе на специализированных микросхемах, с индикацией как на светодиодах, так и на ЖК-дисплеях. На просторах Алиэкспресс можно отыскать и другие готовые устройства. Главное – понимать возможности таких схем и не ждать от них повышенной точности.

Детали и замены

Детали:

R1 -330 Ом     1 % (3300) R2-806 Ом     1 % (8060) R3-470 Ом     1 % (4700) R4*-18 кОм    1 % (1802)-для4NiCd R4*-24.9kOm 1 % (2492)-для5NiCd R5-10 кОм     1 % (1002) R6-6,8kOm    5%   (682) С1 — 10мкФ/10 В (танталовый) С2 -10 мкФ /10 В (танталовый) AL1..AL3   -1206 UEC (красный) AL4..AL5   — 1206 UYC (желтый) AL6. AL10 — 1206 UGC (зеленый) DA1 -LM3914N-1

Применительно к данной компоновке и разводке печатной платы какая-либо замена деталей крайне нежелательна. Однако, изменив печатную плату, можно перейти на обычные детали (резисторы и светодиоды). Если же дополнительно включить в узловые точки подстроечные резисторы, то можно заменить прецизионные резисторы обычными и получить дополнительную возможность изменять в разумных пределах настройки данного индикатора.

Circuit Connections –

For designing this battery level indicator it is important to understand pin diagram and pin configuration of LM339 IC. This is a comparator IC which is specially designed for low-level sensing. Internally LM339 consists of four OPAM which acts like comparators and detect the voltage level. This IC has low offset voltage (+/- 2 mV) and low bias current (Typically 25 nA). The supply voltage of LM339 can vary from 3V to 36V and split supply can vary from +/-1.5 V to +/-18 V. The input common mode voltage is around -0.3 V to Vcc. The input common mode voltage is the acceptable input voltage range for the operation of LM339.
 
Ideally, the zero-volt output of OPAM should be zero. But due to a mismatch in the input transistor of OPAM, the OPAM gives zero output at non-zero input values. So, an input offset voltage is needed. This voltage is the required voltage at both the input terminals of the OPAM to make the output voltage zero.
 
Bias current or input bias current is the leakage current which flows in and out of the input terminal of the OPAM. The range of input bias current is from Nanoamperes to picoamperes. So, MOSFET OPAM has input bias current in picoampere and BJT OPAM has input bias current in nanoampere. 
 
By using LM339 less number of components are required to design the circuit. The IC has low bias current and offset voltage which prevents input common mode supply voltage from going below – 0.3V. 
 
The IC has the following pin diagram and internal circuitry as shown in the figure below – 
 

 
Fig. 2: Internal Circuit of LM-339 (Source- LM339 on semiconductor datasheet)
 
 
LM339 is a 14-pin IC with pins having the following functions – 

 
Fig. 3: Table listing pin configuration of LM339 IC
 

First of all, battery has to be connected with the IC. At input, a battery of 12V is connected and the LM339 IC can sense the battery voltage level and indicate it by output LEDs. The use of C1 capacitor is to remove the unwanted voltage spikes and noise from the input signal which may cause damage to the IC (as shown in the circuit diagram). 

 
For voltage regulation, Zener diode is used. A zener diode D1 (6.2V) will provide a constant and regulated voltage of 6.2V to the non-inverting pin of comparators. The resistance R1 will limit the flow of current to the zener, as current more than zener rating can damage it. The maximum current rating of zener can be calculated as-  
 
Iz = Pz(Power of zener diode)/Vz(voltage of zener diode)
 
Externally the non-inverting pin of each comparator is set at a fixed voltage level but at different values. This is done by using a zener diode and a string of resistance which makes a voltage divider network. The inverting pin of all the comparators are set at the same potential and keep changing as per input voltage. A diode D2 is connected to the negative supply pin (pin 12) of IC to the ground. As this IC cannot work below -0.3V voltage so this diode provides a drop of around 0.7V and lifts up the ground voltage to 0.7V. Therefore, it prevents the IC from going below -0.3 V. This diode also blocks the small noise signal which may come from the ground and protects the comparator IC. 
 
For visual indication of the terminal voltage level of battery, LEDs at the output pins of the compartors are used. There are four output corresponding to four comparators. At each output,  LED is used with a series resistance.This resistance limits the flow of current through LED, as the high current can damage LED. These LEDs will give a visual indication of the voltage level of the battery. In this experiment, the maximum current drawn by each LED is around 5mA to 6mA. The current can be vary by varying the value of resistor from R9 to R12

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Схема индикатора заряда аккумулятора

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Блок питания 0…30В/3A
Набор для сборки регулируемого блока питания…

Подробнее

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

R1= 3,8к

R2=1к

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Обновление (29/10/21)

Резистор R3 для схемы с транзистором можно рассчитать по следующей формуле :

R3 = (Umin — VREF) / Imin

  • Umin — минимальное напряжение
  • VREF — 2,5 В
  • Imin — минимальный ток

Однако значение Umin следует принимать ниже предполагаемого. Для 12В возьмем 11,8 В. Необходимо также добавить 2 мА для правильной работы схемы — чтобы при минимальном напряжении (в нашем случае менее 12 В) через резистор протекал ток более 1 мА.

R3 = (11,8 В — 2,5 В) / 0,002 A = 4650 Ом

Резистор R4 можно рассчитать по следующей формуле:

R4 = (Uon — Imin * R3  -Uled) / Iled

  • Uon — напряжение в рабочем состоянии — включено
  • Imin — минимальное значение тока, протекающего через TL431 — возьмем 1 мА
  • R3 – рассчитан ранее
  • Uled — напряжение на светодиоде
  • Iled — ток, протекающий через светодиод

Предположим: Uon = 12 В, Imin_off = 1 мА, R3 = 4,7 кОм , Uled = 2,4 В, Iled = 10 мА.

R4 = (12 В-0,001 А * 4700 Ом-2,4 В) / 0,010 А = 9,6 В-4,7 / 0,010 А = 4,9 / 0,010 А = 490 Ом

Таким образом, у нас будет полностью функциональная схема. Помните, что эта схема может быть нагружена током максимумом 100 мА (один светодиод примерно 25 мА). По схеме индикатора разряда нужно проверить максимальную нагрузку транзистора (для BC547 она составляет 100 мА).  Потребление тока самого TL431 составляет всего 1,5 мкА — практически незаметно.

Минимальный порог напряжения — тот, который еще не повредит аккумулятор, составляет 0,9 В на ячейку. Однако все зависит от того, где вы хотите использовать схему, например, в случае летающих радиомоделей, напряжение на ячейку 0,9 В не является правильным, поскольку сигнализация включится только тогда, когда вертолет уже будет лежать на земле. Поэтому с летающими моделями лучше поставить 1,2 В на ячейку и конечно вместо светодиода лучше использовать зуммер.

Инвертор 12 В/ 220 В
Инвертор с чистой синусоидой, может обеспечивать питание переменно…

Подробнее

Для чего нужен индикатор разряда аккумулятора.

Например, вы используете литий-ионые аккумуляторы без платы защиты. Чтобы не перегрузить их случайно можно поставит обычный плавкий предохранитель ампер на 30. Берем автомобильный или делаем самодельный из медной жилы сечением 0.5мм2.

Для того, чтобы не переразрядить АКБ больше нужного предела используем приведенный ниже индикатор разряда, светодиод которого загорится, когда аккумулятор разрядиться до установленного уровня. Балансировку осуществляем при заряде для этого я вывел на корпус разъем.

Также можно настроить схему на промежуточную разрядку например 50% или 75%-типа скоро сядет. Или даже использовать несколько схем настроенных на разные напряжения. Например, три. Один загорается при 75%, второй при 50%, а третий при 25% от заряда.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

Оцените, пожалуйста, статью. Мы старались:)

Заводские индикаторы в виде панелей

В специализированных магазинах можно найти множество разных контролирующих устройств для аккумулятора, дизайн и функции каждый автовладелец может подобрать под себя. Разнятся индикаторы и по способу подключения: к прикуривателю или в бортовую сеть машины. Однако, основная задача у всех устройств одна – определить, насколько заряжен АКБ, и просигнализировать об этом.

Существуют индикаторы, которые надо собрать самостоятельно, как конструктор. Как пример – DC-12 В. Он дает возможность контролировать заряд батареи, а также работу регулирующего реле.

Такое небольшое контрольное устройство работает в диапазоне от 2,5 до 18 вольт, электричества потребляет совсем мало – до 20 миллиампер, размеры индикаторного окошка – 4,3 на 2 см.

Если ставится второй аккумулятор в автомобиль, можно воспользоваться индикатором от ТМС, – это небольшая панель из промышленного алюминия на светодиодах со встроенным вольтметром и переключателем между смежными АКБ.

Устройство светодиодного индикатора зарядки аккумуляторной батареи

Проблема решается элементарно — тем самым подзаряжением. Белый цвет глазка говорит о том, что даже если электролит и плотен, его осталось слишком мало. Тут уже подсоединение к электросети не помогает. Придется разбирать батарею и добавлять в нее дистиллированную воду.

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Индикатор заряда аккумулятора: что это и для чего он нужен, обозначения цветов Стоит отметить, что в некоторых случаях индикатор зарядки делают самостоятельно; он способен отслеживать действие АКБ при сетевом напряжении 6-14 В. Спрашивайте, я на связи!

Алгоритм для самостоятельного изготовления

Лучше всего выглядят самодельные электронные устройства, выполненные на печатных платах. Трудоемкость изготовления окупается эстетичным внешним видом, да и надежность такой сборки повыше.

Сначала надо разработать рисунок печатной платы (если он не приводится в описании к схеме). Это можно сделать дедовским способом – нарисовать посадочные места элементов на бумаге и начертить соединительные дорожки. Однако в настоящее время это удобнее делать в специальных компьютерных программах – например, бесплатной Spint Layout. Главное удобство в том, что на экране можно двигать элементы, добиваясь оптимального расположения.

Рисунок печатной платы, выполненный в Sprint Layout для индикатора на Atmega8

Дальше рисунок надо перенести на плату. Можно нарисовать от руки лаком (например, для ногтей).

Отрисовка посадочного места под микросхему лаком

Но гораздо красивее получаются платы, изготовленные методом ЛУТ (лазерно-утюжная технология). Нарисованный в программе рисунок распечатывается на глянцевой бумаге на лазерном принтере и с помощью утюга переводится на плату.

Рисунок, нанесенный на плату методом ЛУТ

Нарисованная плата травится в растворе хлорного железа. Но практичнее применять следующий раствор:

  • 30 грамм лимонной кислоты (продается в любом продуктовом магазине);
  • 2-3 чайные ложки поваренной соли;
  • 100 грамм аптечной перекиси водорода.

Компоненты этого состава проще приобрести, а испортить одежду или окружающие предметы при случайном разливе – сложнее.

После травления плата промывается в большом количестве воды, сушится, в ней сверлятся отверстия, и можно приступать к запаиванию элементов.

Сверление отверстий ручной дрелью

Другой способ – менее эстетичный, но не менее надежный – сборка схемы на макетной плате. От подобной платы надо отпилить кусочек подходящих габаритов (лучше применять плату с металлизированными отверстиями). Элементы запаиваются в отверстия, а соединения делаются отрезками монтажного провода.

В крайнем случае можно собрать схему без платы («паучком»), но вероятность замыканий и отрыва проводников и выводов при эксплуатации будет велика.

Собранная схема нуждается, как минимум, в проверке работоспособности. Готовое устройство надо подключить к регулируемому источнику постоянного напряжения. Повышая и понижая выходной уровень надо отследить, что индикация (загорание и погасание светодиодов) происходит в соответствии с заданным напряжением. Если наблюдается несоответствие, надо подобрать элементы, задающие порог (обычно, указываются в описании к схеме). Если схема не работает совсем, надо искать ошибку в монтаже или неисправную деталь.

В видео объясняют, как сделать индикатор заряда из Старого Тиристора.

Как сделать индикатор заряда аккумулятора на светодиодах?

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт. Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке. Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:UOP1+ = UСТ VD2 – UR8,UСТ VD2 =UR8+ UR9+ UR10+ UR11+ UR12 = I*(R8+R9+R10+R11+R12)I= UСТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,UR8 = I*R8=0,34 мА*5,1 кОм=1,7 ВUOP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: UOP1- = I*R5 = UБАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать здесь. Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,R5, R8 – 5,1 кОм,R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

Читайте так же

ledjournal.info

Индикатор заряда аккумулятора своими руками

Индикатор заряда аккумулятора своими руками на двух светодиодах — правильно обслуживаемые аккумуляторы будут работать у вас хорошо и долю. Обслуживание подразумевает, в частности, регулярный контроль напряжения аккумулятора. Изображенная на Рисунке 1 схема подходит для большинства типов аккумуляторов. Она содержит опорный светодиод LEDREF, работающий при постоянном токе 1 мА и обеспечивающий эталонный световой поток постоянной интенсивности, не зависящей от напряжения аккумулятора.

Это постоянство обеспечивается резистором R1 включенным последовательно со светодиодом. Поэтому, даже если напряжение полностью заряженного аккумулятора упадет до полного разряда, ток через него изменится всего на 10%. Таким образом, можно считать, что интенсивность излучения остается постоянной в диапазоне напряжений аккумулятора, соответствующем переходу от состояния полного заряда до полного разряда.

Световой поток измерительного светодиода LEDVAR меняется в соответствии с изменениями напряжения аккумулятора. Расположив светодиоды поблизости друг от друга, вы получите возможность легко сравнивать яркость их свечения, и, таким образом, определять статус аккумулятора. Используйте светодиоды с диффузно-рассеивающей линзой, поскольку приборы с прозрачной линзой раздражают ваши глаза. Обеспечьте достаточную оптическую изоляцию светодиодов, чтобы свет одного светодиода не попадал на линзу другого.

Работа измерительного светодиода

Измерительный светодиод работает при токе, меняющемся от 10 мА при полностью заряженном аккумуляторе до значений менее 1 мА при полном разряде. Стабилитрон Dz с последовательным резистором R2 необходимы для того, чтобы ток имел резкую зависимость от напряжения батареи. Сумма напряжения стабилитрона и падения напряжения на светодиоде должна быть чуть меньше, чем самое низкое напряжение аккумулятора. Это напряжение падает на резисторе R2. Изменения напряжения батареи вызывают большие изменения тока резистора R2. Если напряжение равно примерно 1 В, через светодиод LEDVAR течет ток 10 мА, и он светится намного ярче, чем LEDREF. Если напряжение ниже 0.1 В, интенсивность свечения LEDVARvar будет меньше, чем у LEDREF. показывая, что аккумулятор разряжен.

Индикатор заряда аккумулятора своими руками — непосредственно после окончания зарядки аккумулятора напряжение на нем превышает 13 В. Для схемы это безопасно, поскольку ток ограничен значением 10 мА. Если светодиоды горят ярко, быстро отпустите кнопку S11( чтобы не допустить их повреждения (Рисунок 2). Хотя в примере на Рисунке 2 индикатор заряда подключен к 12-вольтовой свинцово-кислотной аккумуляторной батарее, вы без труда можете адаптировать эту схему к другим типам аккумуляторов. Кроме того, вы можете использовать ее для контроля напряжения.

Два зеленых светодиода индуцируют состояние, когда заряд батареи превышает 60%. Набор красных светодиодов показывает, что заряд аккумулятора упал ниже 20%. Светодиоды LEDREFG и LEDREFR подключены через резисторы R1 и R2 сопротивлением 10 кОм. Последовательное измерительными светодиодами, яркость свечения которых изменяется, включены стабилитроны и резисторы R3 и R4 сопротивлением 100 Ом. Диоды D1, D2 и D3 задают требуемое напряжение ограничения. Зависимость яркости свечения светодиодов от состояния аккумулятора показана в Табпице1.

Для расчета интенсивности свечения зеленого измерительного светодиода можно использовать следующее выражение:

VBATT= 10G x 100 +VD1 +VD2 +VLEDG +VDZ1

При токе зеленого светодиода 1 мА

VBATT =103 x 100+0.6+0.6+1.85+9.1=1225B.

Падение напряжения на используемых светодиодах при прямом токе 1 мА равно 1.85 В. Если характеристики светодиодов отличаются, сопротивления резисторов необходимо пересчитать. При этом напряжении светодиоды светятся одинаково, что соответствует заряду аккумулятора на 60%. Описание свинцово-кислотных аккумуляторов можно найти в. Для расчета интенсивности свечения красного измерительного светодиода можно использовать следующее выражение:

VBATT= IR x IOO+VD3+VLEDR+VZD2

При токе зеленого светодиода 1 мА

VBATT =10-3 x 100 +0.6 + 1.85 + 9.1 =11.65 В.

Поскольку при таком напряжении оба красных светодиода светятся одинаково, это означает, что аккумулятор заряжен на 20%. Светодиод LEDVARGvarg не горит. Рисунок 3 показывает, что оба измерительных светодиода светятся ярче опорных, сообщая о том, что аккумулятор заряжен на 100%

Описание схемы устройства

Известно, что для эффективного отбора мощности контроллер должен отслеживать точку максимальной мощности солнечной панели, то есть точку, в которой и напряжение и ток, отдаваемые панелью, максимальны. Универсальные промышленные контроллеры, отслеживающие положение рабочей точки и рассчитанные на широкий диапазон мощностей солнечных панелей, собранных в батареи, достаточно дороги и избыточны в случае эксплуатации одиночной панели.

Точка максимальной мощности и температурный диапазон эксплуатации указываются в паспортных данных качественных панелей.

При проектировании предлагаемого контроллера реализованы обе основных задачи эксплуатации – непрерывное поддержание батареи в точке максимальной мощности и температурная коррекция положения рабочей точки.

Блок-схема контроллера представлена на Рисунке 1 и содержит эквивалент солнечной батареи в виде источника тока SB, обладающего внутренним сопротивлением RВН.

Рисунок 1. Блок-схема контроллера солнечной панели.

При отсутствии внешнего освещения RВН стремится к бесконечности, а ток к нулю. При росте освещенности RВН стремится нулю, а ток к максимальному, технически допустимому значению.

Рассмотрим работу схемы. В исходном состоянии (при отсутствии освещения) конденсатор С1 разряжен, на выходе компаратора U1 присутствует «1», ключ S1 разомкнут. U равно паспортному значению точки максимальной мощности солнечной панели.

При росте освещенности конденсатор С1 начинает заряжаться через внутреннее сопротивление солнечной панели. Когда напряжение на С1 превышает опорное напряжение, на выходе компаратора появляется «0», замыкающий ключ S1.

Конденсатор С1 разряжается через S1 на нагрузку RН, после чего процесс повторяется.

Чем выше освещённость, тем чаще повторяется описанный выше процесс.

По сути, мы имеем релаксационный генератор – преобразователь освещенности в частоту.

В практической схеме частота следования импульсов тока составляет единицы герц на рассвете и в сумерки, до десятков килогерц при максимальной освещенности, что обеспечивает широкий динамический диапазон работоспособности контроллера.

Принципиальная схема контроллера представлена на Рисунке 2.

Рисунок 2. Принципиальная схема контроллера солнечной панели.

Поскольку ранее мы подробно разобрали алгоритм работы контроллера, то остановимся только на нескольких моментах.

  • Схема гарантированно работоспособна с 12-вольтовыми солнечными панелями мощностью от 40 Вт до 100 Вт, имеющими напряжение холостого хода не более 22 В, номинальное напряжение, соответствующее точке максимальной мощности 17-18 В, и номинальный ток 2…8 А.
     
  • Компаратор U1-2 срабатывает при напряжении на аккумуляторной батарее выше 14.4 вольт, принудительно ограничивая длительность импульсов зарядного тока, что предотвращает перезаряд аккумулятора.
     
  • Питание компаратора и источника опорного напряжения производится с выхода устройства, что гарантирует автоматическое отключение контроллера при отключении аккумулятора.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Обозначение Типоразмер Схожий типоразмер
XXYY0,
где XX – указание диаметра в мм,YY – значение длины в мм, – отражает исполнение в виде цилиндра
10180 2/5 AAA
10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, длина CR2
14430 Ø 14 мм (как у АА), но длина меньше
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (или 168S/600S)
18350
18490
18500 2xCR123 (или 150A/300P)
18650 2xCR123 (или 168A/600P)
18700
22650
25500
26500 С
26650
32650
33600 D
42120

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: