Радиосхемы схемы электрические принципиальные

Модернизация и доработка модуля термостата W1209 своими руками

На плате вход RESET (4 pin контроллера) выведен на контакты для программирования и контроллер иногда ложно сбрасывается от сильной искровой помехи (реле то установлено на плате).


Контакты программирования

Это устранил установкой  конденсатора емкостью ~0,1мкФ на общий провод. SMD конденсатор просто припаял к пятачкам. Смотри фото.


Конденсатор установлен

Доработал плату. Хочу сразу предупредить, что есть шанс повредить модуль. Работы провёл своими руками на свой страх и риск. Для устранения монтажных проблем с платы были выпаял: разъем термодатчика, клеммы и реле. К сожалению модуль собран на станке, а это значит, что детали плотно установлены в отверстиях платы. С помощью отсоса удалить весь припой невозможно. При демонтаже реле к сожалению повредил дорожки платы (восстановил проводниками).


Демонтаж деталей W1209

Разъем датчика припаял с обратной стороны платы. Также с обратной стороны платы припаял клеммы. Смотри фото и видео.


Детали установлены и вынесены

К дорожкам клемм контактов реле припаял проводники от дорожек питания катушки реле. Реле подключил другое типа «С» с перекидными контактами. Катушку реле подключил к модулю двумя удлиняющими проводниками через клеммы.


Реле модуля W1209

В таком виде сверху платы не будет помех для встраивания модуля в устройство. Реле приобрёл в магазине по этой ссылке. Полезно проверить точность показаний, об этом читайте ниже.

Схема терморегулятора — второй вариант

Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP. Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и «помехонекапризной» работе терморегулятора в части управления

При прошивке AtMega8 следует обратить внимание на новые фьюзы. На следующем фото показана термопара К-типа, которую удобно монтировать в духовке

Работа регулятора температуры на макетной плате понравилась — приступил к окончательной сборке на печатной плате.

Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений

В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:

В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543 — это означает датчик отключен или обрыв.

И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу

Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор — ГУБЕРНАТОР.

Форум по регуляторам температуры на МК

Подключение нагрузки к термостату (терморегулятору) на ATmega8

Нагрузка может быть активной (лампочки накаливания, ТЭНы, электронагревательные приборы . ) Нагрузка может быть реактивной — емкостной и индуктивной. В практике чаще всего мы сталкиваемся с индуктивной нагрузкой (электродвигатели, приборы в которых имеются трансформаторы, электронная техника, катушки индуктивности . ) Кроме того, иногда приходится управлять нагрузками с постоянным током.

В данной конструкции применены два вида управления нагрузками: — с помощью реле (для режимов, где не требуется частое включение/выключение и индуктивных нагрузок) — с помощью симистора (для режима термостатирования и для любых активных нагрузок)

В качестве буферного транзистора для подключения реле к микроконтроллеру можно использовать не только полевые но и биполярные транзисторы

И еще несколько схем подключения нагрузки к микроконтроллеру

Программа двухканального термометра, термостата, терморегулятора на ATmega8 и DS18B20:

Прошивка для индикаторов со схемой включения «Общий анод»

Прошивка предоставлена Вячеславом Кучером и Юрием Градовым, за что им большое спасибо.

Для работы программы с индикаторами, включаемыми по схеме «Общий Анод» в представленной выше схеме необходимо заменить транзисторы структуры NPN на транзисторы структуры PNP (к примеру ВС557). При этом эмиттеры транзисторов должны подключаться к «+» источника питания, а коллекторы к разрядам индикатора.

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Схема простого термостата с визуальной индикацией | Катушки реле могут быть подключены непосредственно к выходам, поскольку в схему добавлены диоды D1-D3 1N4148 , которые защищают транзисторы от индуктивных выбросов в момент отключения реле. Спрашивайте, я на связи!

Сообщества › Кулибин Club › Блог › Электрика: Датчики температуры, делаем сами.

Иногда возникает нужда в температурном контроле за каким нибудь процессом, будь то автомобиль или народное хозяйство. Схем термоконтроля всяких много, но датчики как правило имеют неудобный конструктив, не предусматривающий крепления в контролируемой среде. Вот о датчиках и поговорим.

Как правило, датчиками для измерительных схем служат полупроводниковые приборы — термисторы:

Корпус может быть другим, но внутри все равно будет сидеть примерно такая капелька с выводами.

Вторым распространенным датчиком температуры является DS1820:

зачастую они продаются в таком виде:

Внутри все та же микросхемка DS18B20 о трех выводах причем даже без термопасты.

Теперь давайте попробуем внедрить эти радиодетали в автомобиль, например для цифровой индикации температуры ОЖ или управления электровентиляторами.

Нам понадобится донорский датчик — любой подходящий по резьбе и стоимости. В моем случае это Волго-УАЗовский датчик ТМ 106-10

Берем дрель в качестве токарного станка и аккуратно зажимаем датчик в патрон. Ножовкой по металлу спиливаем завальцовку. Когда датчик развалится на составные части так же в дрели ровняем край датчика надфилем. Получаем корпус-заготовку для внедрения туда нашей радиодетали.

Далее можно пойти двумя путями:1. Залить в корпус расплавленного припоя, в этом припое просверлить канал и вставить туда термистор. Можно заполнить полость корпуса термопастой и воткнуть термистор в неё, но у олова теплопроводность на несколько порядков лучше чем у термопасты, поэтому термопасту конечно же надо применять, но мазать ее лучше тонким слоем.

Минус этого метода в большой инерционности полученного датчика.

2. Сделать так, как делаю это я Берем телескопическую антенну от какого нибудь старого ненужного девайса:

Если вы их раньше выкидывали, то делали это зря, потому что такие антеннки являются источником замечательных тонкостенных латунных трубочек разного диаметра:

Подбираем трубочку наиболее подходящую к термистору — он должен максимально плотно вставляться внутрь трубки. Отмеряем и опять воспользовавшись дрелью, отрезаем нужный нам кусочек трубки — резать лучше надфилем. Берем наш корпус-заготовку и сверлим его торец по диаметру трубки. Торец корпуса лудим оловом, трубку зачищаем до латуни и тоже облуживаем. Вставляем трубку в корпус и припаеваем их друг к другу, паяльника на 80Вт хватает за глаза. Должно получиться как то так (торец уже запаян небольшим кусочком медной фольги толщиной 1мм):

Проверяем полученный корпус датчика на герметичность. Я делаю это не очень технологично — на присос языком

Если с герметичностью все в порядке приступаем к следующей стадии: установке термистора и разъема.

Опять все примеряем и отрезаем выводы термистора с тем расчетом, чтобы при установке в корпус термистор находился в конце трубки, а лучше упирался в торец:

Теперь термистор готов к установке. Закладываем немного термопасты вовнутрь трубки, сам термистор тоже немного обмазываем термопастой и вставляем в трубку. После того как термистор вошел в трубку под разъем закладываем немного приготовленного заранее поксипола или эпоксидного пластилина. Вдавливаем разъем в поксипол, излишки убираем. Когда поксипол окончательно застынет получается вот такой симпатичный датчик готовый к установке:

Советуем изучить Что лучше конвектор или тепловентилятор

А вот так датчик будет стоять на своем рабочем месте — измерительная часть будет полностью омываться рабочей средой:

Ну и картинка общей проверки работоспособности электрической части:

Принципиальная схема

Аналоговая часть прибора реализована на четырех ОУ микросхемы К1401УД2. Напряжение, снимаемое с ТП, усиливается ОУ DA1.1 и поступает на входы ОУ DA1.2…DA1.4, выполняющие роль компараторов. Опорные напряжения, определяющие пороги их переключения, задаются резисторами R8, R9, R11, R12, R14-R16.

Благодаря отсутствию обратных связей в ОУ (DA 1.2-DA 1.4) и большому коэффициенту их усиления, достигнута очень высокая чувствительность прибора.

Резистор R12 служит для установки верхнего температурного порога, при котором нагрузка отключается, а резистор R9 предназначен для задания разницы температуры (Dt) между верхним и нижним порогами переключения терморегулятора. Когда регулировка Dt не требуется, для обеспечения максимальной точности поддержания температуры вместо резистора R9 рекомендуется установить перемычку, резистор R8 при этом можно исключить из схемы.

Цепи на элементах VD1-VD3, С1-C3, R10 R13, R17 служат для предотвращения прохождения отрицательного напряжения на входы цифровых микросхем и устранения помех. Синхронизация триггеров DD1.2, DD2.1, DD2.2 осуществляется импульсами, формируемыми счетчиком DD3. Логику формирования управляющих сигналов в устройстве поясняет таблица.

В установившемся режиме работы, когда температура на объекте соответствует заданной, индикатор HL2 должен быть постоянно включен, а индикаторы HL1, HL3 выключены. Об отклонениях температуры, сигнализирует включение индикаторов HL1, HL3. Для повышения наглядности они работают в мигающем режиме.

Необходимые для управления этими индикаторами импульсы формируются на выходах 5 и 12 счетчика dD3. С вывода 9 триггера DD1.2 через эмиттерный повторитель на транзисторе VT1 сигнал идет на цепи индикации и управления нагрузкой. Принудительное отключение нагрузки осуществляется выключателем SA1, размыкающим эти цепи.

Для управления нагрузкой используется динисторный оптрон U2, включенный в диагональ моста VD2. Максимальный коммутируемый ток в таком варианте составляет 0,1 A. Установив дополнительно семи-стор VS1 и соответственно изменив схему включения нагрузки, этот ток можно увеличить до 80 А.

Функции измерения температуры, а также отображение ее значения реализованы на основе микросхемы К572ПВ2 (аналог ILC7107) . Выбор этого АЦП обусловлен возможностью непосредственного подключения к нему светодиодных знакосинтезирующих индикаторов. При использовании жКи можно применить К572ПВ5 .

При отжатой кнопке SВ1 на АЦП поступает напряжение с выхода ОУ DA1.1, обеспечивая режим измерения температуры. При нажатии на кнопку SВ1 измеряется напряжение на переменном резисторе R12, соответствующее температуре установленного порога регулирования.

Рис. 1. Принципиальная схема цифрового термометра-терморегулятора.

Инструкция по сборке

  • лупа;
  • плоскогубцы;
  • паяльник;
  • изолирующая лента;
  • несколько отвёрток;
  • провода медные;
  • полупроводники;
  • стандартные красные светодиоды;
  • плата;
  • текстолит форгированный;
  • лампы;
  • стабилитрон;
  • терморезистор;
  • тиристор.
  • дисплей и генератор внутреннего типа мощностью в 4Мгу (для создания цифровых устройств на микроконстроллере);

Пошаговая инструкция:

  1. Прежде всего, необходима соответствующая микросхема, к примеру, К561ЛА7, CD4011
  2. Плату необходимо подготовить к прокладыванию путей.
  3. К подобным схемам неплохо подходят терморезисторы с мощностью 1 kOm до 15 kOm, и он обязан находиться внутри самого объекта.
  4. Нагревающий прибор обязан быть включен в цепь резистора, из-за того, что перемена мощности, напрямую зависящая от снижения градусов, оказывает влияние на транзисторы.
  5. Впоследствии, такой механизм будет согревать систему до того момента, пока мощность внутри термодатчика не возвратится к первоначальному значению.
  6. Датчики регулятора подобного плана нуждаются в настройке. Во время значительных перепадов в окружающей атмосфере, необходимо контролировать нагрев внутри объекта.

Сборка цифрового прибора:

  1. Микроконтроллер следует соединить вместе с датчиком температуры. Он должен иметь выходы портов, которые необходимы для установки стандартных светодиодов, работающих совместно с генератором.
  2. После подключения устройства в сеть с напряжением в 220V, светодиоды будут автоматически включаться. Это будет свидетельством о том, что прибор находится в рабочем состоянии.
  3. В конструкции микроконтроллера находиться память. Если настройки прибора сбиваются, память автоматически их возвращает в изначально оговоренные параметры.

Собирая конструкцию, нельзя забывать о техники безопасности. Во время применения термодатчика в водянистой или влажной атмосфере, его выводы обязаны герметично изолироваться. Значение терморезистора R5 может обозначаться от 10 до 51 кОм. При этом, сопротивление резистора R5 обязано иметь аналогичное значение.

Взамен обозначенных микросхемы К140УД6 можно использовать К140УД7, К140УД8, К140УД12, К153УД2. В роли стабилитрона VD1 можно внедрять любой инструмент с мощностью стабилизации 11…13 V.

В случае, когда нагреватель превышает напряжение в 100 ВТ, тогда диоды VD3-VD6 обязаны превосходить по мощности (к примеру, КД246 или их аналоги, с обратной мощностью минимум в 400В), при этом тринистор необходимо монтировать на маленькие радиаторы.

Значение FU1 также следует сделать более большим. Управление аппаратом сводится к подбору резистора R2, R6 с целью безопасного закрывания и открывания тринистора.

Схема термостата

Схему очень несложно преобразовать в термостат. Для этого нужно перевернуть схему датчика и подключить последовательно одному из индикаторных светодиодов оптопару, управляющую нагревателем. Схема термостата показана на рис.2.

Здесь термистор R1 включен в нижнюю часть термозависимого делителя напряжения, поэтому зависимость напряжения от температуры будет обратной. Таким образом, при минимальной температуре горят все светодиоды, а при максимальной — только один красный.

Рис. 2. Принципиальная схема термостата с индикацией температуры.

Ключ, управляющий нагревателем состоит из оптопары U1 и симистора VS1. Светодиод оптопары U1 включен последовательно зеленому светодиоду HL5.

Когда температура недостаточна горит большое количество светодиодов, и HL5 в том числе. Поэтому, оптопара открывается и открывает симистор, а он подает питание на нагреватель.

Нагреватель включается, и температура начинает увеличиваться, а сопротивление R1, соответственно уменьшаться. Уменьшается и напряжение на входе микросхемы. Светодиоды начинают гаснуть, уменьшая длину светящегося столба. Когда температура достигает заданной величины, доходит очередь гаснуть и до светодиода HL5. Он гаснет, и нагреватель выключается.

Температура начинает уменьшаться, напряжение на R1 увеличивается. Через какое-то время загорается HL5 и снова включается нагреватель. Таким образом поддерживается температура.

Архив блога

Также нельзя забывать о том, что система электроснабжения является наиболее уязвимой частью загородной инфраструктуры.

Этот инкубатор изготовлен в домашних условиях, а значит при желании его конструкцию вполне можно повторить. Терморегулятор может быть приобретён и в магазине. Подбирается она многоканального типа.

Гани В этом году первые приобрел инкубатор, остановил свой выбор на Золушке 98 яиц с автопереворотом, 12 В и нагрев горячей водой.

Отобранные для инкубации яйца укладывают в лотки из проволочной сетки. Для того чтобы исключить потерю тепла, все щели нужно заделать с помощью герметика. Желательно, чтобы он крепился в самой верхней точке, где наиболее высокая температура. Выходной редукторный вал должен совершать полный оборот вокруг оси на 4 часа.

Для лучшего визуального контроля за режимами работы терморегулятора, ток через светодиоды HL1-HL3 выбран относительно большим. В схеме, представленной на рисунке, датчиком температуры выступает транзистор VT1, который размещают в стеклянной трубке и укладывают непосредственно на лоток с яйцами. Об особенностях выбора стабилизатора напряжения для газового котла читайте далее.

Архивы статей

Основными его элементами являются нагреватель, в качестве которого используется инфракрасный излучатель или группа ламп накаливания, и температурный сенсор. Минусы — недостаточная теплоизоляция, хрупкость и ручной переворот решеток с яйцами.

Подробнее здесь. Если говорить о металлической пластине, то она считается наиболее дешевым, но и наиболее ненадежным способом. Кроме этого решётки рассеивают тепловой поток, идущий от ламп. Выбор схемы регулятора Если взять за основу для изготовления терморегулятора заводские изделия, можно столкнуться с непреодолимыми трудностями по сборке, а особенно по настройке таких изделий. Некоторые любители собирали дома небольшие инкубаторы из подручных средств своими руками.

Три года гарантии на любое изделие. Модификации с импульсными триодами Схема терморегулятора для инкубатора с импульсными триодами включает в себя микроконтроллер, расширитель, а также набор конденсаторов. схема подключения самодельного инкубатора

Налаживание

Настройка заключается в установке резистором R3 правильных показаний термометра при минимальной температуре, а резистором R4 — при максимальной. Для устранения взаимного влияния сопротивлений резисторов такую регулировку следует повторить несколько раз.

Правильно собранный прибор в дальнейшей настройке не нуждается, необходимо лишь установить резистором R9 требуемое значение Dt, а резистором R15 — допустимый предел превышения температуры до включения аварийной сигнализации.

В качестве датчика температуры можно использовать полупроводниковый диод. Основными преимуществами последнего являются низкая стоимость и намного меньшая инерционность по сравнению с интегральным датчиком, точность измерений достигает 0,2°С в диапазоне температур от -50 до +125°С.

Питание низковольтной части устройства осуществляется от двуполярного стабилизатора напряжением ±5 В, собранного на элементах DA2-DA3, С4-С9. Для управления оптроном U1 используется напряжение +12 В. Запрещается включение прибора без наличия заземления. Прибор имеет высокую помехозащищенность, допускающую значительную протяженность линии, соединяющей его с датчиком.

Однако для обеспечения надежной работы прибора не следует прокладывать ее вблизи силовых проводов, несущих высокочастотные и импульсные токи.

Литература:

Понятие о температурных регуляторах

Изделия этой категории применяют для решения разных задач. По соответствующей настройке температурного порога подают питание (отключают):

  • отопление в погребе;
  • нагрев паяльной станции;
  • циркуляционный насос котла.

Из приведенных примеров понятны базовые требования к точности, которую должна обеспечить подходящая схема терморегулятора. В некоторых ситуациях необходимо поддержание заданного уровня не ниже, чем ±1C°. Для контроля рабочих параметров нужна оперативная индикация. Существенное значение имеют нагрузочные способности.

Перечисленные особенности поясняют назначение типовых функциональных узлов:

  • значение температуры фиксируют специализированным датчиком (резистором, термопарой);
  • показания анализирует микроконтроллер или другое устройство;
  • исполнительный сигнал поступает на электронный (механический) переключатель.

К сведению. Кроме рассмотренных частей, схема термореле может содержать дополнительные компоненты для подачи питания на электронагреватель, другую мощную нагрузку.

Области применения терморегулятора

В основном, данное устройство применялось для термостабилизации птичьих инкубаторов. Где в роли тэнов выступали маломощные электрические лампочки по 60 Вт, соединенные параллельно по 4, 6 и 8 штук, в зависимости от размеров инкубатора и количества инкубируемых яиц.

Как монтировать обогреватель для инкубатора

  • лампы должны быть равномерно расположены над поверхностью яиц, на расстоянии 25-30 см от их поверхности;
  • терморезистор должен находиться как можно ближе к поверхности яиц, но не касаться их;
  • использовать вместо лампочек можно и другие нагреватели, но с малой теплоемкостью, к примеру, вольфрамовую проволоку, натянутую на керамическую рамку в форме тетраэдра.

Описание работы термостата для холодильника

Как известно температура хранения пищевых продуктов в холодильной камере должна быть +2…8 градусов Цельсия. Рабочая температура холодильника +5 градусов.

Электронный терморегулятор для холодильника характеризуется двумя параметрами: температура запуска и остановки (либо средняя температура плюс значение гистерезиса) компрессора. Гистерезис необходим для предотвращения слишком частого включения компрессора холодильника.

В данной схеме предусмотрен гистерезис в 2 градуса при средней температуре в 5 градусов. Таким образом, компрессор холодильника включается, когда температура достигнет + 6 градусов и отключается при снижении ее до + 4 градусов.

Этот температурный интервал достаточный для поддержания оптимальной температуры хранения продуктов, и при этом он обеспечивает комфортную работу компрессора, предотвращая его чрезмерный износ

Это особенно важно для уже старых холодильников, использующих термореле для запуска двигателя

Электронный термостат является подходящей заменой оригинального термостата. Терморегулятор считывает температуру с помощью датчика, сопротивление которого меняется в зависимости от изменения температуры. Для этих целей довольно часто используют термистор (NTC), но проблема заключается в его низкой точности и необходимости в калибровке.

Для обеспечения точной установки контролируемой температуры и избавления от многочасовой калибровки, в данном варианте термостата для холодильника был выбран датчик температуры LM35. Он представляет собой интегральную схему, линейно откалиброванную в градусах Цельсия, с коэффициентом 10 мВ на 1 градус Цельсия. В связи с тем, что пороговая температура близка к нулю, относительное изменение выходного напряжения велико. Поэтому сигнал с выхода датчика можно контролировать с помощью простой схемы состоящей всего из двух транзисторов.

Так как выходное напряжение слишком мало, чтобы открыть транзистор VT1, датчик LM35  включен как источник тока. Его выход нагружен резистором R1 и поэтому сила тока на нем  изменяется пропорционально температуре. Этот ток влечет падение на резисторе R2. Падение напряжения управляет работой транзистора VT1. Если падение напряжения превышает пороговое напряжение перехода база-эмиттер, транзисторы VT1 и VT2 открываются, реле К1 включается, чьи контакты подключены вместо контактов старого термостата.

Резистор R3 создает положительно обратную связь. Это добавляет небольшой ток к сопротивлению R2, который сдвигает порог и тем самым обеспечивает гистерезис. Обмотка электромагнитного реле должна быть рассчитана на 5…6 вольт. Контактная пара реле должна выдерживать необходимый ток и напряжение.

Датчик LM35 расположен внутри холодильника в подходящем месте. Сопротивление R1 припаивается непосредственно к датчику температуры, что в свою очередь позволяет соединить LM35 с монтажной платой всего двумя проводами.

Инвертор 12 В/ 220 В
Инвертор с чистой синусоидой, может обеспечивать питание переменно…

Подробнее

Провода соединяющие датчик могут внести в схему помехи, поэтому для подавления помех добавлен конденсатор С2. Схема работает от источника питания 5 вольт построенного на стабилизаторе 78L05. Потребление тока главным образом зависит от типа используемого реле. Блок питания должен быть надежно изолированы от сети.

Большим преимуществом этой схемы является то, что она начинает работать сразу при первом запуске и не нуждается в калибровке и настройке. Если возникнет необходимость немного изменить уровень температуры, то это можно сделать путем подбора сопротивлений R1 или R2. Сопротивление R3 определяет величину гистерезиса.

Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Прибор для помещения

Такие терморегуляторы с датчиком температуры воздуха своими руками оптимально подходят для поддержания заданных параметров микроклимата в помещениях и ёмкостях. Он полностью способен автоматизировать процесс и управлять любым излучателем тепла начиная с горячей воды и заканчивая тэнами. При этом термовыключатель имеет отличные эксплуатационные данные. А датчик может быть как встроенным, так и выносным.

Здесь в качестве термодатчика выступает терморезистор, обозначенный на схеме R1. В делитель напряжения входят R1, R2, R3 и R6, сигнал с которого поступает на четвёртый контакт микросхемы операционного усилителя. На пятый контакт DA1 подаётся сигнал с делителя R3, R4, R7 и R8.

Напряжение на выходе компаратора составляет 11,5 вольт. В это время транзистор VT1 находится в открытом положении, а реле K1 включает исполнительный или промежуточный механизм, в результате чего начинается нагрев. Температура окружающей среды в результате этого повышается, что понижает сопротивление датчика. На входе 4 микросхемы начинает повышаться напряжение и в результате превосходит напряжение на контакте 5. Вследствие этого компаратор входит в фазу отрицательного насыщения. На десятом выходе микросхемы напряжение становится приблизительно 0,7 Вольт, что является логическим нулём. В результате транзистор VT1 закрывается, а реле отключается и выключает исполнительный механизм.

Метки: датчик температуры, изготовление датчика

Комментарии 153

Я точно такой же на двухконтурный котёл поставил.Тертий сезон уже пашет.Блок питания от усилителя антенны. А у вас контролёр с датчиком шла?

нет, датчик насколько я помню, покупал отдельно в Чип и Дипе

Но вообще потом все задуманное собрал на DS18B20

А такой вариант: термопара закрепленная на патрубке и простенький мультиметр в режиме измерения температуры

Подскажите, а плата для индикации- это что за она? Самодельная?

нет, не самодельная — друг на алиэкспрессе купил «пучёк за пяточёк» и одну мне подарил:

Сами такую приблуду не думали замутить?

Думал. На датчике ДС1820. Но так вышло что зашел в гости к другу, за рюмочкой чая разговорились, я ему рассказал что хочу сделать, а он достал с полки это устройство, да мне и отдал. Теперь надобность в самостоятельном изготовлении как бы и отпала.А так я вот по этой схеме уже делал раньше и у меня под нее все есть:

Даллас лучше работает по сравнению с термисторами, и в цифре.Правда диапазон маловат.

почему маловат? для применения в авто более чем достаточен.

У далласа в принципе диапазон измерений лучьше.Но верхняя планка критична.Термистор на сколько я помню не надежен.Хотя если потенциал сидит 12 вольт, то работает.А Далласу надо стабильное питание.

Можно подробнее что значит критичней верхняя планка? Больше 120 градусов я нагревал феном датчик, вроде работает после этого.

Верхний диапазон температуры вроде равен 125 градусов у далласа.То бишь -50 и +125.А температура если нужна будет контролирумая выше 125 то Даллас не справится.Вообще точность у него нормальная, но задержка есть 0,5-1 сек.Есть 3 проводное подключение, есть возможность подключать по 2 проводам.Будет задержка и диапазон меньше.

Знаю про эти подключения, сейчас ради прикола попровал нагреть датчик феном, 127.9 удалось максимально на нем увидеть, дальше ноли, когда остывает то приходит в норму)

Советуем изучить Экспертиза электрооборудования: профессиональный подход к важнейшему вопросу

да не, это уже отработанная технология. заморочился только с тем что все отфоткал, сформулировал и выложил сюда )

Я понимаю, что отработанная, просто стоит ли это таких трудов при сравнительно невысокой стоимости датчика? Хотя конечно бывают редкие и дорогие датчики…

да не, дело не в стоимости, а в том чтобы запихнуть китайский датчик в нужный конструктив.вот надо тебе температуру воды например регулировать кипятильником — просто так же датчик в воду не засунешь его надо как то вкрутить, соответственно нужен корпус.

кстааати, а клевая идея…слушай во сколько мжет обойтись такой самый дешевый датчик? еще бы он вот цепь бы размыкал как терморегулятор и тогда цены бы не было…

Я понимаю, что отработанная, просто стоит ли это таких трудов при сравнительно невысокой стоимости датчика? Хотя конечно бывают редкие и дорогие датчики…

Ну, смотри — у меня, к примеру, Бош Моно-Джетроник, по всем таблицам ДТВВ и ДТОЖ должны (при одинаковой температуре воздуха и ОЖ) давать «мозгам» одинаковое сопротивление. При этом ДТВВ вполне адекватен, но замене не подлежит (из-за особенностей конструкции). А ДТОЖ — «глючный», при разности показаний ЭБУ начинает «подгонять», т.к. не может сообразить кому верить (ДТОЖ или ДТВВ)!Покупал 4 (ЧЕТЫРЕ) разных датчика — все разное сопротивление при одинаковой температуре дают!А при вышеописанной технологии есть возможность подобрать копеечный термистор практически под любое значение сопротивление при заданной температуре! Да, что там, можно заменить ОБА термистора (подобрав нужное сопротивление) и на ДТОЖ и на ДТВВ ! А это поможет решить сразу несколько проблем с «глюками» электронной системы питания! Тем более цена китайских термисторов, расходников и проч. не идёт ни в какое сравнение с «фирменными» датчиками (которые невозможно иногда заменить, или они стоят как крыло от самолёта) !Я понятно объясняю? )))

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: