Параметры
Parameters / Models | LM358D | LM358DE4 | LM358DG4 | LM358DGKR | LM358DGKRG4 | LM358DR | LM358DRE4 | LM358DRG3 | LM358DRG4 | LM358P | LM358PE3 | LM358PE4 | LM358PSLE | LM358PSR | LM358PW | LM358PWG4 | LM358PWLE | LM358PWR | LM358PWRG3 | LM358PWRG4 | LM358PWRG4-JF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Additional Features | N/A | N/A | |||||||||||||||||||
Approx. Price (US$) | 0.07 | 1ku | 0.07 | 1ku | |||||||||||||||||||
Архитектура | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar |
CMRR(Min), дБ | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | ||
CMRR(Min)(dB) | 65 | 65 | |||||||||||||||||||
CMRR(Typ), дБ | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | ||
CMRR(Typ)(dB) | 80 | 80 | |||||||||||||||||||
Основные особенности | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | ||
GBW(Typ), МГц | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | ||
GBW(Typ)(MHz) | 0.7 | 0.7 | |||||||||||||||||||
Input Bias Current(Max), pA | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | ||
Input Bias Current(Max)(pA) | 150000 | 150000 | |||||||||||||||||||
Iq per channel(Max), мА | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | ||
Iq per channel(Max)(mA) | 0.6 | 0.6 | |||||||||||||||||||
Iq per channel(Typ), мА | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | ||
Iq per channel(Typ)(mA) | 0.35 | 0.35 | |||||||||||||||||||
Количество каналов | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||
Number of Channels(#) | 2 | 2 | |||||||||||||||||||
Offset Drift(Typ), uV/C | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | ||
Offset Drift(Typ)(uV/C) | 7 | 7 | |||||||||||||||||||
Рабочий диапазон температур, C | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | ||
Operating Temperature Range(C) | 0 to 70 | 0 to 70 | |||||||||||||||||||
Output Current(Typ), мА | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | ||
Output Current(Typ)(mA) | 30 | 30 | |||||||||||||||||||
Package Group | SOIC | SOIC | SOIC | VSSOP | VSSOP | SOIC | SOIC | SOIC | SOIC | PDIP | PDIP | PDIP | SO | SO | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP |
Package Size: mm2:W x L, PKG | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8VSSOP: 15 mm2: 4.9 x 3(VSSOP) | 8VSSOP: 15 mm2: 4.9 x 3(VSSOP) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | See datasheet (PDIP) | See datasheet (PDIP) | See datasheet (PDIP) | 8SO: 48 mm2: 7.8 x 6.2(SO) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | ||
Package Size: mm2:W x L (PKG) | See datasheet (PDIP) | See datasheet (PDIP) | |||||||||||||||||||
Rail-to-Rail | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- |
Rating | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog |
Slew Rate(Typ), V/us | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | ||
Slew Rate(Typ)(V/us) | 0.3 | 0.3 | |||||||||||||||||||
Total Supply Voltage(Max), +5V=5, +/-5V=10 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | ||
Total Supply Voltage(Max)(+5V=5, +/-5V=10) | 32 | 32 | |||||||||||||||||||
Total Supply Voltage(Min), +5V=5, +/-5V=10 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
Total Supply Voltage(Min)(+5V=5, +/-5V=10) | 3 | 3 | |||||||||||||||||||
Vn at 1kHz(Typ), нВ/rtГц | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | ||
Vn at 1kHz(Typ)(nV/rtHz) | 40 | 40 | |||||||||||||||||||
Vos (Offset Voltage @ 25C)(Max), мВ | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | ||
Vos (Offset Voltage @ 25C)(Max)(mV) | 7 | 7 |
Схема неинвертирующего усилителя
Описание схемы:
- На плюсовой вход подается сигнал.
- К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
- Второй резистор соединен с общим проводом.
- Точка соединения резисторов подключается к минусовому входу.
Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.
Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.
Усилитель сигнала термопары
Рубрика
: 7. Технические науки
: 04.10.2019
Статья просмотрена:
558 раз
Библиографическое описание:
Галимуллин, Н. Р. Усилитель сигнала термопары / Н. Р. Галимуллин, Н. Т. Хайруллина. — Текст : непосредственный // Исследования молодых ученых : материалы III Междунар. науч. конф. (г. Казань, октябрь 2021 г.). — Казань : Молодой ученый, 2021. — С. 1-3. — URL: https://moluch.ru/conf/stud/archive/349/15255/ (дата обращения: 14.11.2020).
Данная статья посвящена разработке устройства усиления сигнала термопары.
Ключевые слова: термопара, терморегулировка, нихромовая спираль.
Помимо задачи контроля температуры бывает необходимо обеспечить ее регулирование или поддержание на каком-либо заданном уровне. Поэтому становится важным обеспечить согласование блока измерения температуры и нагревателя, в качестве которого может использоваться нихромовая спираль. Для работы нагревателя нужно усилить сигнал с блока измерения по мощности, поэтому в состав устройства терморегулирования входит также усилитель мощности.
В данной статье рассматриваются различного рода термопары, которые часто являются основным видом датчиков температуры. Разрабатывается усилитель сигнала термопары и усилитель мощности для управления нагревательным элементом.
Электрическая схема блока измерения температуры и блока нагрева показаны на рисунках 1 и 2. Рассмотрим их по отдельности.
Термопары типа S — наиболее широкодиапазонные и стабильные, поэтому они получили широкое распространение . Однако им присущ серьезный недостаток: крайне малый коэффициент преобразования, всего 5,88 мкВ/°С при 20°С (у термопары типа J — 51,45 мкВ/°С, типа К — 40,28 мкВ/°С). Поэтому при не очень больших температурах (менее 500°С) вырабатываемый ими сигнал крайне мал. Усилитель должен хорошо подавлять 50-герцовый сигнал и иметь стабильное дифференциальное усиление. Его входное сопротивление должно быть достаточно высоким (более 10 кОм).
Рис. 1. Блок измерения температуры
Мы разработали схему (Рис 1), которая позволяет решить указанные проблемы. Она представлена в виде дифференциального усилителя с Т-образной цепью обратной связи, который имеет достаточно высокий коэффициент усиления по напряжению (200) и достаточно большое входное сопротивление. В качестве операционного усилителя лучше всего применить прецизионный усилитель с крайне малым смещением (менее 10 мкВ) и столь же малым температурным дрейфом (меньше 100 нВ/°С). К таким усилителям относятся LTC1050, LTC1052 фирмы Linear Technology, ICL7650, ICL7652 фирм Intersil и Maxim, а также AD8551 от Analog Devices. Питающее напряжение (от +UПИТ до -UПИТ) данного усилителя 12 В.
Шунтирующие конденсаторы на входе усилителя ослабляют ВЧ-радиопомехи (поскольку у соединительных проводов термопар достаточно большая длина).
Микросхема AD590 которая находится в тепловом контакте с опорным спаем, используется в качестве датчика температуры, вырабатывая ток, пропорциональный ее абсолютной температуре (1 мкА/°С). Температуре 0°С соответствует абсолютная температура 273 К, и следовательно, AD590 выработает ток 273 мкА; температуре 25°С — соответственно 298 К и 298 мкА, и т. д.
Так как основной усилитель DA2 имеет коэффициент усиления 200, то компенсирующее напряжение, вырабатываемое усилителем DA1, должно составлять 200 • 5,88 = 1,176 мВ/°С. Это обеспечивается включением в обратную связь DA1 резистора сопротивлением 1,176 кОм.
Если опорный спай находится при температуре 0°С, на выходе DA1 должно присутствовать нулевое напряжение, так как при нулевой температуре опорного спая коррекция не нужна. Однако AD590 в этом случае вырабатывает ток 273 мкА, который, проходя через резистор сопротивлением 1,176 кОм, создает на нем падение напряжения 0,321 В. Для того чтобы скомпенсировать этот сигнал, на неинвертирующий вход DA1 подается напряжение с делителя напряжения R2-R4, формирующего совместно с прецизионным стабилитроном VD1 (LM336Z-2.5) требуемое напряжение. Точная регулировка осуществляется подстроечным резистором R4.
Электронная нагрузка для блока питания своими руками
Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.
По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.
На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.
Схема электронной нагрузки для блока питания
Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.
Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.
В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.
Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.
С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.
Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.
Радиодетали для сборки
- Транзистор Т1 TIP41, MJE13009, КТ819
- Транзисторы Т2, Т3, Т4, Т5 TIP36C
- Стабилизатор напряжения L7812CV
- Конденсатор С1 1000 мкФ 35В
- Диоды 1N4007
- Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
- Радиаторы 4 шт. размер 100х63х33 мм
- Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
- Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания
Texas Instruments CD4001B CD40106B LM311 LM339-N LM393
Приведены схемы несложных устройств, позволяющих регулировать ширину сигналов, снимаемых с внешних генераторов импульсов, в пределах от 0 до 100%
Регуляторы ширины цифровых сигналов чаще всего используют в цепях управления работой преобразовательной техники, различного рода регуляторах, в усилителях D-класса и т.д.
Классические регуляторы ширины сигналов, синтезируемых генераторами импульсов, достаточно хорошо известны и изучены. Известны и их недостатки, связанные с тем, что одновременно с изменением коэффициента заполнения импульса D изменяется и частота генерации. Казалось бы, что более предпочтительно менять в заданных пределах ширину уже сформированного импульсного сигнала от внешнего генератора. Однако при анализе доступных источников патентно-технической информации найти таковые устройства не удалось. Расширители/сжиматели импульсов не решали поставленную задачу.
Рисунок 1. | Регулятор ширины 0…100% импульсов внешнего генератора на КМОП-микросхемах. |
На представленных ниже Рисунках 1–4 показаны варианты управления шириной выходного сигнала в пределах от 0 до 100%
Для полноценной реализации идеи управления желательно, чтобы скважность входного сигнала была близка к 2, хотя некоторые из схем допускают возможность сохранения работоспособности устройств при существенном отклонении от выдвинутого условия. Вторая особенность схем управления – они могут работать в ограниченном диапазоне частот входного сигнала
Рисунок 2. | Регулятор ширины импульсов на операционном усилителе LM339. |
На Рисунке 1 приведен вариант схемы плавного регулирования ширины 0…100% импульсов, снимаемых с внешнего генератора. Работа устройства основана на динамическом сравнении уровней напряжения на обкладках конденсатора С1 при периодических зарядно-разрядных процессах. Элемент DD1.1 не является обязательным и предназначен лишь для обеспечения стабильности амплитуды импульсов на его выходе. Устройство работает в диапазоне частот 10…200 кГц при коэффициенте заполнения входных импульсов 50%. Особенностью схем регуляторов здесь и далее является то, что с ростом частоты равный диапазон регулировки ширины выходных импульсов от 0 до 100% достигается во все более узком диапазоне регулировки движка потенциометра (R2 – Рисунки 1, 2 или R3 – Рисунки 3, 4).
Рисунок 3. | Регулятор ширины импульсов на компараторе LM311. |
Второй вариант регулятора ширины импульсов (Рисунок 2) также основан на сравнении плавающих на обкладках конденсатора С1 напряжений.
Рисунок 4. | Балансный регулятор ширины импульсов на компараторе LM393. |
Следующий вариант регулятора ширины импульсов (Рисунок 3) использует иную схему построения, хотя и его работа основана на периодических зарядно-разрядных процессах конденсатора С1 и сравнении уровней плавающих напряжении при помощи компаратора DA1 LM311. Для обеспечения крутых фронтов выходных импульсов предназначен инвертор на элементе DD1.2 CD40106.
Рисунок 5. | Динамика переходных процессов на входах и выходе балансного регулятора ширины импульсов на компараторе LM393. |
Завершает небольшую коллекцию регуляторов ширины сигналов, получаемых от внешних генераторов импульсов, балансный регулятор ширины импульсов, выполненный на компараторе LM393 (Рисунок 4). Устройство работает в диапазоне частот входных сигналов от 5 до 150 кГц. Динамика переходных процессов на входах и выходе балансного регулятора при нахождении движка регулятора (потенциометр R3) в его среднем положении показана на Рисунке 5, что соответствует коэффициенту заполнения импульсов выходного сигнала 50%.
Источник
Схемы подключения
Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.
Схема в мощном неинвертирующим усилителе.
Преобразователь напряжения — ток.
Схема с дифференциальным усилителем.
Неинвертирующий усилитель средней мощности.
Схема не инвертирующего усилителя
Описание схемы:
- На плюсовой вход подается сигнал.
- К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
- Второй резистор соединен с общим проводом.
- Точка соединения резисторов подключается к минусовому входу.
Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.
Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.
Схема мощного не инвертирующего усилителя
Элементы, который применены в конструкции не инвертирующего усилителя, и их параметры:
- В качестве микросхемы используется LM358.
- Значение сопротивления R1=910 kOm.
- R2=100 kOm.
- R3=91 kOm.
Для усиления сигнала применяется полупроводниковый биполярный транзистор VT1.
По напряжению коэффициент усиления при условии использования таких элементов равен 10. Чтобы посчитать коэффициент усиления в общем случае, необходимо воспользоваться такой формулой: k=1+R1/R2. Для вычисления коэффициента по току всей схемы необходимо знать соответствующий параметр используемого транзистора.
Схема преобразователя напряжение-ток
Схема приведена на рисунке и немного похожа на ту, которая была описана в конструкции не инвертирующего усилителя. Но здесь добавлен биполярный транзистор. На выходе сила тока оказывается прямо пропорциональна напряжению на входе операционного усилителя.
И в то же время сила тока обратно пропорциональна сопротивлению резистора R1. Если описать это формулами, то выглядит следующим образом:
I=U(in)/R.
При величине сопротивления R1=1 Om, на каждый 1V напряжения, прикладываемого ко входу, на выходе будет 1А тока. Схема включения LM358 в режиме преобразователя напряжения в ток используется радиолюбителями для конструирования зарядных устройств.
Схема преобразователя ток-напряжение
При помощи такой простой конструкции на операционном усилителе LM358 можно осуществить преобразование тока с малым значением в высокое напряжение. Описать это можно такой формулой:
U(out)=I*R1.
Если в конструкции применяется резистор сопротивлением 1 МОм, а по цепи протекает ток со значением 1 мкА, то на выходе элемента появится напряжение со значением 1В.
Схема простого дифференциального усилителя
Данная конструкция получила широкое распространение в устройствах, которые измеряют напряжение у источников, обладающих высоким сопротивлением. Необходимо учитывать особенность – отношения сопротивлений R1/R2 и R4/R3 должны быть равны. Тогда на выходе напряжение окажется со следующим значением:
U(out)=(1+R4/R3)*(Uin1-Uin2).
При этом коэффициент усиления может быть рассчитан по формуле k=(1+R4/R3). В том случае, если сопротивления всех резисторов равны 100 кОм, коэффициент окажется равен 2.
Схема монитора тока
Еще одна схема, которая позволяет проводить измерение значения тока в питающем проводе. Она состоит из шунтирующего сопротивления R1, операционного усилителя LM358, транзистора npn-типа и двух резисторов. Характеристики элементов:
- микросхема DA1 – LM358;
- сопротивление резистора R=0,1 Ом;
- значение сопротивления R2=100 Ом;
- R3=1 кОм.
Напряжение питания ОУ должно быть минимум на 2 В больше, нежели у нагрузки. Это обязательное условие функционирования схемы.
Схема преобразователя напряжения в частоту
Этот прибор потребуется в том случае, когда возникнет необходимость в подсчете периода или частоты какого-либо сигнала.
Схема применяется в качестве аналогово-цифрового конвертера. Параметры элементов, используемых в конструкции:
- DA1 – LM358;
- C1 – 0,047 мкФ;
- R1=R6=100 кОм;
- R2=50 кОм;
- R3=R4=R5=51 кОм;
- R6=100 кОм;
- R7=10 кОм.
Это все конструкции, которые могут быть построены с использованием операционного усилителя. Но область применения LM358 на этом не ограничивается, существует большое количество схем намного сложнее, позволяющих реализовать различные возможности.
В каких корпусах выпускаются микросхемы
Корпус может быть как DIP8 – обозначение LM358N, так и SO8 – LM358D. Первый предназначен для реализации объемного монтажа, второй – для поверхностного. От типа корпуса не зависят характеристики элемента – они всегда одинаковы. Но существует немало аналогов микросхемы, у которых параметры немного отличаются. Всегда есть плюсы и минусы. Обычно, если у элемента большой диапазон рабочих напряжений например, страдает какая-либо другая характеристика.
Существует еще металлокерамический корпус, но такие микросхемы используют в том случае, если эксплуатация устройства будет происходить в тяжелых условиях. В радиолюбительской практике удобнее всего использовать микросхемы в корпусах для поверхностного монтажа
Они очень хорошо паяются, что имеет важное значение при работе. Ведь намного удобнее оказывается работать с элементами, у которых ножки имеют большую длину
Описание и применение операционного усилителя LM358. Схемы включения, аналог, datasheet
Содержание страницы
Микросхема LM358 в одном корпусе содержит два независимых маломощных операционных усилителя с высоким коэффициентом усиления и частотной компенсацией. Отличается низким потреблением тока. Особенность данного усилителя – возможность работать в схемах с однополярным питанием от 3 до 32 вольт. Выход имеет защиту от короткого замыкания.
Описание операционного усилителя LM358
Область применения — в качестве усилительного преобразователя, в схемах преобразования постоянного напряжения, и во всех стандартных схемах, где используются операционные усилители, как с однополярным питающим напряжением, так и двухполярным.
Технические характеристики LM358
- Однополярное питание: от 3 В до 32 В.
- Двухполярное питание: ± 1,5 до ± 16 В.
- Ток потребления: 0,7 мА.
- Синфазное входное напряжение: 3 мВ.
- Дифференциальное входное напряжение: 32 В.
- Синфазный входной ток: 20 нА.
- Дифференциальный входной ток: 2 нА.
- Дифференциальный коэффициент усиления по напряжению: 100 дБ.
- Размах выходного напряжения: от 0 В до VCC — 1,5 В.
- Коэффициент гармонических искажений: 0,02%.
- Максимальная скорость нарастания выходного сигнала: 0,6 В/мкс.
- Частота единичного усиления (с температурной компенсацией): 1,0 МГц.
- Максимальная рассеиваемая мощность: 830 мВт.
- Диапазон рабочих температур: 0…70 гр.С.
Габаритные размеры и назначения выводов LM358 (LM358N)
Аналоги LM358
Ниже приведен список зарубежных и отечественных аналогов операционного усилителя LM358:
- GL358
- NE532
- OP221
- OP290
- OP295
- TA75358P
- UPC358C
- AN6561
- CA358E
- HA17904
- КР1040УД1 (отечественный аналог)
- КР1053УД2 (отечественный аналог)
- КР1401УД5 (отечественный аналог)
Примеры применения (схемы включения) усилителя LM358
Компаратор с гистерезисом
Допустим, что потенциал, поступающий на инвертирующий вход, плавно возрастает. При достижении его уровня чуть выше опорного (Vh -Vref), на выходе компаратора возникнет высокий логический уровень. Если после этого входной потенциал начнет медленно снижаться, то выход компаратора переключится на низкий логический уровень при значении немного ниже опорного (Vref – Vl). В данном примере разница между (Vh -Vref) и (Vref – Vl) будет значение гистерезиса.
Дифференциальный усилитель на LM358
Назначение данной схемы — усиление разности двух входящих сигналов, при этом каждый из них умножается на определенную постоянную величину.
Данный функциональный генератор вырабатывает сигналы треугольной и прямоугольной формы.
Генератор прямоугольных импульсов на LM358
В качестве примера использования приведем схему микрофонного усилителя на LM358:
Datasheet LM35
Корпус: DIP-8 (LM358N)
Корпус: SO-8 (LM358D)
LM358N/LM358D — двухканальный операционный усилитель широкого применения для работы в бытовом диапазоне температур (0..+70°С).
Микросхема ОУ LM358 по функциональному назначению и расположению выводов аналогична таким микросхемам как LM158, LM258, LM2904, но отличается от них температурным диапазоном работы и незначительно другими параметрами.
Аналоги: КР1040УД1 / КФ1040УД1.
Микросхема LM358N также может поставляться с маркировкой LM358P.
Предельные режимы LM358N/LM358D:
Напряжение питания |
+32V или ±16V |
Входное напряжение |
-0,3..+32V |
Дифференциальное входное напряжение |
32V |
Выходной ток | 40mA * |
Диапазон температур |
0..+70°С |
* Выходной ток короткого замыкания ограничен внутренне.
Основные характеристики LM358N/LM358D:
Параметр |
Мин. |
Тип. |
Макс. |
Напряжение смещения |
±2mV |
±7mV |
|
Синфазный входной ток | 20nA | 150nA | |
Дифференциальный входной ток |
±2nA |
±30nA |
|
Выходной ток |
20mA |
40mA |
60mA |
Коэффициент ослабления синфазных помех |
70dB |
85dB |
|
Коэффициент усиления по напряжению | 50V/mV | 100V/mV | |
Коэффициент гармонических искажений |
0,02% |
||
Ток потребления |
0,7mA |
2,0mA |
|
Скорость нарастания |
0,3V/µS |
||
Граничная частота | 0,7MHz | 1,1MHz |
LM358 DataSheet на русском, описание и схема включения
Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению. Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.
LM358 цоколевка
LM358 состоит из двух ОУ, каждый имеет по 4 вывода, имеющих свое назначение. Всего получается 8 контактов. Производятся в нескольких видах корпусного исполнения, для объемного DIP и поверхностного монтажа на плату SO. Так же могут встречается в усовершенствованных корпусах SOIC, VSSOP, TSSOP.
Назначение контактов для всех видов корпусов совпадает: 2,3, 5,6, — входы, 1,7 – выходы, 4 – минус источника питания, 8 – плюс источника питания.
Технические характеристики
Ниже указаны предельные допустимые значения условий эксплуатации для диапазона рабочих температур окружающей среды TA от 0 до +70 °C, если не указано иное.
Основные электрические характеристики, при температуре окружающей среды TA = 25 °C.
Рекомендуемые условия эксплуатации в диапазоне рабочих температур окружающей среды, если не указано иное:
Подверженность устройства повреждению от электростатического разряда (ESD):
Также у данного устройства есть тепловые характеристики:
Схемы подключения
Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.
Схема в мощном неинвертирующим усилителе.
Преобразователь напряжения — ток.
Схема с дифференциальным усилителем.
Неинвертирующий усилитель средней мощности.
Аналоги
Аналогами LM358 можно считать микросхемы в которых указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.
Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.
Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.
Маркировка
Префикс LM сначала использовался при маркировке общего назначения компанией National Semiconductor. Цифры “358” это ее серийный номер. В 2011 году эта компания была приобретена другим производителем электроники Texas Instruments. С этого года префикс “LM” является кодом производителя Texas Instruments, но несмотря на это, этот код используют и другие производители при маркировке своей продукции. Микросхемы LM358, LM358-N и LM358-P имеют одинаковые технические параметры. У большинства компаний-производителей символами “-N” , “-P” обозначаются пластиковые корпуса PDIP.
В технических описания встречается такие виды: LM358A, LM358B, LM358BA. Так указывается версии следующего поколения промышленного стандарта LM358. Устройства «B» могут быть доступны в более современных микрокорпусах TSOT и WSON.
Применение
Lm358 широко используется в:
- устройствах типа «мигающий маяк»;
- блоках питания и зарядных устройствах;
- схемах управления двигателем;
- материнских платах;
- сплит системах внутреннего и наружного применения;
- бытовой технике: посудомоечные, стиральные машины, холодильные установки;
- различных видах инверторов;
- источниках бесперебойного питания;
- контроллерах и др.
Возможности применения микросхемы производители обычно указывают в технических описаниях на свои устройства.