Влияние фактора мощности на потребление электрической энергии
Рассмотрим электрическую схему, использующуюся для измерения потребления тока и мощности нагрузкой, подключенной к сети переменного тока с действующим значением напряжения, равным 240 вольтам:
В этой схеме ваттметр показывает потребляемую (активную) мощность, равную двум киловаттам, при этом среднеквадратичный (RMS) ток в цепи с синусоидальным переменным напряжением 240 вольт равен 10 амперам.
Чтобы найти полную мощность S (Apparent Power), нужно перемножить среднеквадратичные (RMS) значения тока (I) на напряжение (E):
S = IE, или S = 10A * 240V = 2400 kVA
Разница между активной мощностью, потребляемой нагрузкой, и полной составляет 2400-2000=400 ватт. Эта величина связана с реактивной мощностью Q, обусловленной негативным влиянием фактора мощности (Power Factor).
Power Factor равен отношению активной мощности к полной:
Power Factor = P/S,
в данном случае PF = 2kW / 2.4kVA = 0.833
На практике форма переменного тока в сети далека от идеальной синусоидальной формы, поэтому для измерения реальных значений токов и напряжений лучше использовать величину True RMS — истинное среднеквадратичное значение:
При учете значения True RMS величина потерь на реактивную составляющую будет еще больше, так как дополнительно появятся потери, связанные с искажениями синусоидальной формы тока.
Для справки:
Действующее значение напряжения (тока) также называют среднеквадратичным или эффективным напряжением — Urms (для тока Irms).
Период, амплитуда, действующее (Urms) и среднее значения переменного синусоидального тока:
Среднеквадратичное значение напряжения Vrms (именно это напряжение измеряется обычным вольтметром) связано с величиной пикового напряжения Vpk неизменным коэффициентом: Иллюстрация разницы между значениями пикового (амплитудного) и действующего синусоидального напряжения частотой 60 Герц: Пиковое напряжение Vpk в сети равно Vrms / 0.707, или, в данном случае 240 / 0.707 = 340 вольт. Изображение, иллюстрирующее разницу между пиковым и действующим (среднеквадратичным) синусоидальными напряжениями: Величина действующего напряжения (Uд) в сети переменного тока меньше пикового (или амплитудного вольтажа Uа) в √2 раз или в 1.41 раза. Формулы перевода действующего напряжения в амплитудное и наоборот: Uд=Uа/√2 или Uд=Uа/1.41 Uа=Uд*√2 или Uа=Uд*1.41 Величину √2 (или 1.41), определяющую соотношение пикового и действующего значения переменного напряжения (тока) называют пик-фактором (Crest Factor или крест-фактор):
Для компенсации реактивных потерь, обеспечения равномерной нагрузки на электрическую сеть, снижения нагрузки на нулевой провод, уменьшения негативного влияния блоков питания на синусоидальную форму тока в сети, улучшения КПД, используют специальные схемы, увеличивающие значение фактора мощности.
Существуют пассивные и активные схемы коррекции косинуса фи (фактора мощности), которые сглаживают нагрузку на сеть, обусловленную пульсирующим характером работы диодных выпрямителей со сглаживающими конденсаторами.
Формы входного тока (Input Current), входного напряжения (Vline) и тока на выходном сглаживающем конденсаторе (Vcap):
Производитель и вес
При покупке любой хорошей вещи, мы обязательно смотрим на бренд/производителя, — БП здесь не исключение. В моих глазах лучше всего себя зарекомендовала компания Chieftech (модель Chieftec или её старший вариант Chieftec — божественны, знаю на собственном опыте и опыте сотен друзей)
Возможно стоит обратить внимание на: InWin, Seasonic, FSP, Zalman и др, поэтому присмотритесь к ним повнимательней. Покупать noname не рекомендуется настоятельно и бесповоротно
Также стоит знать, что качественный блок питания должен весить в среднем от 2 до 2.5 кг (так что смело можете брать с собой весы и измерять его вес). Не берите легкий как «пушинку», ибо есть вероятность, что производитель сэкономил на начинке (трансформаторах, радиаторе и т.п.).
Чтобы хоть как-то поощрить Вас за то, что Вы сами захотели разобраться во всех тонкостях такого непростого устройства и перевалили уже за добрую половину статьи, расскажу еще об одной полезной фишке (на которую стоит обратить внимание), о которой мало кто знает. Все модели, продаваемые на зарубежном и российском рынке, должны иметь сертификацию Underwriters Laboratories ), в виде номера UL
Блоки питания проходят сертификацию в лабораториях UL, после чего им присваивается номер. Самое интересное, что этот номер всегда указывает на реального производителя, независимо от того, под какой маркой продаётся последний. И в онлайн базе UL Вы всегда можете найти по номеру производителя и посмотреть параметры блока питания. Чтобы найти номер UL, вскрывать сам модуль не потребуется. Как правило, этот номер находится под логотипом UL и начинается с буквы E
Все модели, продаваемые на зарубежном и российском рынке, должны иметь сертификацию Underwriters Laboratories ), в виде номера UL. Блоки питания проходят сертификацию в лабораториях UL, после чего им присваивается номер. Самое интересное, что этот номер всегда указывает на реального производителя, независимо от того, под какой маркой продаётся последний. И в онлайн базе UL Вы всегда можете найти по номеру производителя и посмотреть параметры блока питания. Чтобы найти номер UL, вскрывать сам модуль не потребуется. Как правило, этот номер находится под логотипом UL и начинается с буквы E.
Вы получите информацию о производителе, а также ссылку на документ, в котором приведены основные характеристики блока питания, включая максимальную нагрузку по линиям. Отсутствие номера UL говорит о сомнительном качестве продукта. Такие блоки питания брать не следует.
ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ
Лабораторный блок питания ни что иное как высококачественный универсальный источник питания с нормированными и термостабильными характеристиками. Эти устройства имеются на любом предприятии, которое занимается разработкой, изготовлением или ремонтом и/или ремонтом радиоэлектронной аппаратуры.
Используют их во время проверки и/или калибровки различных приборов. Кроме того они необходимы в тех случаях, когда нужно с высокой точностью подать питающее напряжение и ток на радиотехническое устройство.
Как правило, лабораторные блоки питания оснащаются всевозможными устройствами защиты (перегрузка, защита от короткого замыкания и пр.) и органами регулировки выходных параметров (напряжение и ток).
Серийно выпускаемые лабораторные источники питания могут быть как линейными, так и импульсными.
Линейные лабораторные БП строятся на базе больших низкочастотных трансформаторов, которые понижают сетевое напряжение
220 В частотой 50 Гц до определенного значения. Частота переменного тока при этом остается без изменений. Затем синусоидальное напряжение выпрямляется, сглаживается емкостными фильтрами и доводится до заданного значения линейным полупроводниковым стабилизатором.
- большие габаритные размеры и вес, который может быть больше 20 кг. Из-за этого мощность на нагрузке у таких БП редко превышает 200 Вт.;
- низкий КПД (не более 60%), что обусловлено принципом работы линейного стабилизатора, где все избыточное напряжение преобразуется в тепло;
- наличие высокочастотных помех, проникающих из сети
В основу работы импульсных лабораторных блоков питания положен принцип заряда сглаживающих конденсаторов импульсным током. Он образуется в момент подключения/отключения индуктивного элемента. Переключение происходит под действием специально оптимизированных транзисторов, а выходное напряжение регулируется путем изменения глубины широтно импульсной модуляции (ШИМ).
- плавного изменения глубины ШИМ, что в свою очередь, позволяет закачивать в сглаживающие конденсаторы такое количество энергии, которое соизмеримо с энергопотреблением нагрузки БП. При этом КПД блока питания может достигать 90 и более процентов;
- высокочастотной составляющей, которая дает возможность использования сглаживающих конденсаторов значительно небольшой емкости.
За счет этого габаритные размеры корпуса невелики. Кроме того, за счет более высокого КПД значительно уменьшается выделение тепла и улучшается температурный режим работы источника питания.
- высокочастотные пульсации на выходе, которые достаточно тяжело отфильтровать;
- радиочастотные наводки и их гармоники, вызванные периодическими токовыми импульсами.
- стандартные, мощностью до 700 Вт. Их максимальный вес не превышает 15 кг.;
- большой мощности.
Стандартные исполнения могут быть как трансформаторными, так и импульсными. Предназначены они для работы с напряжениями в диапазоне от 15 до 150 В. При этом максимальный ток ограничивается величиной порядка 25 А. Как правило, они имеют от одного до трех каналов, из которых два являются регулируемыми.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
-
Pga478 процессоры для ноутбуков самый мощный
-
Samsung p28 замена процессора
-
Its component грузит процессор
-
Msi afterburner как понизить частоту видеокарты
- Программатор для прошивки процессора
Стабилизированный адаптер из нестабилизированного
В магазинах, киосках подземных переходов, на радиорынках можно купить так называемые адаптеры, оформленные в виде сетевой вилки. Большие пульсации выходного напряжения и его зависимость от тока нагрузки затрудняют питание от них какой-либо радиоэлектронной аппаратуры. Как стабилизировать выходное напряжение таких адаптеров и рассказывается в данной статье.
Для фиксирования «круглых» значений выходного напряжения проще всего использовать микросхемы КР142ЕН5 и КР142ЕН8 с соответствующими буквенными индексами , устанавливая их на теплоотводе в корпус адаптера и дополняя выходным конденсатором емкостью не менее 10 мкФ. Если же необходимо «нестандартное» напряжение, следует применить микросхему КР142ЕН12А .
Варианты БП для самостоятельного монтажа
Блок питание выбирается исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также как собирать самодельные блоки питания.
Простой БП 0-30 В
Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.
Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.
Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное, подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.
Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.
В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.
Для измерения потребляемого нагрузкой тока, задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.
Вольтметр можно использовать цифровой.
Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.
Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.
Мощный импульсный БП
Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для заряди АКБ.
Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:
-
Внутренняя схема питания, состоящая из источника напряжения на 12 В и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
-
Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
-
Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.
Для размещения элементом схемы изготавливают печатную плату.
Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.
На Ардуино
Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.
«Умный» блок питания представлен на схеме.
Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.
Печатную плату можно сделать по образцу.
Внешний вид устройства и внутреннее расположение компонентов представлено на фото.
Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.
Что нужно знать
Оптимальными являются параметры, при которых имеется возможность регулировать напряжение в пределах 0-30 В. В цепи будет установлен электронный ограничитель по силе тока. Он будет с высокой степенью эффективности осуществлять регулировку параметров в пределах от 0,002 А до 3 А максимум. Это позволяет получить комфортный и универсальный прибор с возможностью регулировки мощности.
Ампераж успешно ограничивается, обеспечивая рабочие параметры. За счет этого приборы-потребители, подключенные к самодельному прибору element 305d или из atx, будут в безопасности и не сгорят из-за перепадов значений.
Более подробно расположение всех составляющих демонстрирует потенциальная схема:
Схема расположения составляющих цепи
Она обладает такими рабочими параметрами:
К преимуществам можно отнести такие характеристики:
- выходные параметры достаточно легко регулировать;
- компактные габаритные параметры;
- относительная простота изготовления;
- несложная конструкция из подручных средств;
- наличие нескольких степеней защиты, включая от ошибочного подключения;
- наличие визуальной индексации.
ВИДЕО: Лабораторный блок питания из компьютерного АТХ
Процесс сборки
Лабораторный блок питания на примере электроцепей с печатными платами является весьма популярным. В них платы изготовлены из тончайших изоматериалов. Одна из сторон покрыта медным напылением. Она сформирована так, чтобы компоненты можно было соединять проводниками по имеющимся схемам.
Блок питания на LM2576-ADJ своими руками
Сборка всех деталей осуществляется при помощи пайки. От ее качества зависит работоспособность и функционирование всего блока питания. Для обеспечения качественного процесса необходимо соблюдать определенные правила:
- Паяльник должен иметь мощность не выше 20-25 Вт.
- Кончик паяльника подбирается достаточно тонким.
- Жало выдерживается всегда чистым от нагара и мусора.
- Применять нужно специальную губку для чистки.
Не стоит применять для очищения наконечника такие грубые материалы как наждачная бумага или грубый напильник. Если имеется сильное загрязнение, то кончик нужно заменить. В процессе используется высококачественный флюс. Он поможет обеспечить надежное соединение контактов с платой. При работе с припоем флюс можно не использовать, так как его избыток приводит к частым сбоям в подобных цепях.
Чтобы правильно спаять двухполярный лабораторный блок питания своими руками, необходимо соблюдать правила:
А вот вопрос специалистам. Давно хотел задать. Услышал пару раз, что источники постоянного тока лучшие сейчас импульсные. Почему? Трансформаторным же по идее легче выпрямить ток? Получить почти плавную линию. Всегда считал их лучше. А импульс заставляет в схеме нагружаться емкости, нагрузка на элементы получается «рванная» разве это хорошо?
толку от запуска мотора без нагузки
текстовый обзор и потроха
Как устроен ШИМ контроллер
В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.
Принцип регулирования выходного напряжения методом широтно-импульсной модуляции.
Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия
шим контроллера блока питания.
Распиновка TL494.
Назначение выводов микросхемы указано в таблице.
Назначение | Обозначение | Номер вывода | Номер вывода | Обозначение | Назначение |
---|---|---|---|---|---|
Прямой вход усилителя ошибки 1 | IN1 | 1 | 16 | IN2 | Прямой вход усилителя ошибки 1 |
Инверсный вход усилителя ошибки 1 | IN1 | 2 | 15 | IN2 | Инверсный вход усилителя ошибки 1 |
Выход обратной связи | FB | 3 | 14 | Vref | Выход опорного напряжения |
Управление временем задержки | DTC | 4 | 13 | ОТС | Выбор режима работы |
Частотозадающий конденсатор | C | 5 | 12 | VCC | Напряжение питания |
Частотозадающий резистор | R | 6 | 11 | С2 | Коллектор 2-го транзистора |
Общий провод | GND | 7 | 10 | E1 | Эмиттер 1-го транзистора |
Коллектор 1-го транзистора | C1 | 8 | 9 | E2 | Эмиттер 2 -го транзистора |
На выводы 7 и 12 подается напряжение питания +7..40 вольт. На выходе микросхемы установлены два транзистора, которые можно использовать для управления внешними ключами. Коллекторы (выводы 8 и 11) и эмиттеры (10 и 9) выходных транзисторов никуда не подключены. Их можно включать по схеме с открытым коллектором или с открытым эмиттером. Микросхема оптимизирована для управления ключами на биполярных транзисторах, но с использованием немного усложненных схемотехнических решений можно переключать и полевые транзисторы.
Структурная схема TL494.
Частоту генератора задают элементы, подключаемые к выводам 5 и 6. Напряжением на выводе 4 ограничивают ширину выходного импульса. Это необходимо для исключения «перехлеста» открытия транзисторов чтобы избежать ситуации, когда оба ключа оказываются открыты. Через этот вывод также можно организовать мягкий пуск БП. Вывод 13 служит для перевода микросхемы в однотактный режим. Если его подключить к общему проводу, импульсы на выводах обоих ключей станут одинаковыми. На выводе 14 постоянно присутствует образцовое напряжение, равное +5 вольтам. Оно может быть использовано в любых схемотехнических целях.
Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.
Схема ИИП на TL494.
В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.
Для наглядности рекомендуем серию тематических видеороликов.
Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.
Подключение LM317
Типовые схемы LM317
Как было указано, в LM317 используется при создании регулируемых и нерегулируемых блоков питания, однако, также может быть использован в качестве основы стабилизатора тока при создании светодиодных драйверов, которые поддерживают ток в цепи вне зависимости от входного напряжения. Только описанных в datasheet применений хватит на отдельную книгу, поэтому разберем несколько самых популярных схем на этом стабилизаторе.
Регулируемый блок питания (1.2-37В)
Все, что понадобится для его создания, это заменить R2 на переменный резистор, а также добавить трансформатор с диодным мостом на вход. При использовании стоит учитывать, что микросхема обладает опорным напряжением в 1.25В, поэтому оно и будет минимальным для данной схемы.
Регулируемый блок питания (0-37В)
Если вам необходима полная регулировка с 0В, то производители схем предлагают подключить к схеме источник отрицательного напряжения на 10В.
Вы можете намотать дополнительную катушку на трансформатор блока питания и подключить его выводы после диодного моста следующим образом:
Таким образом, вы получите простейший лабораторный блок питания.
Светодиодный драйвер (Стабилизатор тока)
С помощью этой схемы вы можете запитывать достаточно мощные светодиоды и светодиодные ленты. Все, что нужно — это знать потребляемый ток и, исходя из него, подобрать сопротивление по формуле.
В нем используется тот же принцип, что и в самой простой схеме, но вместо резистивного делителя установлен датчик тока. Чем больший ток потребляет нагрузка на выходе, тем большее падение напряжения будет наблюдаться на датчике. Оно отслеживается микросхемой, и она увеличивает или уменьшает напряжение для поддержания стабильного тока. Даже при коротком замыкании ток будет держаться на стабильном уровне, который был выставлен.
Зарядное устройство
Схема данного зарядного устройства взята из datasheet и имеет напряжение на выходе 6В с ограничением 0.6А. С помощью изменения сопротивления резисторов R1 и R2 возможно регулировать напряжение под ваши нужды, а при помощи резистора R3 – ток. Оно подойдет для питания аккумуляторов телефонов, инструментов и бытовой техники.
Регулирование переменного напряжение
Так как два LM317 могут регулировать не только положительные, но и отрицательные колебания синусоиды, то с помощью них можно создать AC регулятор. Можно видеть, что схема довольно не сложная и не требует множества компонентов:
↑ Коммутация обмоток трансформатора
Одним из недостатков линейных стабилизаторов является низкий КПД. Стабилизаторы греются и чем больше разница между входным и выходным напряжением, тем больше нагрев и как следствие потеря мощности. Отчасти эту проблему можно решить путем снижения входного напряжения, когда это возможно. При выходном напряжении в 2 вольта нет смысла подавать на вход 30V. Но не следует забывать про пульсации выпрямителя. При максимальном токе нижняя граница пульсации Umin должна быть приблизительно на 3 вольта выше (для LM317) чем желаемое выходное напряжение стабилизатора, иначе пульсации пройдут на выход стабилизатора. Контролировать это надо осциллографом, так как мультиметры показывают среднее значения пульсирующего напряжения, можно думать, что стабилизация по какой то причине не работает, а на самом деле на выходе будет небольшая пульсация.
На компараторах OP1, OP3, OP4 и реле K1, K2, K3 организована коммутация обмоток трансформатора. На положительные входы компараторов подается выходное напряжение блока питания через делители R20 и R21, R30 и R31, R38 и R39. На отрицательные входы опорные напряжения, которые определяют уровни срабатывания реле. Резисторы R15, R24, R34 вводят небольшой (0,1V) гистерезис в срабатывания компараторов, это обеспечивает четкое открытие транзисторов при одинаковых входных напряжениях компаратора.
Реле выбраны на 24V, контакты 16А, катушка реле потребляет 17mA. Поэтому для питания вполне достаточно однополупериодного выпрямителя на диоде D2 и конденсаторе С9. В качестве ключей реле решил взять низковольтные компьютерные мосфеты Q25SN03A -T1-T3, напряжение сток исток 30V. Обычно их можно снять с неисправной материнской платы в области питания процессора. За время разработки имел место быть пробой затвора, одного из ключей, после чего я установил стабилитроны D7, D8, D10 параллельно затворам транзисторов.
При отключении реле осциллограф зафиксировал всплеск на стоке под 40V, возможно через какие-то паразитные емкости пробило затвор. Но после установки стабилитронов полет нормальный. Кстати эти транзисторы, возможно, не самый лучший вариант для коммутации реле. При включении К2 нет смысла держать включенной реле К1, для этого транзистор T4 шунтирует затвор транзистора T3, реле К1 не включается, тем самым экономя драгоценных 17 мА.
Вообще для выходного напряжения 30V делать 3+1 входных напряжения вовсе не обязательно, я думаю хватило бы и два реле и три обмотки. Но три обмотки, при перемотке трансформатора намотать было проблематично, мотал проводом в 1,2 мм и в один слой ложилась одна обмотка в 7 Вольт, делать полтора слоя не решился, так как мог не вписаться в окно. Коммутация обмоток это дело личное, если радиатор позволяет, можно считать, что у блока питания есть дополнительная функция – обогрев квартиры, и КПД можно принять за 100%.: smile: