История создания
Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.
Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.
Первое реле Дж. Генри
Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.
Первое реле Морзе
Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.
Реле максимального тока
29 июля 2015г. — 12:18 11079 просмотров
Реле максимального тока предназначены для того, чтобы оповещать о превышении тока электрической цепи. Их применяют в цепях, которые следует уберечь от перегрузок или короткого замыкания.
Они измеряют величину тока в цепи и срабатывают при увеличении его номинального значения.
Эти приборы всегда реагируют на его величину и могут быть:
- первичные, подключенные напрямую в привод выключателя;
- вторичные, которые подключаются с помощью трансформаторов тока;
- индукционные;
- тепловые;
- электромагнитные;
- дифференциальные;
- на интегральных микросхемах.
Основной принцип работы реле максимального тока состоит в том, что оно чутко реагирует на превышение тока в контролируемой входной цепи. Выходные контакты при увеличении входного тока переключаются, и при помощи этого сигнала происходит отключение силовых приборов от сети.
Когда значение тока в сети снижается и начинает соответствовать номинальному току, то выходной сигнал замыкает снова цепь и подача тока возобновляется.
В каждом жилом доме сегодня используется много мощных бытовых приборов. Одновременная работа всех потребителей электроэнергии приводит часто к перегрузкам в питающей сети. Чтобы этого не допустить, электроприборы (потребители электроэнергии) разбивают на группы: приоритетные приборы и второстепенные. К приоритетной бытовой технике относят приборы, отключение от сети для которых критично.
Такое внезапное отключение может повлечь за собой выход из строя прибора, потерю важной информации. К второстепенным приборам можно отнести, например, электронагреватель, электрочайник
Отключение таких приборов из сети при перегрузке не повлияет на жизнедеятельность обитателей квартиры существенно. Устройство устанавливают так, чтобы не допустить перегрузок в питающей сети.
Подключение его показано на рисунке, на примере реле максимального тока РМТ 101.
Эта модификация используется для прекращения подачи нагрузки и последующего включения с временем, которое задается. Еще модель РМТ -101 может измерять и контролировать ток нагрузки, его удобно использовать как цифровой амперметр. Измерения тока в сети происходят без ее разрыва с помощью датчика, который встроен в прибор. РМТ-101 имеет возможность подключать выносные трансформаторы тока.
С помощью светодиодных и цифровых индикаторов, расположенных на главной (лицевой) панели удобно контролировать текущее значение тока в цепи и нагрузку. РМТ-101 имеет два переключателя типа «dip». С помощью этих переключателей можно устанавливать диапазон измерений, их точность и режим индикации текущего или максимального тока.
Прибор РМТ-101 может быть так же использован как реле ограничения по потребляемому току или для выбора оптимально заданной нагрузки. РМТ-101 может работать в двух режимах: режиме минимального и максимального тока. Для переключения режимов на панели есть переключатель, который имеет два положения.
На рисунке представлена схема реле максимального тока по управлению и настройке параметров на лицевой панели.
Кроме бытового применения, реле максимального тока нашли широкое применение в промышленности. Примером прибора, который защищает мощные электродвигатели постоянного и переменного тока от перегрузок, можно считать реле максимального тока РЭО-401.
Состоит РЭО-401 из двух узлов: 1) электромагнитная система; 2) размыкающий блок-контакт.
Электромагнитная система реле имеет скобу магнитопровода, в которую ввернута трубка. На трубке расположена катушка, помещенная в изоляционный каркас. Якорь располагается внутри трубки. Он свободно перемещается вдоль нее. Положение якоря в трубке и определяет величину срабатывания прибора.
Регулируется ток срабатывания изменением положения скобы. После регулировки скоба фиксируется винтом. После того, как устройство сработало и блок-контакты разомкнулись, они будут оставаться в разомкнутом положении до тех пор, пока ток в цепи не понизится до номинального уровня и якорь передвинется в нижнее положение.
После этого под действием пружины контакты замыкаются. Провода подсоединяются к прибору спереди.
Эксплуатироваться РЭО-401 могут на высоте до 4300 м над уровнем моря, при температуре от -50 до +550 ºС.
Как проверить электромагнитное реле
Работоспособность электромагнитного реле зависит от катушки. Поэтому в первую очередь проверяем обмотку. Ее прозванивают мультиметром. Сопротивление обмотки может быть как 20-40 Ом, так и несколько кОм. При измерении просто выбираем подходящий диапазон. Если есть данные о том, какая величина сопротивления должна быть — сравниваем. В противном случае довольствуемся тем, что нет короткого замыкания или обрыва (сопротивление стремится к бесконечности).
Проверить электромагнитное реле можно при помощи тестера/мультиметра
Второй момент — переключаются или нет контакты и насколько хорошо прилегают контактные площадки. Проверить это немного сложнее. К выводу одного из контактов можно подключить источник питания. Например — простую батарейку. При срабатывании реле потенциал должен появиться на другом контакте или исчезнуть. Это зависит от типа проверяемой контактной группы. Контролировать наличие питания также можно при помощи мультиметра, но его надо будет перевести в соответствующий режим (контроль напряжения проще).
Если мультиметра нет
Не всегда под рукой есть мультиметр, но батарейки есть почти всегда. Давайте рассмотрим пример. Есть какое-то реле в герметичном корпусе. Если знаете или нашли его тип, можно посмотреть характеристики по названию. Если данные не нашли или нет названия реле, смотрим на корпус. Обычно тут указывается вся важная информация. Напряжение питания и коммутируемые токи/напряжения есть обязательно.
Проверка обмотки электромагнитного реле
В данном случае имеем реле, которое работает от 12 V постоянного тока. Хорошо если есть такой источник питания, тогда используем его. Если нет, собираем несколько батареек (последовательно, то есть одну за одной), чтобы суммарно получить требуемое напряжение.
При последовательном соединении батареек их напряжение суммируем
Получив источник питания нужного номинала, подключаем его к выводам катушки. Как определить где выводы катушки? Обычно они подписаны. Во всяком случае, есть обозначения «+» и «-» для подключения источников постоянного питания и знаки для переменного типа таких «≈». На соответствующие контакты подаем питание. Что происходит? Если катушка реле рабочая, слышен щелчок — это притянулся якорь. При снятии напряжения он слышен снова.
Проверяем контакты
Но щелчки — это одно. Это значит, что катушка работает, но надо еще контакты проверить. Возможно они окислились, цепь замыкается, но сильно падает напряжение. Может они стерлись и контакт плохой, может, наоборот, закипели и не размыкаются. В общем, для полноценной проверки электромагнитного реле необходимо еще проверить работоспособность контактных групп.
Проще всего объяснить на примере реле с одной группой. Они обычно стоят в автомобилях. Автолюбители называют их по числу выводов: 4 контактные или 5 контактные. В обоих случаях там всего одна группа. Просто четырех контактное реле содержит нормально замкнутый или нормально разомкнутый контакт, а пятиконтактное — переключающую группу (перекидные контакты).
Электромагнитное реле 4 и 5 контактное: расположение контактов, схема подключения
Как видите, питание подается в любом случае на выводы, которые подписаны 85 и 86. А к остальным подключается нагрузка. Для проверки 4-контактного реле можно собрать простейшую связку из маленькой лампочки и батарейки нужного номинала. Концы этой связки прикрутить к выводам контактов. В 4-контактном реле это выводы 30 и 87. Что получится? Если контакт на замыкание (нормально разомкнутый), при сработке реле лампочка должна загореться. Если группа на размыкание (нормально замкнутый) должна потухнуть.
В случае с 5-контактным реле схема будет чуть сложнее. Тут потребуется две связки из лампочки и батарейки. Используйте лампы разного формата, цвета или каким-то образом их разделите. При отсутствии питания на катушке у вас должна гореть одна лампочка. При срабатывании реле она гаснет, загорается другая.
Реле тока. Виды и устройство. Работа и как выбрать. Применение
Реле тока — в электрических промышленных сетях часто возникают чрезмерные нагрузки и короткие замыкания. Все компоненты цепи, начиная от обычного проводника, и заканчивая потребителями нагрузки со сложной конструкцией, рассчитаны на допустимый максимальный нагрузочный ток. Превышение этой величины приводит к пробою изоляции, либо нарушению целостности проводов из-за расплавления жил, а также межвитковому замыканию обмотки двигателя, перегрузке трансформатора. Все эти факторы являются аварийными режимами эксплуатации, ведущими к неисправностям и выходу из строя сети питания.
Для обеспечения надежной защиты агрегатов, трансформаторов, приводов электромоторов применяется релейная защита, включающая в себя один из основных элементов в виде реле тока, которое предотвращает эксплуатацию электрооборудования в аварийном режиме.
Виды
Реле тока классифицируются по двум основным признакам:
- Первичные чаще всего встроены в конструкцию выключателя, и являются его частью. Они применяются в основном в электрических сетях напряжением до 1000 В.
- Вторичные включаются в цепь посредством трансформатора тока, который подключается к питающей шине или кабелю. Трансформатор снижает ток до значения, которое подходит для функционирования реле. В качестве примера можно рассмотреть трансформатор тока, имеющий кратность 100 : 5. Он способен контролировать значение тока до 100 ампер, применяя для этого реле с допускаемой величиной наибольшего тока всего в 5 ампер.
Вторичные реле тока в свою очередь разделяются на виды:
- Индукционные реле.
- Электромагнитного действия.
- Дифференциальные модели.
- Реле на интегральных микросхемах.
Устройство и работа
Конструктивные особенности основных видов реле и их принцип действия.
Индукционные
Такой вид реле работает на основе взаимодействия между током, индуцированным в некотором проводнике, и переменным магнитным потоком. Вследствие этого они используются на переменном токе в качестве защитного реле косвенного действия.
Имеющиеся виды индукционных реле делятся на 3 группы:
- С рамкой.
- С диском.
- Со стаканом.
В варианте с рамкой (рисунок «а») поток Ф2 создает ток в замкнутой обмотке, выполненной в виде рамки в магнитном поле второго потока Ф1, который сдвинут по фазе. Такие реле обладают повышенной чувствительностью и максимальной реакцией в отличие от других реле. В качестве недостатка можно отметить слабый момент вращения.
Образцы с диском имеют широкую популярность. Схема такого реле изображена на рисунке «б». Такие реле обладают большим моментом вращения диска, имеют простое устройство.
Что такое электромагнитное реле, устройство, назначение
Электромагнитное реле — коммутирующее устройство, которое для работы использует электромагнитное поле. Состоит оно из электромагнитной катушки и подвижного якоря, подвижных и неподвижных контактов. Якорь и катушка закреплены на основании. Якорь подпружинен и расположен так, чтобы неподвижные контакты с неподвижными имели точки соприкосновения.
Устройство электромагнитного реле
Как работает электромагнитное реле? При подаче напряжения на обмотку в ней возникает электромагнитное поле. Закрепленный подвижно якорь притягивается к сердечнику катушки, контакты переключаются (смыкаются/размыкаются). В этом и состоит работа реле — перекидывать контакты. К ним подключена разная нагрузка и, в результате срабатывания, изменяется цепи, по которым протекает электрический ток.
При снятии питания электромагнитное поле исчезает, якорь под действием пружины возвращается в исходное состояние. Соответственно и схема возвращается в исходное состояние. По принципу действия очень похоже на работу обычного выключателя. С той лишь разницей, что кнопки нет и «управляются» контакты автоматически, а вместо лампочки может быть участок цепи или какое-то устройство.
Для чего нужно реле в электросхемах
На рисунке выше представлена простейшая схема с электромагнитным реле. Есть кнопка, при помощи которой подается питание на катушку. К контактам подключен исполнительный орган, например, электрическая лампа. При нажатии кнопки питание подается на катушку, якорь притягивается к сердечнику катушки, и давит на контакты. Они замыкаются, на лампочку поступает напряжение и она загорается. При снятии питания с катушки, пружина оттягивает якорь в исходное положение, цепь питания лампочки разрывается и она тухнет. Этот пример показывает, для чего и как используют электромагнитные реле.
Виды контактных групп
Электромагнитные реле делят по способу работы контактов. Они могут быть:
- Нормально замкнутыми (закрытыми, размыкающими). Сокращенно обозначаются НЗ, на импортных схемах NC.
- Нормально разомкнутыми (открытыми, замыкающими). Обозначение — НО на наших — и NO на зарубежных.
- Перекидными (переключающими). Перекидные отличаются внешне, так как имеют три пластины с контактами. У них обычно обознается только общий контакт — пишут «общ» или comon.
В общем-то, по названиям контактов ясно, как они работают. Нормально замкнутые контакты в исходном состоянии замкнуты, через них протекает ток. При сработке реле контакты размыкаются, цепь питания обрывается.
Нормально закрытый (замкнутый) контакт: что значит и принцип работы
Нормально открытые (понятнее — нормально разомкнутые) контакты, наоборот, в обычном состоянии разомкнуты. Когда реле срабатывает, контакт замыкается, в цепи возникает ток.
Электромагнитное реле с нормально открытым (разомкнутым) контактом
Наверное, уже понятно как работают переключающий контакт. В отличие от первых двух, переключающий состоит из трех пластин. По краям две неподвижные и подвижная в центре. Подвижный контакт часто называют общим. В нормальном положении подвижная пластина касается одного из контактов, ток протекает по этому пути (на рисунке снизу справа).
Принцип работы электромагнитного реле с переключающими контактами
При срабатывании реле, подвижный контакт изменяет положение благодаря упорной рамке (на рисунке это просто штырь, припаянный к подвижной пластине). А рамка прикреплена к якорю. После срабатывания реле, в первой цепи появляется разрыв, во второй начинает протекать ток.
Это все типы контактов — вроде не так много. Но в одном реле могут быть собраны все три вида, и количество групп каждого виды бывает разным. Их выбирают в зависимости от необходимости.
Основные виды реле и их назначение
Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.
Электромагнитные реле
Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.
Принцип работы электромагнитного соленоида
Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.
Реле переменного тока
Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.
Промежуточное реле 220 В
Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.
Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике
Работает это таким образом:
- подача тока на первое коммутационное устройство;
- от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.
С каждым годом реле становятся эффективней и компактней
Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.
Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.
Реле постоянного тока
Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.
Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.
Четырехконтактное автомобильное реле
К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.
Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:
Watch this video on YouTube
Электронное реле
Электронное реле управления в схеме прибора
Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.
Классификация и виды реле
Все реле классифицируются по различным признакам:
- По области применения они разделяются на реле управления, защиты и автоматизации электрических систем.
- По принципу работы они могут быть электромагнитными, магнитоэлектрическими, индукционными, полупроводниковыми и тепловыми.
- В зависимости от поступающего параметра устройства разделяются на реле тока, мощности, частоты и напряжения.
- По своему воздействию на управляющую часть они могут быть контактными и бесконтактными.
В зависимости от контролируемых величин, конструкции реле разделяются на несколько основных видов:
- Электрические. С их помощью выполняется включение и выключение электрических цепей. Они незаменимы при работе c большими силовыми нагрузками.
- Герконовые. В этих устройствах используется катушка с герконом, представляющим собой баллон с вакуумом. Иногда он наполняется определенным видом газа. Геркон размещается внутри электромагнита.
- Электротепловые. В работе этих устройств используется принцип линейного расширения металлов.
Существуют и другие виды реле, например, реле времени, работающее по особым схемам с использованием специальных реактивных компонентов.
Для чего нужна установка реле в автомобиле ? Начнем с определения:
Реле — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.Типы реле могут различаться по управляющему сигналу и по исполнению, не будем останавливаться на этом, тем более все это есть на той же википедии. Отметим лишь, что наибольшее распространение получили электрические (электромагнитные) реле.
Понять для чего нужно реле из определения трудно, поэтому разжуем на простых словах:Реле предназначено для коммутации больших токов нагрузки. Другими словами является переключателем, а еще проще — принцип работы реле — малым током (например сигналом кнопки) включать цепи с большим током. А используют реле, когда исполнительное устройство (стартер, генератор, вентилятор, обогрев зеркал, клаксон и т.д.) потребляет больший ток (до 30-40 ампер).
НАПРИМЕР: Для того чтобы с маленькой кнопочки завести двигатель, необходимо, чтобы включился стартер, который потребляет от 80 до 300 ампер. Если не использовать реле, тогда кнопка не выдержит большого тока и расплавится, также как и не предназначенная для больших токов проводка. Поэтому, делают подключение через реле (между кнопочкой и стартером устанавливают реле), которое по импульсу малого тока кнопки внутри себя замыкает мощные контакты, тем самым включая стартер. Как это происходит ?***********************************************************************************************************************Устройство реле
Электромагнитное реле состоит из:электромагнита (представляет собой электрический провод, намотанный на катушку с сердечником из магнитного материала).якоря (пластина из магнитного материала, через толкатель управляющая контактами).переключателя (могут быть замыкающими, размыкающими, переключающими).
Контакты реле:Контакты 85 и 86 — это катушка.Контакт 30 — общий контакт, всегда присутствует в реле. Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а.Контакт 87А — нормально-замкнутый контакт.Контакт 87 — нормально-разомкнутый контакт.Силовые контакты имеют всегда маркировку 30, 87 и 87а.
Реле – коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.
Вот таких типоразмеров может быть это устройство
Особенности работы реле на переменном токе
Стр 1 из 3Следующая ⇒
Устройство и принцип действия электромагнитных реле
Принцип действия электромагнитных реле основан на притяжении стальной подвижной системы к электромагниту при прохождении тока по его обмотке .
На рис.2.2 представлены три основные разновидности конструкций электромагнитных реле, содержащих: электромагнит ^ 1, состоящий из стального магнитопровода и обмотки; стальную подвижную систему (якоря) 2, несущую подвижный контакт 3; неподвижные контакты 4; противодействующую пружину 5.
Проходящий по обмотке электромагнита ток Iр создает магнитодвижущую силу (МДС) wPIP, под действием которой возникает магнитный поток Ф1, замыкающийся через магнитопровод электромагнита 1, воздушный зазор δ и подвижную систему 2. Якорь намагничивается, появляется электромагнитная сила FЭ, притягивающая якорь к полюсу электромагнита. Если сила FЭ преодолевает сопротивление пружины, то якорь приходит в движение и своим подвижным контактом 3 замыкает неподвижные контакты реле 4. При прекращении или уменьшении тока Iр до значения, при котором сила FЭ становится меньше силы FП сопротивления пружины 5, якорь возвращается в начальное положение, размыкая контакты 4.
Силы и момент, действующие на подвижную систему реле
Как известно , электромагнитная сила FЭ, притягивающая стальной якорь к электромагниту и вызывающая движение якоря, пропорциональна квадрату магнитного потока Ф в воздушном зазоре:
а с учетом создающий его ток IP, RM – магнитное сопротивление пути, по которому замыкается магнитный поток Ф; wP – количество витков обмотки реле, то
У реле с поворотным якорем и с поперечным движением якоря (рис.2.2, б, в) электромагнитная сила FЭ образует вращающий момент:
Из всего этого следует, что сила притяжения FЭ и ее момент Мэ пропорциональны квадрату тока I2Р в обмотке реле и имеют, следовательно, постоянное направление, не зависящее от направления (знака) этого тока. Поэтому электромагнитный принцип пригоден для выполнения реле как постоянного, так и переменного тока и широко используется для изготовления измерительных реле тока, напряжения и вспомогательных реле логической части: промежуточных, сигнальных и реле времени.
Токи срабатывания и возврата реле, коэффициент возврата
Ток срабатывания — наименьший ток, при котором реле срабатывает Iср
Предусматривается возможность регулирования Iср изменением числа витков обмотки реле (ступенями) и момента, противодействующей пружины МП (плавно).
Ток возврата. Возврат притянутого якоря в исходное положение происходит при уменьшении тока в обмотке реле под действием пружины 5 (см. рис.2.2), когда момент МП преодолевает электромагнитный момент МЭ.ВОЗ и момент трения МТ.
Током возврата реле IВОЗ называется наибольшее значение тока в реле, при котором якорь реле возвращается в исходное положение. Током возврата реле IВОЗ называется наибольшее значение тока в реле, при котором якорь реле возвращается в исходное положение.
Коэффициент возврата. Отношение токов IВОЗ /Iср называется коэффициентом возврата кB:
У реле, реагирующих на возрастание тока, Iс.р > IВОЗ и kB < 1.
Особенности работы реле на переменном токе
При протекании по обмотке реле переменного тока мгновенное значение . Учитывая, что
, получаем
где k = 1/2k’.
Это выражение показывает, что электромагнитная сила (а следовательно, и МЭt) электромагнитного реле переменного тока содержит две составляющие: постоянную kI2m и переменную kI2mcos2t, изменяющуюся с двойной частотой ( = 100 Гц) тока. В результате этого, при сработанном состоянии реле, якорь реле будет находиться под действием разности двух сил FЭt – FП, меняющей свой знак. Вибрация якоря вызывает вибрацию контактов, оказывая вредное влияние на работу реле.
Для устранения вибрации применяется расщепление магнитного потока Фр обмотки на две составляющие ФI и ФII, сдвинутые по фазе. Расщепление потока Фр достигается при помощи короткозамкнутого витка К. Короткозамкнутый виток К охватывает часть сечения магнитопровода. Под влиянием магнитного потока ФI в витке К возникает ток Iк, создающий поток Фк. Каждый из магнитных потоков создает силы FЭI и FЭII, кривые изменения которых смещены по фазе так же, как и магнитные потоки. В результате этого при уменьшении одного из потоков второй нарастает, не позволяя электромагнитной силе понизиться до нуля.
1Следующая ⇒
Рекомендуемые страницы:
Воспользуйтесь поиском по сайту:
Согласование тяговых и противодействующих характеристик
Электромагнитные реле благодаря простоте конструкции и надежности широко распространены в схемах электропривода и в схемах защиты энергосистем. Электромагнитные реле приводятся в действие с помощью электромагнитов постоянного или переменного тока. Рассмотрим работу максимального реле постоянного тока с простейшей магнитной системой клапанного типа. Противодействующие усилия создаются возвратной Pi и контактными Р2 пружинами. Усилие контактных пружин создает предварительное нажатие в момент соприкосновения контактов.
В результате уменьшается вибрация контактов при срабатывании и обеспечивается необходимое контактное нажатие. С учетом линейной зависимости силы пружины от ее деформации и относительно небольшого перемещения якоря противодействующее усилие пружин, приведенное к якорю, меняется линейно с изменением зазора. Для срабатывания реле необходимо, чтобы тяговая характеристика Рэ\ во всех точках хода якоря шла выше суммарной противодействующей характеристики Ра = Р\-\-Р2. Для токового реле при данном начальном зазоре бн положение Pai зависит от тока. При ненасыщенной магнитной системе тяговая сила пропорциональна квадрату тока.
Схема электромагнитного реле.
Наименьшее значение тока, при котором кривая P3i начинает проходить выше зависимости Рш определяет ток трогания /Тр реле. Срабатывание реле определяется точкой в (зазор б = бн), при которой Рэ] идет выше Рп. Для надежного включения в обмотку реле обычно подается ток /раб>/тр. Коэффициент запаса при этом £3 = /раб//ср и обычно составляет k3 — l,4. С ростом ki тяговая характеристика поднимается, увеличивается тяговое электромагнитное усилие, действующее на якорь, увеличивается ускорение якоря, сокращается полное время включения. Однако при этом возрастают удары в механизме и вибрация контактов. Для того чтобы устранить залипание якоря, в магнитной системе всегда создается конечный зазор бк. При этом . зазоре тяговое усилие значительно превышает противодействующее.
Для отключения реле тяговая характеристика Рт во . всех точках должна быть ниже характеристики Рп. При этом усилие, развиваемое противодействующими пружинами, больше электромагнитного усилия и якорь возвратится в начальное положение. Ток при таком положении характеристики называется током отпускания или током возврата. При отпускании реле определяющей точкой является точка б, в которой характеристика Ра идет ниже характеристики Рп. Для реле защиты энергосистем и электропривода, контролирующих значение тока в узких пределах, коэффициент возврата йв = /0тп//Ср должен быть возможно ближе к единице.
Электромагнитное реле.
Допустим, требуется реле, которое срабатывает при токе 100 А и отпускает при токе 99 А, т. е. £в = 0,99. В электромагнитных реле такой k5 получить трудно, и в этих случаях применяются электронные реле. Если реле применяется для защиты установки от чрезмерного понижения напряжения сети, то оно также должно иметь высокий kB. Например, если установка должна отключаться от сети при напряжении, равном 70 % Uhqm, то необходимо применить реле с kB = Q,7. Такой kB можно легко получить в электромагнитном реле переменного тока. Рассмотренное реле срабатывает при любом направлении тока в обмотке. Такие реле называются нейтральными.
Строение электромагнитного реле.
Поскольку всегда РПЗб>0, коэффициент возврата максимального реле kB<\. Для увеличения kB необходимо максимально сблизить тяговую и противодействующую характеристики с целью уменьшения РИЗб- В реле, как правило, основное противодействующее усилие создается возвратной пружиной. Усилие контактной пружины невелико, и при рассмотрении коэффициента возврата им можно пренебречь. Для получения высокого kB противодействующая характеристика должна быть такой же нелинейной, как и тяговая.
Для максимального сближения тяговой и противодействующей характеристик последней можно придать нелинейный характер. Добиться этого удается ценой сложных конструктивных решений, снижающих надежность реле .(противодействующее усилие создается несколькими пружинами). Такие решения применяются редко. В простейшем случае и при одной пружине рекомендуется выбирать ее с наибольшей возможной жесткостью, чтобы противодействующая характеристика совпадала с касательной, проведенной к тяговой характеристике при б = бн. В этом случае значение РИзб будет минимальным, а kB максимальным.
Основные виды
Эти приборы принято классифицировать по нескольким показателям. В первую очередь речь идет о типе контролирующего напряжения — постоянного и переменного тока. Устройства постоянного тока предназначены для работы в электроцепях с напряжением 3−32 В. Они отличаются высокой надежностью, оснащаются светодиодной индикацией, а диапазон рабочих температур составляет от -30 до 60 градусов. Также существуют приборы с ручным управлением, которые можно настроить на нужный тип работы.
В соответствии с видом нагрузки ТТР бывают однофазными и трехфазными. Приборы, предназначенные для трехфазных цепей, способны контролировать ток в диапазоне 10−120 А сразу на всех фазах. Среди этих устройств особое место занимают реверсивные реле, отличающиеся бесконтактной коммутацией. Они часто используются в сочетании со специальными приборами, обеспечивающими надежную защиту от ложных срабатываний.