Суперконденсаторы
Суперконденсатор также известен как ультраконденсатор или конденсатор с двойным электрическим слоем. Эти конденсаторы изготовлены с тонким разделителем электролита, который окружен ионами активированного угля. Он отличается от обычного конденсатора тем, что емкость суперконденсатора очень высока и составляет порядка миллифарад при диапазонах напряжения от 2,3 В до 2,75 В.
Суперконденсаторы делятся на три типа в зависимости от конструкции электродов, к которым они относятся.
- Двухслойные конденсаторы: у этих конденсаторов есть угольные электроды или их производные.
- Псевдоконденсаторы: эти конденсаторы имеют электроды из оксида металла или проводящего полимера.
- Гибридные конденсаторы: эти конденсаторы имеют асимметричные электроды.
Суперконденсаторы в основном используются в устройствах, где требуется очень большое количество циклов заряда/разряда, где требуется длительный срок службы, и где требуется большое количество энергии за короткое время. Эти суперконденсаторы обычно используются как временный источник питания, вместо аккумулятора.
Закон Ома
Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.
Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:
- Сила тока: I = U/R (ампер).
- Напряжение: U = I x R (вольт).
- Сопротивление: R = U/I (ом).
Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.
Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.
Параметры
Ионисторы отличаются следующими характеристиками:
- Внутреннее сопротивление (измеряется в миллиОмах).
- Максимальный ток. (А).
- Номинальное напряжение (В).
- Емкость (Ф).
- Параметры саморазряда.
В качестве электродов в приборе применяется активированный уголь или углерод на вспененной основе. Эти компоненты помещаются в электролит. Сепаратор предназначен для защиты устройства от короткого замыкания электродов. В современных устройствах не используется электролит на основе кислоты или кристаллического раствора щелочи, так как данные компоненты обладают высоким уровнем токсичности.
Во внутренних полостях конструкции содержится электролит, запасающий электроэнергию при взаимодействии с пластинами.
Первые электрохимические ионисторы (молекулярные накопители энергиибыли) разработаны более 50 лет назад. Они были изготовлены на основе пористых углеродных электродов. В настоящее время они используются в некоторых электрических приборах.
По сравнению с литий – ионными аккумуляторами современные ионисторы характеризуются большим ресурсом и высокой скоростью разряда.
При использовании ионисторов можно добиться более экономичного режима работы за счет аккумулирования излишков энергии.
Между обкладками конструкции располагается не стандартный слой диэлектрика, а более толстая прослойка, позволяющая получить тонкий зазор. При этом прибор обеспечивает возможность получения электроэнергии в больших объемах. Суперконденсатор аккумулирует и расходует заряды быстрее, чем альтернативные варианты. Двойной слой диэлектрика увеличивает площадь электродов. Это позволяет улучшить электрические характеристики.
Свойства суперконденсаторов
Среди свойств следует отметить:
Суперконденсаторы, емкость которых обеспечивается их двухслойной структурой, накапливают энергию в поляризованном жидком слое толщиной всего несколько ангстрем, расположенном на границе между раствором электролита с ионной проводимостью и электродом с электронной проводимостью. По мнению специалистов в этой области, например, г-на Калерта (Dr. Kahlert), суперконденсаторами следует считать конденсаторы емкостью минимум 10 фарад. Суперконденсаторы – это преимущественно двухслойные конденсаторы; конденсаторы, изготовленные по другим технологиям, например, плёночные или керамические, суперконденсаторами не считают. Обычно, в суперконденсаторе два активных электрода, разделенные пористым непроводящим материалом, размещены между двумя металлическими токовыми коллекторами. Электролит, водный либо органический, пропитывает пористые электроды и обеспечивает возникновение носителей заряда с последующим его накоплением.
Суперконденсатор обычно используют для обеспечения импульсной или пиковой мощности в каком-либо устройстве. Суперконденсатор также используется для кратковременного снабжения устройств энергией и для поглощения энергии из области своего применения. Примером применения пиковой мощности являются линии электропередачи, примером кратковременного снабжения энергией – сотовые телефоны/бытовая электроника и радиотехника, а примером поглощения энергии – устройства регенеративного торможения в гибридных/электрических транспортных средствах.
Особенности устройства с переменным электротоком
Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.
Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.
Первое испытание с запуском двигателя
Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.
Собрал все воедино.
Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.
Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.
После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.
В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.
В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.
Примечания
- Технология изготовления микросхем // 1. Общие сведения о микросхемах и технологии их изготовления.. Проверено 11 октября 2010. Архивировано 10 февраля 2012 года.
- См. в частности Механцев Е. Б. Об одном полузабытом событии (к пятидесятилетию микроэлектроники), Электроника: Наука, технология, бизнес, выпуск 7, 2009 https://www.electronics.ru/journal/article/293
- История Ангстрема Архивная копия от 2 июня 2014 на Wayback Machine
- Музей электронных раритетов — Гибриды — 201-я серия
- Создание первой отечественной микросхемы. Chip News №8, 2000 г..
- Петров Л., Удовик А. Кто изобрёл… интегральную схему? // Электронные компоненты. 2013. №8. С. 10-11. (недоступная ссылка)
- История отечественной электроники, 2012 г., том 1, под ред. директора Департамента радиоэлектронной промышленности Минпромторга России Якунина А. С., стр. 632
- Охраняется гл. 74 «Право на топологии интегральных микросхем» ГК РФ как интеллектуальная собственность (ст. 1225 «Охраняемые результаты интеллектуальной деятельности и средства индивидуализации»).
- What is Ultra Large-Scale Integration (ULSI)? — Definition from Techopedia
- Стандарты и качество, Issues 1-5 1989 стр 67 «Сверхбольшая интегросхема (СБИС) — около 100 тыс. элементов; ультрабольшая интегросхема (УБИС) — более 1 млн элементов»
- ↑ 12 Is 14nm the end of the road for silicon chips? // ExtremeTech, September 2011
- H. Iwai, Roadmap for 22 nm and beyond Архивная копия от 23 сентября 2015 на Wayback Machine / Microelectron. Eng. (2009), doi:10.1016/j.mee.2009.03.129
- https://download.intel.com/newsroom/kits/22nm/pdfs/22nm-details_presentation.pdf
- https://www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark-bohr-2014-idf-presentation.pdf
- Moore’s Law Buckles as Intel’s Tick-Tock Cycle Slows Down, July 16, 2015
- Нефедов А.В., Савченко A.M., Феоктистов Ю.Ф. Зарубежные интегральные микросхемы для промышленной электронной аппаратуры: Справочник. — М.: Энергоатомиздат, 1989. — С. 4. — 300 000 экз. — ISBN 5-283-01540-8.
- Якубовский С.В., Барканов Н.А., Ниссельсон Л.И. Аналоговые и цифровые интегральные микросхемы. Справочное пособие. — 2-е изд. — М.: «Радио и связь», 1985. — С. 4—5.
- К174ХА42 — однокристальный ЧМ радиоприёмник
- Pressure sensors
- Магнитоуправляемые ИС на основе кремниевых датчиков Холла (недоступная ссылка)
- Интегральные аналоговые термодатчики в схемах на МК
- Интегральные датчики компании Maxim
- Проектирование аналоговых микросхем на МОП-транзисторах. Часть 1. Малосигнальная модель МОП-транзистора с источниками шумов
- ПРАВО НА ТОПОЛОГИИ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
Что такое ионистор – сфера применения
В отличие от стандартных конденсаторов ионистор не имеет диэлектрика, разделяющего электроды.
Применяют такие устройства в цифровых электронных приборах, в качестве дополнительного источника питания, что позволяет сохранить настройки аппаратуры при замене батареек.
Также суперконденсаторы применяют для работы таймеров на телевизоре, микроволновке и другой бытовой и аудиотехнике, а также медицинском оборудовании. Высокоемкостные ионисторы совместно с аккумуляторами способны питать электродвигатели.
Нередко ультраконденсаторы встраивают в микросхемы светодиодных фонарей. Заряжаться модуль может от солнечной энергии, накопленной в солнечных батарейках.
Схемы питания на основе суперконденсаторов
В некоторых схемах ценным преимуществом является возможность поддерживать питание процессора и ключевых компонентов, например, после сбоя электросети, чтобы должным образом завершить работу операционной системы, сохранить наиболее важные данные в памяти или восстановить информацию из энергозависимой памяти после того, как питание вернется в норму.
В некоторых случаях можно эффективно использовать энергию запасенную в классических электролитических конденсаторах, фильтрующих источник питания. Но если для выполнения процедуры требуется большее количество энергии — стоит обратиться к суперконденсатору, работающему в режиме буферного питания.
Принцип работы системы резервного питания с использованием суперконденсаторов
Принцип работы системы резервного питания с использованием суперконденсаторов показан на рисунке выше. После отключения основного блока питания, последовательно включенные суперконденсаторы отправляют энергию на потребитель через преобразователь. Дополнительные резисторы — за счет снижения эффективности схемы из-за потерь энергии — уравновешивают напряжение, предотвращая поломку одного из конденсаторов.
Такая простая схема, хотя и хорошо известная из инженерной практики по применению свинцово-кислотных аккумуляторов, не будет работать в большинстве реальных проектных ситуаций — основная проблема будет заключаться в сильном импульсе тока, который появляется при зарядке суперконденсатора сразу после включение питания устройства. Поэтому должны быть предусмотрены соответствующие меры по исправлению положения.
Схема для устранения проблемы сильного импульса тока, возникающего при зарядке суперконденсатора
Одно из самых простых практических приложений для устранения этой проблемы показано на рисунке. Резистор R используется для ограничения зарядного тока.
Диод Шоттки защищает схему от обратных токов, благодаря чему зарядка конденсатора возможна только через резистор. Схема адаптирована для питания от источников постоянного напряжения с напряжением, превышающим как минимум на 0,3 В напряжение поддержки, необходимое для правильной работы процессора. Важным требованием является обеспечение высокого сопротивления источника после его выключения, иначе суперконденсатор будет разряжаться непосредственно на источник, что значительно сократит время поддержки.
Универсальное применение схемы резервного питания с использованием суперконденсаторов
Гораздо лучшим и более универсальным решением является схема питания, показанная на рисунке выше. Дополнительный диод Шоттки, подключенный последовательно с резистором R, предотвращает разряд ионистора от основного источника питания или других блоков устройства. Полевой транзистор позволяет программно выбрать источник напряжения — в состоянии проводимости он обеспечивает путь с низким сопротивлением, который соединяет выводы питания процессора с основным источником питания устройства, и отключение (после обнаружения падения напряжения) позволяет начать разрядку суперконденсатора после перевода микроконтроллера в режим пониженного энергопотребления (STOP).
Стоит обратить внимание на то, что большой ошибкой может быть попытка использовать суперконденсатор вместо никель-металлгидридной аккумуляторной батареи для поддержания часов RTC и памяти RAM. Это решение будет работать только в тех устройствах, которые во время нормальной работы постоянно или большую часть времени подключены к другому источнику питания (например часы с питанием от сети)
Следует помнить, что суперконденсаторы характеризуются относительно высокими токами саморазряда, а значит время поддержки ионистором RTC или RAM памяти будет во много раз меньше, чем в случае даже небольшой литиевой батареи или никель-металлогидридного АКБ.
Преимущества устройств для зарядки
Транспортные средства нуждаются в дополнительном энергетическом рывке для ускорения, и именно в этом подходят ионисторы. Они имеют ограничение общего заряда, но они способны передать его очень быстро, что делает их идеальным аккумуляторами. Преимущества их по отношению к традиционным батареям:
- Низкий импеданс (ESR) увеличивает импульсный ток и нагрузку при параллельном соединении с батареей.
- Очень высокий цикл — разряд занимает миллисекунды до нескольких минут.
- Падение напряжения по сравнению с устройством, работающим от батареи, без суперконденсатора.
- Высокая эффективность при 97-98%, а эффективность DC-DC в обоих направлениях составляет 80% -95% в большинстве приложений, например, видеорегистратора с ионисторами.
- В гибридном электрическом транспортном средстве эффективность кругового движения на 10% больше, чем у батареи.
- Хорошо работает в очень широком температурном диапазоне, обычно от -40 C до + 70 C, но может быть и от -50 C до + 85 C, есть специальные версии, достигающие 125 C.
- Небольшое количество тепла, выделяемого во время зарядки и разряда.
- Длительный срок службы цикла с высокой надежностью, что снижает затраты на обслуживание.
- Небольшая деградация в течение сотен тысяч циклов и длится до 20 миллионов циклов.
- Они теряют не более 20% своей емкости после 10 лет, а продолжительность жизни составляет 20 лет и более.
- Не подвержены износу и старению.
- Не влияет на глубокие разряды, в отличие от батарей.
- Повышенная безопасность по сравнению с батареями — нет опасности перезарядки или взрыва.
- В конце эксплуатации не содержит опасных материалов для удаления, в отличие от многих батарей.
- Соответствует экологическим стандартам, поэтому нет сложной утилизации или переработки.
Описание конденсатора постоянного тока
Электрические цепи бывают двух видов — постоянными или переменными. Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.
Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:
- Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
- Установить лампочку, рассчитанную на такое же напряжение.
- В сеть установить конденсатор.
Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.
Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.
Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.
Техническая реализация
Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.
Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.
Принцип работы
Ионистор использует действие двойной прослойки, сформированного на границе между углем и электролитом. Активированный уголь применяется в качестве электрода в твердой форме, а электролит в жидкой. Когда эти материалы контактируют друг с другом, положительные и отрицательные полюса распределяются относительно друг друга на очень коротком расстоянии. При приложении электрического поля в качестве основной конструкции используется электрический двойной слой, который образуется вблизи поверхности угля в электролитической жидкости.
Преимущество конструкции:
- Обеспечивает емкость в небольшом устройстве, нет нужды в специальных схемах зарядки для контроля во время разрядки в устройствах, где применяют ионистор.
- Перезарядка или чрезмерно частая разрядка не оказывает негативного влияния на срок службы, как в типовых батареях.
- Технология чрезвычайно «чистая» с точки зрения экологии.
- Нет проблем с нестабильными контактами, так у обычных батарей.
Недостатки конструкции:
- Продолжительность работы ограничена из-за использования электролита в устройствах, где применяют ионистор.
- Электролит может протекать, если конденсатор эксплуатируется неправильно.
- По сравнению с алюминиевыми конденсаторами эти ионисторы имеют высокие сопротивления и поэтому не могут использоваться в цепях переменного тока.
Используя преимущества, описанные выше, электрические ионисторы широко применяются в таких приложениях, как:
- Резервирование памяти для таймеров, программ, питание е-мобиля и т. д.
- Видео и аудио оборудование.
- Резервные источники при замене батарей для портативного электронного оборудования.
- Источники питания для оборудования, использующего солнечные элементы, такие как часы и индикаторы.
- Стартеры для малых и мобильных двигателей.
Что такое ФАЗА, НОЛЬ и ЗЕМЛЯ В ЭЛЕКТРИКЕ | ОБЪЯСНЯЮ НА ПАЛЬЦАХ
845965
29510
1864
00:07:16
25.05.2020
Магазин различных тестеров для электрика: 🤍
Хороший магазин электрики: 🤍
Соединители проводов: 🤍
Разные клеммники, ваги: 🤍
Ещё больше клеммников: 🤍
Термостойкий провод: 🤍
Термоусадочные трубки: 🤍
Нож для зачистки проводов: 🤍
Многофункциональные зачистки проводов: 🤍
Приблуда для скручивания проводов: 🤍
Нож электрика: 🤍
Бокорезы: 🤍
Отвёртка — индикатор: 🤍
Набор тестовых щупов: 🤍
Высокоточный мультиметр: 🤍
Мультиметр + Тестер электрика: 🤍
Бесконтактный тестер — индикатор до 1000 В: 🤍
Мини Павер банк 1000 мАч: 🤍
* * * * * *
Наш Telegram канал 🤍
_
В этом выпуске вы узнаете: что такое фаза, ноль и земля в электрике; как определить фазу в розетке; как устроена электрическая сеть; как работает трёхфазное напряжение; что такое заземление электричества
Группа в ВК: 🤍
Реклама на канале: 🤍
Почта (для сотрудничества): daymon911🤍mail.ru
_
Смотрите наши видео, в которых мы простым языком рассказываем о радиотехнике, электронике и радиоэлектронике, а также об ардуино и товарах из Китая для радиолюбителей!
Наши уроки будут особенно полезны как для начинающих радиолюбителей и студентов радиотехнических ВУЗов, так и для опытных электронщиков, которые паяют каждый день!
В видеороликах мы даём основы электроники: определения, описания, схемы и принцип работы различных элементов радиотехники.
На канале проводятся уроки по Ардуино / Arduino; разбираем программирование, подключение датчиков, модулей, дисплеев, двигателей; создаём различные проекты и устройства на ардуино.
Реле, Датчики
- https://www.qrz.ru/schemes/contribute/constr/komparatory_i_ih_primenenie_gradientnye_rele_8_shem.html — Компараторы и их применение, градиентные реле (8 схем)
- http://zpostbox.ru/simple_capacitive_touch_sensor.html — ПРОСТОЙ ЁМКОСТНОЙ ДАТЧИК ПРИКОСНОВЕНИЯ
- http://radiocon-net.narod.ru/page30.htm — НЕСКОЛЬКО КОНСТРУКЦИЙ ДАТЧИКОВ
- http://www.shemki.ru/readarticle.php?article_id=745 — терменвокс
- https://mysku.ru/blog/aliexpress/56013.html Бесконтактный датчик воды Y25 T12V
- http://playground.arduino.cc/Main/CapacitiveSensor — Capacitive Sensing Library
- https://github.com/PaulStoffregen/CapacitiveSensor — CapacitiveSensor Library
- https://www.youtube.com/watch?v=QItuf6lNvmI — Capacitive sensor, Theory, application and design
- http://www.beatsloop.com/video/QItuf6lNvmI —
- https://meettechniek.info/measurement/self-calibration.html — Self-calibrating applied to fluid level meter.
-
http://www.electronicshub.org/touch-sensors/
- https://www.youtube.com/watch?v=2WKx6CCxFJw — Цифровой емкостной датчик на микросхеме
Другие способы проверки
Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!
Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.
Использовать способы проверки без специальных приборов нежелательно
Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены
История создания суперконденсатора
Беспроводная передача электроэнергии
В 1957 году американской фирмой General Electric был запатентован конденсатор с двойным электрическим слоем и пористыми угольными электродами. Концепция патента заключалась в том, что накопление электрического потенциала происходило в угольных порах.
Однако уже в 1966 году фирма из штата Огайо SOHIO получила патент на ионистор, скапливающий заряд в двойном электрическом слое. В 1971 году фирма NEC, перекупившая патент у SOHIO, стала производить изделия под названием Суперконденсатор (Supercapacitor).
В 1978 году японский производитель радиотехники Panasonic заполнил рынок ионисторами под названием Золотой конденсатор (Gold capacitor). В этом же году в СССР были разработаны и изготовлены первые суперконденсаторы ёмкостью от 0,1 до 50 фарад.
Заряд конденсатора. Ток
По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.
Рассмотрим принцип работы плоского конденсатора. Если подключить к нему источник питания, на одной пластине проводника начнут собираться отрицательно заряженные частицы в виде электронов, на другой – положительно заряженные частицы в виде ионов. Поскольку между обкладками находиться диэлектрик, заряженные частицы не могут «перескочить» на противоположную сторону конденсатора. Тем не менее, электроны передвигаются от источника питания — до пластины конденсатора. Поэтому в цепи идет электрический ток.
В самом начале включения конденсатора в цепь, на его обкладках больше всего свободного места. Следовательно, начальный ток в этот момент встречает меньше всего сопротивления и является максимальным. По мере заполнения конденсатора заряженными частицами ток постепенно падает, пока не закончится свободное место на обкладках и ток совсем не прекратится.
Время между состояниями «пустого» конденсатора с максимальным значением тока, и «полного» конденсатора с минимальным значением тока (т.е. его отсутствием), называют переходным периодом заряда конденсатора.