Онлайн калькулятор расчета сопротивления последовательно соединенных резисторов
Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных последовательно, вы можете воспользоваться следующим онлайн калькулятором:
Подведем итог
Когда два или несколько резисторов соединены вместе (вывод одного соединяется с выводом другого резистора) — то это последовательное соединение резисторов. Ток, протекающий через резисторы имеет одно и тоже значение, но падение напряжения на них не одно и то же. Оно определяется сопротивлением каждого резистора, которое рассчитывается по закону Ома (U = I * R).
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Подробнее
Последовательное и параллельное соединение проводников, резисторов, конденсаторов и катушек индуктивности. Онлайн расчёты.
«- Я тебе как электрику объясняю: Надя спит с мужиками последовательно, а Света параллельно.
Кто из них шмара вавилонская?
— Ну, Света наверное.
— Вот! А мне, как кладовщику, видится немного другое: «поблядушка обыкновенная» — 2 штуки! »
«- А теперь скажи мне отрок, как течёт электричество по проводам электрическим, и цепям рукотворным, последовательным
да параллельным, от плюса к минусу со скоростью света в вакууме?
— С Божьей помощью, батюшка! С Божьей помощью…»
Ну да ладно, достаточно! Шутки — штуками, а пора бы уже дело делать. Так что «Копайте пока здесь! А я тем временем схожу узнаю — где надо…», а заодно
набросаю пару-тройку калькуляторов на заданную тему.
Итак.
При последовательном соединении проводников сила тока во всех проводниках одинакова, при этом общее напряжение в цепи
равно сумме напряжений на концах каждого из проводников.
При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для
всех элементов, а сила тока в цепи равна сумме сил токов в отдельных параллельно соединённых проводниках.
Рис.1
Расчёт проведём для 4 резисторов (проводников), соединённых последовательно или параллельно. Если элементов в цепи меньше, то
оставляем лишние поля в таблице не заполненными.
Заодно, при желании узнать распределение значений токов и напряжений на каждом из элементов при последовательном и параллельном
соединениях, есть возможность ввести величину общего напряжения в цепи U. А есть возможность не вводить…
Короче, все вводные, помеченные * — к заполнению не обязательны.
РАСЧЁТ СОПРОТИВЛЕНИЙ ПРИ ПАРАЛЛЕЛЬНОМ И ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ
проводников
Теперь, что касается последовательных и параллельных соединений конденсаторов и катушек индуктивности
Поэтому, для желающих рассчитать величины напряжений и токов в последовательных или параллельных цепях, состоящих из конденсаторов и
катушек индуктивности, имеет полный смысл выяснить на странице ссылка на страницу значения
реактивных сопротивлений данных элементов при интересующей Вас частоте и подставить эти значения в таблицу для расчёта проводников
и резисторов.
А в качестве общего напряжения в цепи — подставлять действующее значение амплитуды переменного тока.
Ну а теперь приведём таблицы для расчёта значений ёмкостей и индуктивностей при условии последовательного и
параллельного соединений конденсаторов и катушек в количестве от 2 до 4 штук.
Расчёт поведём на основании хрестоматийных формул:
С = С1+ С2+….+ Сn и
1/L = 1/L1+ 1/L2 +…+ 1/Ln
для параллельных цепей и L = L1 + L2 +….+ Ln и
1/С = 1/С1+ 1/С2+…+ 1/Сn для последовательных.
Как и в предыдущей таблице вводные, помеченные * — к заполнению не обязательны.
РАСЧЁТ ЁМКОСТИ ПРИ ПАРАЛЛЕЛЬНОМ И ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ
конденсаторов
Ну и в завершении ещё одна таблица.
РАСЧЁТ ИНДУКТИВНОСТИ ПРИ ПАРАЛЛЕЛЬНОМ И ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ
катушек
Тут важно заметить, что приведённые в последней таблице расчёты верны только для индуктивно не связанных катушек,
то есть для катушек, намотанных на разных каркасах и расположенных на значительных расстояниях друг от друга, во избежание,
пересечения взаимных магнитных полей
Формула для расчета параллельного соединения сопротивлений
При параллельном соединении обратная величина от эквивалентного сопротивления равна сумме обратных величин всех параллельно подключенных сопротивлений. Эквивалентная проводимость равна сумме всех параллельно подключенных проводимостей электрической схемы.
Для приведенной выше схемы эквивалентное сопротивление можно рассчитать по формуле:
В частном случае при подключении параллельно двух сопротивлений:
Эквивалентное сопротивление цепи определяется по формуле:
В случае подключения «n» одинаковых сопротивлений, эквивалентное сопротивление можно рассчитать по частной формуле:
Формулы для частного рассчета вытекают из основной формулы.
Закон Ома для участка цепи. Закон Джоуля — Ленца. Работа и мощность электрического тока. Виды соединения проводников.
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна сопротивлению этого участка.
Выполняется для металлов и электролитов.
Закон Джоуля — Ленца.
Дж. Джоуль (1841—1843) Э. X. Ленц (1842—1843) независимо друг от друга экспериментально установили
В электрической цепи происходит преобразование энергии упорядоченного движения заряженных частиц в тепловую. Согласно з-ну сохранения энергии работа тока равна количеству выделившегося тепла.
Количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток:
Работа и мощность электрического тока.
Работа электрического тока:
Мощность электрического тока (работа в единицу времени):
В электричестве иногда применяется внесистемная единица работы — кВт . ч (киловатт-час).
1 кВт . ч = 3,6 . 10 6 Дж.
Последовательное соединение.
1. Сила тока во всех последовательно соединенных участках цепи одинакова:
I1=I2=I3=. =In=.
2. Напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке:
U=U1+U2+. +Un+.
3. Сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка:
R=R1+R2+. +Rn+.
Если все сопротивления в цепи одинаковы, то:
R=R1 . N
При последовательном соединении общее сопротивление увеличивается (больше большего).
Параллельное соединение.
1. Сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках.
2. Напряжение на всех параллельно соединенных участках цепи одинаково:
U1=U2=U3=. =Un=.
3. При параллельном соединении проводников проводимости складываются (складываются величины, обратные сопротивлению):
Если все сопротивления в цепи одинаковы, то:
При параллельном соединении общее сопротивление уменьшается (меньше меньшего).
4. Работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках:
5. Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках:
P=P1+P2+. +Pn+.
6. Т.к. силы тока во всех участках одинаковы, то: U1:U2. Un. = R1:R2. Rn.
Для двух резисторов: — чем больше сопротивление, тем больше напряжение.
4. Работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках:
A=A1+A2+. +An+.
т.к. .
5. Мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках:
P=P1+P2+. +Pn+.
6. Т.к. напряжения на всех участках одинаковы, то:
Для двух резисторов: — чем больше сопротивление, тем меньше сила тока.
Электрические соединения резисторов
ПОСЛЕДОВАТЕЛЬHОЕ соединение pезистоpов — это такое соединение, пpи котоpом конец пеpвого pезистоpа соединяется с началом втоpого, конец втоpого — с началом тpетьего и так далее. Hа пpинципиальных электpических схемах последовательное соединение pезистоpов изобpажается таким обpазом.
Пpи последовательном соединении pезистоpов их общее сопpотвление, т. е. эквивалентное сопpотивление цепи, состоящей из последовательно соединенных pезистоpов pавно сумме сопpотивлений включенных pезистоpов.
R общ. = R1 + R2 + R3 + … + Rn.
ПАРАЛЛЕЛЬHОЕ соединение pезистоpов — это такое соединение, пpи котоpом начала всех pезистоpов соединяются в одной точке, называемой узлом, а концы всех pезистоpов соединяются в дpугой точке, в дpугом узле.Hа pис. 4 показано паpаллельное соединеие pезистоpов на пpинципиальной схеме.
Величина, обpатная сопpотивлению pезистоpа, называется пpоводимостью. Пpоводимость
Пpи паpаллельном соединении pезистоpов складываются пpоводимости. Общая пpоводимость нескольких паpаллельно соединенных pезистоpов pавна
Тогда, эквивалентное общее входное сопpотивление цепи будет pавно
Hапpимеp, общее или эквивалентное сопpотивление двух паpаллельно соединенных pезистоpов можно pассчитать по фоpмуле
Если же известно общее сопpотивление двух паpаллельно соединенных pезистоpов и величина сопpотивления одного из них, то сопpотивление втоpого pезистоpа pасчитывается по фоpмуле
Пpи паpаллельном соединении pезистоpов к каждому из них пpиложено одно и то же напpяжение. Однако, токи, пpотекающие чеpез каждый из pезистоpов, неодинаковы и зависят обpатно пpопоpционально от величины сопpотивления каждого из pезистоpов.
В pадиоэлектpонных цепях помимо последовательного и паpаллельного соединения встpечается и комбиниpованное, где одновpеменно могут пpисутствовать оба вида соединений. Кpоме пеpечисленных видов соединений в pадиоэлектpонных цепях pезистоpы, как, впpочем, и дpугие двухполюсники, могут включаться по схеме «тpеугольник» /pис. 5 / и по схеме «звезда» / pис. 6 /.
Рис. 5. Соединение pезистоpовпо схеме «тpеугольник». |
Рис. 6. Соединение pезистоpовпо схеме «звезда». |
Соединение pезистоpов, включенных по схеме тpеугольник, можно пpеобpазовать в эквивалентное соединение pезистоpов по схеме звезда. Эквивалентность такой замены пpедполагает неизменность токов, входящих в каждый из тpех узлов, пpи одинаковых напpяжениях между одноименными узлами тpеугольника и звезды. Для пpеобpазования тpеугольника в звезду сопpотивления pезистоpов стоpон тpеугольника R12, R13, R23 должны быть пеpесчитаны в сопpотивления pезистоpов лучей эквивалентной звезды R1, R2, R3 по фоpмулам:
Сопpотивление pезистоpа луча звезды pавно пpоизведению сопpотивлений pезистоpов пpилегающих стоpон тpеугольника, деленному на сумму сопpотивлений pезистоpов тpех стоpон тpеугольника.
Для обpатного пpеобpазования звезды в тpеугольник сопpотивления pезистоpов пеpесчитываются по фоpмулам:
Сопpотивление pезистоpов стоpон тpеугольника pавно сумме сопpотивлений pезистоpов двух пpилегающих лучей звезды и их пpоизведения, деленного на сопpотивление pезистоpа тpетьего луча. Схемное пpеобpазование тpеугольника в звезду или обpатное пpеобpазование звезды в тpеугольник бывает необходимо пpи pасчете электpических цепей и pасчете величин токов, пpотекающих чеpез каждый из pезистоpов.
Формула сопротивления при параллельном и последовательном соединении
Формула сопротивления при параллельном и последовательном соединении
Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением.
В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным.
Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.
Последовательное соединение проводников
В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.
Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.
Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:
- Сила тока на всех участках цепи будет одинаковой.
- Общее напряжение цепи составляет сумму напряжений на каждом участке.
- Общее сопротивление включает в себя сопротивления каждого отдельного проводника.
Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.
Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.
Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.
Параллельное соединение проводников
В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.
Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный амперметр. Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.
После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 – силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.
Формула параллельного соединения резисторов
Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:
Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:
Пример №1
При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.
Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:
Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:
Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.
Пример расчета №2
Найти общее сопротивление R из трех параллельно соединенных резисторов:
Общее сопротивление R рассчитывается по формуле:
Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.
Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.
Как рассчитать сложные схемы соединения резисторов
Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).
Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:
В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:
Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.
Ток, протекающий в цепи параллельно соединенных резисторах
Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.
Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).
Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .
Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».
- Таким образом, протекающий общий ток в цепи можно определить как:
- I = I1 + I2
- Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
- Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
- Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
- Таким образом, общий ток будет равен:
- I = 0,545 мА + 0,255 мА = 0,8 мА
- Это также можно проверить, используя закон Ома:
- I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
- где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
- И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.
Параллельное соединение резисторов — онлайн калькулятор
Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:
Подведем итог
Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.
Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.
Смешанное соединение проводников
Зачастую реальные электрические схемы оказываются сложнее, поэтому используют различные комбинации последовательного и параллельного способов соединения. Такой способ соединения называется смешанным. Смешанное соединение проводников предполагает использование последовательного и параллельного способов соединения в одной цепи.
Алгоритм решения задач со смешанным соединением проводников:
-
Прочитать условие задачи, начертить схему электрической цепи, при необходимости пронумеровать проводники.
-
Проанализировать схему, т. е. найти участки, где используется только последовательное или только параллельное соединение проводников. Определить сопротивление на этих участках.
-
Выяснить вид соединения участков между собой. Найти общее сопротивление всей цепи.
-
С помощью закона Ома и законов последовательного и параллельного соединения проводников найти распределения токов и напряжений в цепи.
Пример решения задачи
На рисунке показана схема электрической цепи. Сопротивления резисторов одинаковы и равны 12 Ом. Напряжение источника — 100 В. Какова сила тока, протекающего через резистор R4?
Решение.
-
Проанализируем данную схему. Резисторы R2 и R3 соединены между собой последовательно, а с резистором R4 — параллельно. Весь этот участок соединен последовательно с источником тока и резистором R1.
-
Определим сопротивление последовательно соединенных резисторов R2 и R3:
R23 = R2 + R3 = 12 + 12 = 24 Ом.
-
Найдем общее сопротивление резистора R4 и участка 2–3, соединенных параллельно:
R234 = (R23 · R4) / (R23 + R4) = (24 · 12) / (24 + 12) = 8 Ом.
-
Определим общее сопротивление всей цепи как сумму включенных последовательно резистора R1 и участка 2–3–4:
Rэкв = R1 + R234 = 12 + 8 = 20 Ом.
-
По закону Ома найдем силу тока в неразветвленной части цепи:
I = U / Rэкв = 200 / 20 = 5 А.
-
По закону Ома определим напряжение на участке, состоящем из резисторов R2, R3, R4:
Uэкв1 = I · R234 = 5 · 8 = 40 В.
-
Поскольку при параллельном соединении напряжение одинаково, то напряжение на резисторе R4 также равно 40 В. По закону Ома найдем силу тока, протекающего через резистор R4:
I4 = Uэкв1 / R4 = 40 / 12 ≈ 3,3 А.
Ответ: через резистор R4 протекает ток силой приблизительно 3,3 А.
Мы разобрали довольно много формул последовательного и параллельного подключения проводников. А запомнить их можно с помощью вот таких схем:
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи. На уроках вы научитесь составлять самые разнообразные электрические цепи и решать задачи с ними, а также узнаете об их применении в жизни. Ждем вас!
Типы биореакторов
Установки для производства биогаза различаются по типу загрузки сырья, сбору полученного газа, размещению реактора относительно поверхности земли, материала изготовления. Бетон, кирпич и сталь являются наиболее подходящими материалами для строительства биореакторов.
По типу загрузки различают биоустановки, в которые загружается заданная порция сырья и проходит цикл переработки, а затем полностью выгружается. Выработка газа в этих установках нестабильна, зато в них можно загружать любые виды сырья. Как правило они имеют вертикальное расположение и занимают мало места.
В систему второго типа ежедневно подгружается порция органических отходов и выгружается равная ей по объему порция готовых ферментированных удобрений. В реакторе всегда остается рабочая смесь. Установка так называемой непрерывной загрузки стабильно вырабатывает больше биогаза и пользуется большой популярностью у фермеров. В основном эти реакторы расположены горизонтально и удобны при наличии свободного места на участке.
Выбранный тип сбора биогаза определяет конструктивные особенности реактора.
- баллонные системы состоят из резинового или пластикового термостойкого баллона, в котором совмещены реактор и газгольдер. Преимущества этого вида реакторов – простота конструкции, загрузки и выгрузки сырья, легкость очистки и транспортировки, малая стоимость. К минусам можно отнести небольшой срок службы, 2-5 лет, возможность повреждения в результате внешних воздействий. К баллонным реакторам относятся и установки канального типа, которые широко используются в Европе для переработки жидких отходов и сточных вод. Такой резиновый верх эффективен при высокой температуре окружающей среды и отсутствии риска повреждений баллона. У конструкции с фиксированным куполом полностью закрытый реактор и компенсирующая емкость для выгрузки шлама. Газ скапливается в куполе, при загрузке очередной порции сырья переработанная масса выталкивается в компенсационную емкость.
- Биосистемы с плавающим куполом состоят из монолитного биореактора, расположенного под землей и подвижного газгольдера, который плавает в специальном водяном кармане или прямо в сырье и поднимается под действием давления газа. Преимуществом плавающего купола является легкость эксплуатации и возможность определения давления газа по высоте поднятия купола. Это отличное решение для крупной фермы.
- При выборе подземного или расположения установки над поверхностью, нужно учитывать уклон рельефа, что облегчает загрузку и выгрузку сырья, усиленную теплоизоляцию подземных конструкций, которая защищает биомассу от суточных колебаний температуры и делает процесс брожения более стабильным.
Конструкция может оснащаться дополнительными устройствами для подогрева и перемешивания сырья.