Транзисторы высокочастотные: справочник приборов вч и свч

Сначала о том, почему составной

Как вы уже поняли, транзистор изобрел инженер Дарлингтон, но в итоге это изобретение получило двойное имя. С одной стороны, это транзистор Дарлингтона, но с другой же, составной транзистор. Так почему же составной? Ведь когда мы говорили о видах, ни о каких составных речи не шло. Все просто, друзья мои. Дарлингтон решил использовать сразу 2 биполярных транзистора. Они были реализованы на одном кристалле, сделанном из кремния и там, естественно было 2 перехода. На Западе это изобретение привыкли называть транзистором Дарлингтона, а у нас его по-простому называют составным. Ну что, давайте узнаем о нем еще больше.

Аналоги

Для замены могут подойти транзисторы кремниевые, со струкрурой NPN, эпитаксиально-планарные, предназначенные для применения в схемах усилителей низкой частоты, дифференциальных и операционных усилителей.

Отечественное производство

Тип PC UCB UCE UEB IC TJ hFE fT Cob NF UCE(sat) Корпус
C1815 0,2 60 50 5 0,15 150 130 80 3,5 ≤ 0,25 SOT-23
КТ3102А 0,25 50 50 5 0,1 100…200 150 ≤ 6 10 ТО-92, ТО-18
КТ3102Б 0,25 50 50 5 0,1 200…500 150 ≤ 6 10 ТО-92, ТО-18
КТ602А/Б 0,85 120 100 5 0,075 150 20…80 150 ≤ 4 ≤ 3,0 ТО-126
КТ602В/Г 0,85 80 70 5 0,075 150 15…80 150 ≤ 4 ≤ 3,0 ТО-126
КТ611А/Б 0,8 200 180 4 0,1 150 10…120 ≥ 60 ≤ 5 ≤ 0,8 ТО-126
КТ611В/Г 0,8 180 180 4 0,1 150 10…120 ≥ 60 ≤ 5 ≤ 0,8 ТО-126
КТ660А 0,5 50 45 5 0,8 150 110…220 ≥ 200 ≤ 10 ≤ 0,5 ТО-92

Зарубежное производство

Тип PC UCB UCE UEB IC TJ hFE fT Cob NF UCE(sat) Корпус Маркировка
2SC1815 0,4 60 50 5 0,15 150 70…700 80 ≤ 3,5 1…10 0,25 TO-92
CSC3114/R 0,4 50 0,15 100 100 ≤ 3,5 ≤ 100 ≤ 0,25 TO-92
CSC3114S 0,4 50 0,15 140 100 TO-92
CSC3114V 0,4 50 0,15 280 100 TO-92
CSC3199 0,4 50 0,15 70…700 80 TO-92
CSC3331/R/S/T 0,5 50 0,2 70 200 TO-92
CSC3331TU/U/V 0,5 50 0,2 70 200 TO-92
C1815 0,2 60 50 5 0,15 150 130 80 0,25 SOT-23 HF
2N5551SC 0,35 180 160 6 0,6 150 150 100 ≤ 6 ≤ 8 ≤ 0,5 SOT-23 ZFC
2PD601BRL 0,25 60 50 6 0,2 150 210 100 ≤ 3 ≤ 0,25 SOT-23 ML٭
2PD601BSL 0,25 60 50 6 0,2 150 290 100 ≤ 3 ≤ 0,25 SOT-23 MM٭
2PD602ASL 0,25 60 50 5 0,5 150 170 180 ≤ 15 ≤ 0,6 SOT-23 SF
2SC2412-R 0,2 60 50 7 0,15 150 180 180 ≤ 3,5 ≤ 0,4 SOT-23 BR
2SC2412-S 0,2 60 50 7 0,15 150 270 180 ≤ 3,5 ≤ 0,4 SOT-23 BS
2SC945LT1 0,23 60 50 5 0,15 150 200 150 ≤ 3,5 ≤ 0,3 SOT-23 L6
2STR1160 0,5 60 50 5 1 150 250 150 ≤ 3,5 ≤ 0,43 SOT-23 160
BCV47 0,36 80 60 10 0,5 150 10000 170 ≤ 3,5 ≤ 1,0 SOT-23 DK, FG, FGp, FGs, FGt, W
BTC2412N3 0,225 60 50 7 0,2 150 180 80 ≤ 3,5 ≤ 0,4 SOT-23 C4
BTD2150N3 0,225 80 50 6 4 150 270 175 14 ≤ 0,32 SOT-23 CF
BTN6427N3 0,225 100 60 12 0,5 150 10000 ≤ 7 ≤ 1,5 SOT-23 1N
CMPT3820 0,35 80 60 5 1 150 200 150 ≤ 10 ≤ 0,28 SOT-23 38C
CMPT491E 0,35 80 60 5 1 150 200 150 ≤ 10 ≤ 0,4 SOT-23 C49
INC5001AC1 0,2 80 60 5 1 150 130 240 ≤ 10 ≤ 0,25 SOT-23 XY
INC5006AC1 0,2 100 50 7 3 150 400 250 13 ≤ 0,2 SOT-23 CER
KMMT619 0,35 60 50 6 0,2 150 250 100 ≤ 20 ≤ 0,5 SOT-23 619, 619H
KST6428 0,35 60 50 6 0,2 150 250 100 ≤ 3 SOT-23 1K
L2SC1623RLT1G 0,225 60 50 7 0,15 150 180 250 ≤ 3 ≤ 0,3 SOT-23 L6
L2SC1623SLT1G 0,225 60 50 7 0,15 150 270 250 ≤ 3 ≤ 0,3 SOT-23 L7
L2SC2412KRLT1G 0,2 60 50 7 0,15 150 180 180 ≤ 3,5 ≤ 0,4 SOT-23 BR
L2SC2412KSLT1G 0,2 60 50 7 0,15 150 270 180 ≤ 3,5 ≤ 0,4 SOT-23 G1F
L2SC5343RLT1G 0,2 60 50 5 0,15 150 180 80 ≤ 3,5 ≤ 10 ≤ 0,25 SOT-23 7R
L2SC5343SLT1G 0,2 60 50 5 0,15 150 270 80 ≤ 3,5 ≤ 10 ≤ 0,25 SOT-23 7S
LMBT6428LT1G 0,225 60 50 6 0,2 150 250 100 ≤ 3 ≤ 0,5 SOT-23 1KM
MMBT5343-G/L 0,2 60 50 5 0,15 150 200 80 ≤ 3,5 ≤ 10 ≤ 0,25 SOT-23 5343
MMBT6428 0,3 60 50 6 0,2 150 250 100 ≤ 3 ≤ 0,6 SOT-23 1K, 1KM
MMBT6428L/LT1/LT1G 0,225 60 50 6 0,2 150 250 100 ≤ 3 ≤ 0,6 SOT-23 1KM
MMBT945-H/L 0,2 60 50 5 0,15 150 200/130 150 ≤ 3 ≤ 0,3 SOT-23 CR
MMBTA28 0,35 80 80 12 0,8 150 10000 125 ≤ 8 ≤ 1,5 SOT-23 3SS K6R
NXP3875G 0,2 60 50 5 0,15 150 200 80 ≤ 3,5 ≤ 10 ≤ 0,25 SOT-23 ٭JF
PBSS4041NT 0,3 60 60 5 3,8 150 300 175 17 ≤ 0,3 SOT-23 ٭BK
PBSS4160T 0,3 80 60 5 1 150 250 150 ≤ 10 ≤ 0,25 SOT-23 ٭U5
PBSS8110T 0,3 120 100 5 1 150 150 100 ≤ 7,5 ≤ 0,2 SOT-23 ٭U8
SSTA28 0,2 80 80 12 0,3 150 10000 200 ≤ 8 ≤ 1,5 SOT-23 SST3 RAT
TMPS1654N7 0,225 80 160 5 0,15 150 150 100 ≤ 8 ≤ 1,5 SOT-23 N7
TMPT6428 0,225 60 50 6 0,2 150 250 100 ≤ 3 ≤ 0,2 SOT-23 1K

Примечание: данные в таблицах взяты из даташип компаний-производителей.

На что нужно обратить внимание?

Открыв PDF-даташит, в первую очередь выясняем тип транзистора: биполярный или полевой, p-n-p или n-p-n, тип корпуса, расположение выводов (цоколевку).

Из числовых параметров это, прежде всего, максимальный ток и напряжение. У транзистора-замены максимальный ток и напряжение должны быть больше либо равны исходному.

Для биполярного транзистора важным параметром является коэффициент передачи по току hfe. Если транзистор стоит в ключевых схемах (включение-выключение нагрузок), hfe должен быть больше
или равен искомому. Если стоит в аналоговых усилителях или подобных устройствах, то должен быть близок. В импульсных блоках питания
транзисторы-аналоги также нужно выбирать с близким hfe (возможно придётся менять и исправный транзистор, стоящий в паре).

Необходимо проверить температурный режим (нагрев) транзистора после включения устройства. Если транзистор чрезмерно нагревается, то дело может быть как в самом транзисторе, так и в неисправных элементах его обвязки.

Предельные эксплуатационные характеристики

Характеристика Обозначение Величина
Напряжение коллектор – база транзистора, В UCBO 180
Напряжение коллектор – эмиттер транзистора, В UCEO 160
Напряжение эмиттер – база транзистора, В UEBO 6
Ток коллектора постоянный, А IC 0,6
Предельная рассеиваемая мощность, Вт TO-92 PC 0,625
SOT-23 ٭ PC 0,35
Предельная температура полупроводниковой структуры, °С Tj 150
Диапазон температур при хранении и эксплуатации, С° Tstg -55…+150
Тепловое сопротивление p-n переход – корпус транзистора, °С/Вт TO-92 RƟJС 83,3
SOT-23
Тепловое сопротивление p-n переход – внешняя среда, °С/Вт TO-92 RƟJA 200
SOT-23 357

٭ — транзистор 2N5551 в корпусе SOT-23 по каталогу имеет обозначение MMBT5551 (по даташит компании “Fairchild”).

Транзисторы КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315И, КТ315Ж.

Т ранзисторы КТ315 — кремниевые, маломощные высокочастотные, структуры — n-p-n. Корпус пластиковый — желтого, красного, темно — зеленого, оранжевого цветов. Масса — около 0,18г. Маркировка буквенно — цифровая, либо буквенная. Цоколевка легко определяется с помощью буквы, обозначающей подкласс транзистора. Она распологается напротив вывода эмиттера. Вывод коллектора — посередине, базы — оставшийся, крайний.

Наиболее широко распространенный отечественный транзистор. При изготовлении КТ315 впервые массово была применена планарно — эпитаксиальная технология. На пластине из материала n — проводимости формировался участок базы, проводимостью — p, затем, уже в нем — n участок эмиттера. Эта технология способствовала значительному удешевлению производства, при меньшем разбросе параметрических характеристик, по тому времени — довольно высоких.

Благодаря плоской форме корпуса и выводов КТ315 хорошо подходит для поверхностного монтажа. Таким образом, применение КТ315 позволило в свое время значительно уменьшить размеры элементов ТТЛ советских ЭВМ второго поколения. Область применения КТ315 черезвычайно широка, кроме элементов логики это — низкочастотные, среднечастотные, высокочастотные усилители, генераторы, все что сотавляло основу огромного количества бытовых и промышленных электронных устройств советской эпохи.

Разработка КТ315 была отмечена в 1973 г. Государственной премией СССР. Примечательно, что КТ315 до сих пор производятся в Белоруссии, в корпусе ТО-92.

Наиболее важные параметры.

Граничная частота передачи тока — 250 МГц. Коэффициент передачи тока у транзисторов КТ315А, КТ315В, КТ315Д — от 20 до 90. У транзисторов КТ315Б,КТ315Г,КТ315Е — от 50 до 350. У транзистора КТ315Ж, — от 30 до 250. У транзистора КТ315Ж, не менее 30.

Максимальное напряжение коллектор — эмиттер. транзистора КТ315А — 25в. Транзистора КТ315Б — 20в, транзистора КТ315Ж — 15в. У транзисторов КТ315В, КТ315Д — 40 в. у транзисторов КТ315Г, КТ315Е — 35 в. У транзистора КТ315И — 60 в.

Напряжение насыщения база — эмиттер при токе коллектора 20 мА, а токе базы — 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 1,1 в. У транзисторов КТ315Д, КТ315Е — 1,5 в. У транзисторов КТ315Ж — 0,9 в.

Напряжение насыщения коллектор — эмиттер при токе коллектора 20 мА, а токе базы 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 0,4 в. У транзисторов КТ315Д, КТ315Е — 1 в. У транзисторов КТ315Ж — 0,5 в.

Максимальное напряжение эмиттер-база — 6 в.

Обратный ток коллектор-эмиттер при предельном напряжении : У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 1 мкА. У транзисторов КТ315Ж — 10 мкА. У транзисторов КТ315И — 100 мкА.

Обратный ток коллектора при напряжении колектор-база 10в — 1 мкА.

Максимальный ток коллектора. У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 100 мА. У транзисторов КТ315Ж, КТ315И — 50 мА.

Емкость коллекторного перехода при напряжении коллектор-база 10 в, не более: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г,КТ315Д, КТ315Е, КТ315И — 7 пФ. У транзисторов КТ315Ж — 10 пФ.

Рассеиваемая мощность коллектора.

У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 150 мВт. У транзисторов КТ315Ж, КТ315И — 100 мВт.

Зарубежные аналоги транзисторов КТ315.

Прямых зарубежных аналогов у КТ315 нет. Наиболее близкий аналог(полное совпадение параметров) транзистора КТ315А — BFP719.

Аналог КТ315Б — 2SC633. Параметры этих транзисторов в основном совпадают, но у 2SC633 несколько ниже граничная частота передачи тока — 200МГц.

Аналог КТ315Г — BFP722, КТ315Д — BC546B

Графические иллюстрации характеристик

Рис. 1. Внешняя характеристика транзистора: зависимость коллекторного тока IC от величины напряжения коллектор-эмиттер при различных значениях тока базы (управления) IB.

Характеристика снята при температуре корпуса TC = 25°C.

Рис. 2. Зависимость статического коэффициента усиления hFE от величины коллекторной нагрузки IC.

Характеристика получена для трех значений температуры корпуса транзистора, при напряжении коллектор-эмиттер UCE = 5 В.

Рис. 3. Зависимости напряжений насыщения коллектор -эмиттер UCE(sat) и база-эмиттер UBE(sat) от величины коллекторной нагрузки IC.

Характеристики получены при соотношении токов IC/IB = 5 и при температуре корпуса транзистора TC = 25°C.

Рис. 4. Зависимости временных характеристик транзистора ton, ts, tf от величины коллекторной нагрузки IC.

Кривые сняты при температуре корпуса транзистора TC = 25°C и при соотношениях: IC = 5IB1, IB1 = -IB2 (см. схему измерений временных характеритсик).

Рис. 5. Область безопасной работы транзистора.

Характеристики ограничения нагрузок по току и напряжению сняты при температуре корпуса TC = 25°C в режиме одиночного импульса тока (надпись в поле рисунка) разных длительностей PW: 50 мкс, 100 мкс, 200 мкс, 500 мкс и 1 мс.

Рис. 6. Ограничение величины рассеиваемой мощности PC транзистора при нарастании температуры корпуса TC.

Особенности BC547:

Узнав о некоторых общих чертах с членами семьи, давайте сосредоточимся на некоторых величинах и особенности BC547.

Прирост:

La текущий прирост, когда мы говорим об общей базе, это примерно коэффициент усиления по току от эмиттера до коллектора в прямой активной области, всегда меньше 1. В случае BC548, как и его братьев по семейству, они имеют очень хороший коэффициент усиления. между 110 и 800 hFE для постоянного тока. Обычно это указывается с дополнительной буквой в конце номенклатуры, которая указывает диапазон усиления с учетом допуска устройства. Если такой буквы нет, то это может быть любая буква в указанном мною диапазоне. Например:

  • BC547: между 110-800hFE.
  • БК547А: между 110-220hFE.
  • BC547B: между 200-450hFE.
  • BC547C: между 450-800hFE.

То есть производитель рассчитывает, что она будет между этими диапазонами, но неизвестно, какова именно реальная прибыль, поэтому мы должны поставить себя в худший случай когда мы проектируем схему. Таким образом, гарантируется, что схема работает, даже если коэффициент усиления является минимумом диапазона, а также гарантируется, что схема будет продолжать работать, если мы заменим упомянутый транзистор. Представьте, что вы разработали схему так, чтобы она работала с минимум 200hFE, и у вас есть BC547B, но вы решили заменить его на BC547A или BC547, он может не достичь этой скорости и не будет работать … С другой стороны стороны, если вы сделаете так, чтобы он работал со 110, то либо у вас сработает.

Частотный отклик:

La частотный отклик это очень важно для усилителей. Амплитудно-частотная характеристика транзистора будет зависеть от того, сможет ли он работать с той или иной частотой

Это что-то напомнит вам, если вы изучали такие темы, как частотные фильтры высоких и низких частот, верно? В случае с семейством, представленным здесь, и, следовательно, с BC547, они имеют хорошую частотную характеристику и могут работать на частотах между 150 и 300 МГц.

Обычно в радиокомпоненты Полная информация о транзисторе предоставлена ​​производителями, включая график частотной характеристики. Эти документы можно загрузить в формате PDF с официальных сайтов производителей устройств, и там вы найдете значения. Вы увидите частотную характеристику с инициалами fT.

Эти максимальные частоты гарантируют, что транзистор усилить хотя бы 1, поскольку чем выше частота, тем меньше усиление транзистора за счет емкостной его части. Выше этих приемлемых частот транзистор может иметь очень небольшое усиление или не иметь его вообще, поэтому он не выполняет компенсацию.

Эквивалентности и дополнения:

Вы можете оказаться перед дилеммой: используйте другой тип транзистора или дополняет BC547 в цепи. Вот почему мы собираемся показать некоторые эквиваленты или антагонисты.

  • Эквиваленты:
    • Аналогичный: эквивалентный транзистор для монтажа на монтажной плате будет 2N2222 или PN2222, которому мы посвятим отдельную статью. Но будьте осторожны! В случае мифического 2N2222 контакты эмиттера и коллектора поменяны местами. То есть это будет эмиттер-база-коллектор, а не коллектор-база-эмиттер. Следовательно, вы должны сварить его или повернуть на 180 ° относительно того, как у вас был BC547.
    • SMDЕсли вам нужен аналог BC547 для поверхностного монтажа для печатных схем или печатных плат меньшего размера, то вам нужен BC487, инкапсулированный под SOT23. Это позволило бы избежать пластины с отверстиями для монтажа и пайки. Кстати, если вы ищете эквивалентные биполярные транзисторы для других членов семейства, вы можете проверить BC846, BC848, BC849 и BC850. То есть замените BC4xx на эквивалентный BC8xx.
  • Дополнительный: Другая ситуация, которая может возникнуть, заключается в том, что вам нужно обратное, то есть PNP вместо NPN. В этом случае правильным будет BC557. Чтобы найти дополнительные предметы для остальных членов семьи, вы можете использовать BC5xx, например: BC556, BC558, BC559 и BC560.

Надеюсь, этот пост помог вам и следующий будет PN2222.

Discrete Component Field Effect Transistor Driver

Одно дело, когда для скоростного управления мощным полевым транзистором с тяжелым затвором есть готовый драйвер в виде специализированной микросхемы типа UCC37322, и совсем другое, когда есть такого драйвера нет, и схема управления силовым ключом должна быть реализована здесь и сейчас.

В таких случаях часто приходится прибегать к помощи имеющихся дискретных электронных компонентов, и уже из них собирать привод затвора. Дело, казалось бы, не хитрое, однако для получения адекватных временных параметров переключения полевого транзистора все должно быть сделано качественно и работать корректно.

Очень стоящую, краткую и качественную идею с целью решения подобной задачи предложил еще в 2009 году Сергей BSVi в своем блоге «Страница встраивания».

Схема успешно проверена автором в полумостовом режиме на частотах до 300 кГц. В частности, на частоте 200 кГц при емкости нагрузки 10 нФ удалось получить фронты длительностью не более 100 нс. Давайте посмотрим на теоретическую сторону этого решения, и попробуем подробно разобраться, как работает эта схема.

Основные токи заряда и разряда затвора при отпирании и запирании отмычкой протекают через биполярные транзисторы выходного каскада драйвера. Эти транзисторы должны выдерживать пиковый ток управления затвором, а их максимальное напряжение коллектор-эмиттер (согласно даташиту) должно быть больше напряжения питания драйвера. Обычно для управления полевым затвором достаточно 12 вольт. Что касается пикового тока, то будем считать, что он не превышает 3А.

Если для управления ключом нужен больший ток, то и транзисторы выходного каскада должны быть более мощными (разумеется, с подходящей предельной частотой передачи тока).

Для нашего примера в качестве транзисторов выходного каскада подойдет комплементарная пара — BD139 (NPN) и BD140 (PNP)

Они имеют предельное напряжение коллектор-эмиттер 80 вольт, пиковый ток коллектора 3А, частоту отсечки по току 250 МГц (важно!), и минимальный статический коэффициент передачи по току 40

Для увеличения коэффициента усиления по току, до выходных транзисторов БД139 добавлена ​​дополнительная комплиментарная пара слаботочных транзисторов КТ315 и КТ361 с максимальным обратным напряжением 20 вольт, минимальным статическим коэффициентом передачи тока 50 и частотой среза 250 МГц.и БД140.

В результате получаем две пары транзисторов, соединенных по схеме Дарлингтона с суммарным минимальным коэффициентом передачи тока 50*40=2000 и с частотой среза 250 МГц, то есть теоретически в пределе коммутации скорость может достигать нескольких наносекунд. Но так как речь идет об относительно длительных процессах заряда и разряда затворной емкости, то это время будет на порядок больше.

Сигнал управления необходимо подать на объединенную базу транзисторов КТ315 и КТ361. Токи открытия баз NPN (верхний) и PNP (нижний) транзисторов должны быть разделены.

Для этого в схеме можно было установить разделительные резисторы, но решение с установкой вспомогательного блока на КТ315, резисторе и диоде 1н4148 оказалось гораздо более эффективным именно для этой схемы.

Функция этого блока — быстро активировать базы верхних транзисторов слаботочного каскада при подаче более высокого напряжения на базу этого блока, и так же быстро через диод подтягивать базы к минусу при появлении сигнала самого низкого уровня появляется на основании устройства.

Для возможности управления данным драйвером от слаботочного источника сигнала с выходным током порядка 10 мА в схеме установлены слаботочный полевой транзистор КП501 и быстродействующая оптопара 6н137 .

При подаче управляющего тока через цепочку из 2-3 оптронов выходной биполярный транзистор внутри нее переходит в проводящее состояние, а на выводе 6 имеется открытый коллектор, к которому подключен резистор, притягивающий затвор слаботочный полевой транзистор КП501 к плюсовой шине питания оптопары.

Таким образом, при подаче на вход оптрона сигнала высокого уровня, на затворе полевого контроллера КП501 будет сигнал низкого уровня, и он закроется, тем самым обеспечив возможность протекания тока через базу верхний по схеме КТ315 — драйвер будет заряжать ворота основного полевого контроллера.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Импортные и отечественные аналоги

Из представленной выше информации видно, что транзисторы BC546-550 различаются по допустимым величинам напряжений и имеют хотя не одинаковые, но близкие показатели коэффициента шума. Остальные электрические параметры и типовые характеристики у них идентичны.

Среди транзисторов российского производства наиболее близким к этой группе можно считать КТ3102, который имеет такой же корпус и цоколевку, но более высокий коэффициент усиления (КТ3102Г, Е).

В таблице приведены пригодные для замены BC547 n-p-n транзисторы (в корпусе ТО-92) и их основные параметры.

Тип VCEO, В IC, мA PC, мВт hFE fT, МГц Цоколевка (слева направо)
BC547 50 100 500 110-800 300 кбэ
Отечественное производство
КТ3102 20-50 100 250 100-1000 от 150 + (кбэ)
Импорт
BC171 45 100 350 120-800 150 + (кбэ)
BC182 50 100 350 120-500 100 + (кбэ)
BC237 45 100 500 120-460 100 + (кбэ)
BC414 45 100 300 120-800 200 + (кбэ)
BC447 80 300 625 50-460 от 100 + (кбэ)
BC550 45 200 500 110-800 300 + (кбэ)
2SC2474 30 100 310 20 2000 + (кбэ)
2SC828A 45 100 400 130-520 220 — (экб)
2SC945 50 100 250 150-450 от 150 — (экб)

Примечания:

  1. У КТ3102 значения VCEO и hFE зависит от буквы, следующей за последней цифрой.
  2. В последнем столбце знак «+» означает совпадение порядка следования выводов с BC547, знак «-» – различие.
  3. Параметры транзисторов указанные в таблице взяты из производителя.

Характерные особенности

  • Низкое напряжение насыщения коллектор-эмиттер: UCE(sat) ≤ 1 В при IC = 3 А.
  • Высокая скорость переключений: время спадания импульса tf ≤ 1 мкс при IC = 3 А.
  • Расширенная область безопасной работы транзистора при обратном смещении в цепи управления (базы): UCEX (sus)1 ≥ 450 В IC = 3 А.
Характеристика Обозначение Величина
Напряжение коллектор – база транзистора, В VCBO 500
Напряжение коллектор – эмиттер транзистора, В VCEO 400
Напряжение эмиттер – база транзистора, В VEBO 7
Ток коллектора постоянный, А IC 7
Ток коллектора импульсный, А ICP ٭ 15
Ток базы постоянный, А IB 3,5
Рассеиваемая мощность (Ta = 25°C), Вт PC 1,5
Рассеиваемая мощность (Tc = 25°C), Вт PC 40
Предельная температура полупроводниковой структуры, °С Tj 150
Диапазон температур при хранении и эксплуатации, С° Tstg -55…+150

٭ — измерено при длительности импульса тока 300 мкс и скважности 10%

Чем отличаются разные транзисторы

На примере простого транзистора мы разобрали его принцип работы, однако их бывает великое множество. Давайте научимся их отличать и узнаем, зачем каждый из них нужен.

Биполярные

Биполярные транзисторы — это самые популярные. В полупроводника в таких транзисторах есть два p-n перехода. Заряд через них переносится дырками и электронами.

Среди них тоже различают несколько подвидов (они зависят от расположения переходов и количества электродов), среди которых:

  • составной транзистор pnp тип;
  • составной транзистор npn тип;
  • более сложные многоэлектродные (может быть сразу 2 эмиттера);
  • транзисторы на гетеропереходах.

Лавинные транзисторы

Это поистине интересный вид транзисторов, ведь он работает очень эффективно и при этом очень быстро

Их основные плюсы — это высокие рабочие напряжения и, конечно же, скорость включения, а это очень важно в электронике. Ученые до сих пор ломают голову, как можно использовать эти транзисторы с максимальным КПД, хотя они и сейчас показывают потрясающие результаты

Однопереходные транзисторы

Существуют в мире и такие транзисторы. Тут всего один переход, поэтому и классификация гораздо проще:

  • первый тип это с “p” базой;
  • а второй это с “n” базой.

Транзисторы с управляющим переходом

Это тоже очень интересный и необычный вид транзисторов, ведь у него, как и следует из названия, управляемый переход, что делает его еще более универсальным, но и приводит его к удорожанию. На подвидах мы останавливаться не будем, так они все примерно такие же, как и у предыдущих.

Транзисторы с изолированным затвором

А это еще что за затвор, могли бы вы подумать. Рассказываю. Как я уже писал выше, транзистор начинает работать, когда на него подают небольшое напряжение. Так вот, тот электрод, на которые напряжение подается и называется затвором. Здесь ничего особенного, просто сам затвор изолируется, что дает больше возможностей для управления транзистором и для некоторых задач это, действительно, очень полезно.

Техническое описание

Транзистор выпускается с гибкими выводами в пластмассовом корпусе КТ-26 (ТО-92), либо в металлостеклянном корпусе КТ-17. Цоколевка выводов кт3102 следующая: 1 – эмиттер, 2 – база, 3 –коллектор.

Характеристики

Все нижеуказанные характеристики для транзисторов в пластиковом корпусе КТ3102 (А-Л) идентичны соответствующим параметрам в металлостекленном (АМ- ЛМ).

  • принцип действия – биполярный;
  • корпус: пластик для КТ26 (ТО-92); металлостеклянный у КТ-17;
  • материал – кремний (Si);
  • npn-проводимость (обратная);

предельно допустимые электрические эксплуатационные данные (при температуре окружающей среды от +25 °C):

основные электрические параметры:

  • IКБО (ICBO) не более 50 нА (nA), при UКБ макс. (VCB max) = 50 В (V) и IЭ (IE)=0;
  • IЭБО (IEBO) не более 10 мкА (µA), при UEБ макс. (VEB max ) = 5 В (V);
  • fгр норм.(ftTYP) от 100 до 300 МГц (MHz), при UКб (VCB) = 5 В (V), IЭ (IE)= 10 мА (mA);
  • емкость коллекторного перехода СК (СС) 6 пФ (pF) при UКБ (VCB) = 5 В (V), f= 10 МГц (MHz);
  • коэффициент шума КШ (Noise Figure) NF от 4 до 10 Дб (dB), при UКЭ(VCE) =5 В (V), IK (Ic) = 0.2 мА (mA);
  • cтатический коэффициент усиления по току h21E находится в диапазоне от 100 до 1000, при UКЭ(VCE) =5 В (V), IK (Ic) = 2 мА (mA), f=50 Гц(Hz).
  • тепловое сопротивление переход- среда 0,4 °C/мВт (°C/mW);
  • Токр от -40 до +85 °C.

При выборе транзистора обратите внимание на дату выпуска и его предельно допустимые напряжения и токи, определите возможность его использования в схеме. Более новые модели имеют преимущества перед старыми, так как производители непрерывно работают над улучшением характеристик в своих продуктах. Не стоит забывать, что у некоторых из них (например КТ3102Г, КТ3102Е) предельные значения по напряжению не превышают 20 В

Ниже приведена классификация КТ3102

Не стоит забывать, что у некоторых из них (например КТ3102Г, КТ3102Е) предельные значения по напряжению не превышают 20 В. Ниже приведена классификация КТ3102.

По мнению радиолюбителей, несмотря на идентичность характеристик заявленных производителем, транзистор в пластиковом корпусе немного уступает металлостеклянному. Так, при работе на предельно допустимых параметрах, пластик расширяется и сжимается, что нередко приводит к отрыву выводов от кристалла. Это основная причина, из за которой стоит подумать о применении устройства в пластиковом корпусе. Кроме того пластик иногда становится не герметичен и вдоль выводов к кристаллу может проникать влага. Считают, что в металлопластиковом корпусе кристалл рассеивает большую мощность. Так же у него будет меньшее тепловое сопротивление, а следовательно устройство будет меньше греться и в свою очередь схема будет работать более стабильней.

Зарубежными аналогами, с похожими техническими характеристиками считаются: BC 174, 2S A2785, BC 182, BC 546, BC 547, BC 548, BC 549. Прототипами для разработки некоторых серий КТ3102 были: BC 307A, BC 308A BC 308B, BC 309B, BC 307B, BC 308C, BC 309C. Из российских аналогов КТ-3102, в качестве замены может подойти КТ 611 или популярный КТ315 с группой Б, Г, Е.

Маркировка

Транзисторы маркируются на боковой стороне корпуса. КТ3102 разных годов выпуска могут встречается с различной маркировкой. До 1995 года производители использовали цветовую и кодовую (буквенно-цифровая и символьно-цветовая) маркировку. Советские транзисторы КТ3102 до 1986 года, изготовленные в корпусе КТ-26, можно узнать по темно-зеленой точке на передней части корпуса. По цвету точки, нанесенной на корпусе сверху, определить принадлежность транзистора конкретной к группе. Дата выпуска при цветовой обозначении могла не указываться.

Маркировать транзистор кт3102 с использованием стандартного метода начали с 1986 года. Согласно кодовой метки он узнаваем по белой фигуре прямоугольного треугольника, размещенного на передней части корпуса (слева сверху), обозначающему его тип (модель). Правее указывается групповая принадлежность, а в нижней части год и месяц даты выпуска. В стандартной кодовой маркировке так же указывался год и месяц выпуска транзистора.

Иногда встречается нестандартные цветовые и кодовые маркировки. Как правило, в них не хватает информации о дате выпуска или групповой принадлежности. Современные производители, уже не используют фигуры в обозначении, а указывают на корпусе полное название типа и группы транзистора. Кроме этого на корпусе можно увидеть знак, указывающий на производителя устройства.

Как уже писалось ранее, транзистор встречается в пластиковом и металлическом корпусе. Устройства с пластиковым корпусом КТ-26 содержат в конце символ “М”. Например КТ3102ВМ это транзистор в пластиковом корпусе КТ-26, а КТ3102В в металлическом КТ-17.

Особенности и применение транзистора

Анализ технических характеристик позволяет сделать вывод, что данный радиокомпонент является высокочастотным транзистором общего применения средней мощности. В первую очередь, об этом свидетельствуют высокие значения коллекторного тока – до 0,5А и характерной для корпуса ТО-92 рассеиваемой мощностью – 0,63Вт

Особое внимание стоит уделить коэффициенту усиления hFE. Его характеристика обладает хорошей линейностью, а предельная частота составляет 140МГц

Сочетание этих параметров в одном компоненте позволяет использовать его в выходных каскадах радиостанций небольшой мощности, до 1Вт. Вместе с тем, S9013 достаточно широко применяется в дискретных схемах и переключающих устройствах соответствующей мощности.

Свойства транзистора и его надежность хорошо известны профессионалам и радиолюбителя. Он широко применяется в электротехнической промышленности и радиолюбительской практике.

Транзисторные основы

Что мы здесь можем сказать нового? Да ничего! Но повторить основы все же полезно, не так ли? ;-)

Основные догмы о биполярном транзисторе:

  1. Транзистор — это токовый прибор. Ток базы управляем током коллектора.
  2. Транзистор имеет всего три вывода. База (Б), коллектор (К) и эмиттер (Э) и соответственно на англ. B (Base), С (Collector), E (Emitter).
  3. Ток эмиттера  — это сумма токов коллектора и базы. IЭ =IК +IБ
  4. Коэффициент усиления по току в схеме с ОЭ — это отношение приращений тока коллектора к току базы. h21e (β)=ΔIK / ΔIБ .
  5. h21e зависит от тока коллектора. При минимальных или максимальных его значениях h21e стремится к нулю.
  6. По входу (при обратном напряжении), транзистор напоминает диод в прямом включении.
  7. По входу (при обратном напряжении), транзистор напоминает стабилитрон.
  8. Транзистор в закрытом состоянии все же поддается и дает ток утечки.
  9. Не подключенная никуда база транзистора, которая висит в воздухе — это его смерть. Поэтому надо обязательно садить базу на землю через высокоомный резистор.
  10. Транзистор в открытом состоянии обеспечит ненулевое падение напряжения на переходе База-Эмиттер и оно примерно составит сотни миллиВольт, а точнее от 0,5-0,7 Вольт.
  11. Транзистор не любит высоких частот. Знаете ли, всякие эффекты Миллера и прочее.
  12. При большой мощности нагрузки, корпус транзистора изготавливается определенным образом, чтобы можно было его поставить на радиатор
  13. Область безопасной работы (ОБР)  — это все транзисторные ограничения при сочетании предельных тока и напряжения
  14. Минимальные шумы транзистора достигаются при минимально-оптимальных токах коллектора
  15. Максимальное быстродействие транзистора достигается при максимально-оптимальных токах коллектора.

Отлично! Узнав много об истории транзисторов и освежив в голове основы транзисторов мы возвращаемся к транзистору Дарлингтона, ведь мы еще до сих пор не поняли, чем же он так примечателен.

Аналоги и комплементарная пара

Аналог VCEO IC PC hFE fT
S9013 25 0,5 0,625 64 150
Отечественное производство
КТ315Г 35 0,1 0,15 50 250
КТ3102А 50 0,1 0,25 100 150
КТ680А 25 0,6 0,35 85 120
Импорт
2SC1008 60 0,75 0,75 60 100
BC537 60 1 0,625 50 120
BC538 80 1 0,625 50 120
KSC1008 60 0,7 0,8 40 30
KSC1009 140 0,7 0,8 40 30
KSP05 60 0,5 0,625 50 100
KSP06 80 0,5 0,625 50 100
KSP42 300 0,5 0,625 40 50
KSP43 200 0,5 0,625 40 50
MPS6532 30 0,6 0,31 30 200
MPSA42 300 0,5 0,625 25 50
MPSA43 200 0,5 0,625 25 50
MPSW01A 40 1 1 50 50
MPSW01AG 50 1 1 60 50
MPSW05 60 0,5 1 60 50
MPSW05G 60 0,5 1 60 50
MPSW06 80 0,5 1 80 50
MPSW06G 80 0,5 1 60 50
MPSW42 300 0,5 1 40 50
MPSW42G 300 0,5 1 40 50

Примечание: все характеристики транзисторов аналогов взяты из даташип производителя.

Для комплементарной пары рекомендуется использовать транзистор прямой проводимости S9012.

История появления транзисторов

На заре прошлых веков конца 19 века ученые физики и практики (Гутри, Браун, Эдисон, Боус, Пикард, Флеминг) разных стран совершили принципиальное открытие и получили патенты на «детектор», «выпрямитель»  — так тогда называли диод. Вслед за диодом последовало эпохальное открытие транзистора. Перечисление имен ученых разных стран, приложивших голову и руки к открытию транзистора, заняло бы много строк.

Основными теоретиками считаются Шокли, работавший в Bell Telephone Laboratories, а также его коллеги Бардин и Браттейн.


Слева направо: Шокли, Бардин и Браттейн

В итоге их работ, в 1947 году, получен первый образец работающего точечного германиевого транзистора, и на его основе, в том же году, был разработан первый усилитель, имевший коэффициент усиления 20 дБ (в 10 раз) на частоте 10 Мгц.

Серийный выпуск точечных транзисторов фирмой Western Electric начался в 1951 году и достиг около 10 000 штук в месяц в 1952 году. В СССР первый точечный транзистор был создан в 1949 г. Серийный выпуск точечных транзисторов был налажен в 1952 году, а плоскостных  — в 1955 году. Затем последовали следующие открытия в теории и технологиях: транзисторы на выращенных переходах (1950 г.), сплавные транзисторы (1952 г.), диффузные мета-транзисторы (1958 г.), планарные транзисторы (1960 г.), эпитаксиальные транзисторы (1963 г.), многоэмиттерные транзисторы (1965 г.) и т. д.

Как же появился среди них наш герой — транзистор Дарлингтона (далее по тексту ТД)? Дарлингтон (англ. Darlingtone) — город в в Великобритании. Однако и люди могут иметь фамилии по имени городов или наоборот. Таким является сотрудник все той же фирмы Bell — Сидни Дарлингтон


Сидни Дарлингтон

Зачем же потребовалась эта «сладкая парочка»? Дело в том, что первые транзисторы имели весьма посредственные характеристики, если смотреть на сегодняшние успехи. Прежде всего — невысокий коэффициент усиления. Сейчас это кажется странным — подумаешь, каскадное соединение — это элементарно! Но тогда, в 1953 году — это были пионерские работы.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: