Что такое мультивибратор и как он работает

Мультивибратор на транзисторах

Содержание / Contents

  • 1 Несимметричный мультивибратор на транзисторах разной структуры
  • 2 Генератор световых импульсов или просто мигалка на светодиоде
  • 3 Низковольтная LED мигалка на транзисторах разной структуры
  • 4 Детали «мигалки»,
  • 5 Практика SMD монтажа: изготовим сувенир-талисман
  • 6 Интегральная микросхема LM3909
  • 7 Соберём микросхему LM3909 на дискрете
  • 8 Детали и печатная плата прототипа микросхемы LM3909
  • 9 Калейдоскоп полезных схем на несимметричном мультивибраторе 9.1 Питание светодиода от 1,5 В
  • 9.2 Мигающий фонарь с лампой накаливания
  • 9.3 Мигающий фонарь с лампой накаливания и светодиодом
  • 9.4 Универсальный фонарь
  • 9.5 Параллельное включение сверхъярких светодиодов
  • 9.6 Звуковой пробник
  • 9.7 Светодиодный «вольтметр»
  • 9.8 Генератор меандра
  • 9.9 Светодиодный генератор 0…20 Гц
  • 9.10 Генератор кода Морзе
  • 9.11 Генератор частотой до 800 кГц
  • 9.12 Микрофонный усилитель

10 Вывод
11 Файлы
12 Список источников

Генерация

Все вышеописанные процессы происходят очень быстро, они лимитируются только быстродействием транзисторов. После этого схема стабилизируется и находится в устойчивом состоянии. Однако, эта стабильность только кажущаяся, т. к. продолжаются некоторые процессы, связанные с зарядом-разрядом конденсаторов:

Рис. 5. После переключения транзисторов: быстрый заряд C2 и медленный заряд C1

Во-первых, конденсатор C2 достаточно быстро заряжается — сопротивление Rк1 сравнительно мало. На рисунке путь его зарядки показан красной линией.

Если C2 быстро зарядился и ток через него прекратился, что же поддерживает транзистор T2 открытым? Ответ: ток через Rб2. Этот ток хоть и поменьше, чем через C2 в первый момент, но его вполне достаточно, чтобы транзистор был полностью открыт (находился в режиме насыщения).

Во-вторых, конденсатор C1 тоже заряжается, но помедленнее из-за относительно большого сопротивления Rб1 — см. синюю линию на рисунке. Заметим, что напряжение на C1 приложено плюсом к базе T1, и по мере заряда С1 оно растёт. В какой-то момент (при достижении значения порядка 0.6 В) оно  станет достаточным для открытия T1, и этот транзистор откроется.

А тут в засаде поджидает C2, уже давно полностью заряженный и уставший от безделья. После открытия T1 получается так, что весь накопленный потенциал C2 оказывается приложен к эмиттерному переходу T2, причём в запирающей полярности, из-за чего T2 мгновенно закрывается:

Рис. 6. В момент открытия T1 конденсатор C2 запирает T2

Пояснение: ток не течёт по красной линии, это только показано направление потенциала. Дело в том, что эмиттерный переход T2 запирается этим потенциалом и его сопротивление очень велико. Более того, закрываясь, T2 ускоряет открытие T1, т.к. потенциал на его коллекторе растёт, и заставляет конденсатор C1 ещё больше разряжаться через эмиттерный переход T1, открывая его. Получается такой лавинообразный самоусиливающийся процесс одновременного переключения транзисторов в противоположное состояние.

Ну а дальше события начинают повторяться симметрично: C2 потихоньку перезаряжается  в противоположной  полярности, через Rб2 и только что открывшийся T1, пока его потенциал не становится достаточным для открытия T2, и снова происходит переключение транзисторов и так далее.

Описание работы мультивибратора на транзисторах

Принцип работы проанализируем на примере следующей схемы.

Легко заметить, что она практически копирует принципиальную схему симметричного триггера. Различие только в том, что связи между блоками переключения, как прямая, так и обратная, осуществлены по переменному току, а не по постоянному. Это кардинально изменяет особенности устройства, так как в сравнении с симметричным триггером у схемы мультивибратора нет стабильных состояний равновесия, в которых он мог бы находиться продолжительное время.

Взамен этого имеются два состояния квазиустойчивого равновесия, благодаря чему устройство находится в каждом из них строго определенное время. Каждый такой промежуток времени определяется переходными процессами, происходящими в схеме. Функционирование устройства заключается к постоянной смене данных состояний, что сопровождается появлением на выходе напряжения, очень напоминающее по форме прямоугольное.

По сути своей симметричный мультивибратор представляет собой двухкаскадный усилитель, причем схема построена, так что выход первого каскада соединен с входом второго. Вследствие этого после подачи питания на схему, обязательно получается, так что один из открыт, а другой находится в закрытом состоянии.

Допустим, что транзистор VT1 открыт и находится в состоянии насыщения током, идущим через резистор R3. Транзистор VT2, как уже было сказано выше, закрыт. Теперь в схеме происходят процессы, связанные с перезарядом конденсаторов C1 и C2. Первоначально конденсатор C2 абсолютно разряжен и вслед за насыщением VT1 происходит постепенная зарядка его через резистор R4.

Поскольку конденсатор C2 шунтирует коллектор-эммитерный переход транзистора VT2 через эммитерный переход транзистора VT1, то скорость его заряда определяет скорость изменения напряжения на коллекторе VT2. После заряда C2 транзистор VT2 закрывается. Продолжительность этого процесса (длительность фронта напряжения коллектора) можно вычислить по формуле:

t1a = 2,3*R1*C1

Также в работе схемы протекает и второй процесс, связанный с разрядом ранее заряженного конденсатора C1. Его разряд происходит через транзистор VT1, резистор R2 и источник питания. По мере разряда конденсатора на базе VT1 появляется положительный потенциал, и он начинает открываться. Данный процесс заканчивается после полного разряда C1. Длительность этого процесса (импульса) равна:

t2a = 0,7*R2*C1

По прошествии времени t2a транзистор VT1 будет заперт, а транзистор VT2 будет в насыщении. После этого процесс повторится по аналогичной схеме и длительность интервалов следующих процессов можно рассчитать также по формулам:

t1b = 2,3*R4*C2

и t2b = 0,7*R3*C2

Для определения частоты колебаний мультивибратора справедливо следующее выражение:

f = 1/ (t2a+t2b)

Портативный USB осциллограф, 2 канала, 40 МГц….

Здравствуйте дорогие друзья и все читатели моего блога сайт. Сегодняшний пост будет о простом но интересном устройстве. Сегодня мы рассмотрим, изучим и соберем светодиодную мигалку, в основе которой лежит простой генератор прямоугольных импульсов — мультивибратор.

Заходя на свой бложик, мне всегда хочется сделать что-нибудь эдакое, что-то такое, что сделает сайт запоминающимся. Так что представляю вашему вниманию новую «секретную страницу» на блоге.

Эта страница отныне носит название — «Это интересно».

Вы наверное спросите: «Как же ее найти?» А очень просто!

Вы наверное заметили, что на блоге появился некий отслаивающийся уголок с надписью «Скорей сюда».

Причем стоит только подвести курсор мыши к этой надписи, как уголок начинает еще больше отслаиваться, обнажая надпись — ссылку «Это интересно».

Ведет на секретную страницу, где вас ждет небольшой, но приятный сюрприз — подготовленный мной подарок. Более того, в дальнейшем на этой странице будут размещаться полезные материалы, радиолюбительский софт и что-нибудь еще — пока еще не придумал. Так что, периодически заглядывайте за уголок — вдруг я что-то там припрятал.

Ладно, немножко отвлекся, теперь продолжим…

Вообще схем мультивибраторов существует много, но наиболее популярная и обсуждаемая это схема нестабильного симметричного мультивибратора. Обычно ее изображают таким образом.

Вот к примеру эту мультивибраторную мигалку я спаял гдето год назад из подручных деталек и как видите — мигает. Мигает несмотря на корявый монтаж, выполненный на макетной плате.

Эта схема рабочая и неприхотливая. Нужно лишь определиться как же она работает?

Схема ждущего мультивибратора и принцип её работы

Наиболее распространённой схемой ждущего мультивибратора является схема на основе биполярных транзисторов с эмиттерной связью между ними. Данная схема представлена на рисунке ниже.

Схема ждущего мультивибратора.

В данной схеме в качестве активных элементов используются транзисторы VT1 и VT2, резисторы R1 и R2 предназначены для установления режима работы транзистора VT1. Резисторы R3 и R6 – коллекторные нагрузки транзисторов, конденсатор C2 и резистор R5 используются для задания параметров импульса, через резистор R4 осуществляется обратная связь по току, конденсатор C1 – элемент цепи запуска ждущего мультивибратора.

Для понимания работы ждущего мультивибратора ниже представлены временные диаграммы его работы.



Временные диаграммы работы ждущего мультивибратора.

При подаче питания на мультивибратор в нём устанавливается начальный режим работы, при котором транзистор VT1 закрыт, а VT2 находится в состоянии насыщения (открыт). Это достигается при помощи элементов цепей питания транзистора VT1 (резисторы R1, R2, R3 и R4). При этом на выходе мультивибратора присутствует небольшой постоянный уровень напряжения, который определяется в основном резистором R4.

Для того что бы ждущий мультивибратор запустился необходимо на его вход через конденсатор C1 подать импульс тока. Конденсатор C1 предназначен для формирования короткого импульса запуска с крутым фронтом. В результате поступления импульса запуска на базу транзистора VT1 в схеме начинает происходить лавинообразный процесс выработки импульса в следующем порядке: через открытый транзистор VT1 и резистор R5 начинает заряжаться конденсатор C2. Так как R5C2 является дифференцирующей цепочкой, то в момент начала заряда конденсатора на базе VT2 резко уменьшится потенциал, а, следовательно, транзистор закроется и на выходе схемы появится уровень напряжения примерно равный напряжению питания. После зарядки конденсатора C2 до уровня отпирания VT2, транзистор откроется и на выходе мультивибратора установится исходное напряжение. Параметры сформированного импульса полностью определятся параметрами схемы и вычисляются по тем же самым формулам, что и для автогенераторного мультивибратора.

Симметричный мультивибратор

Эквивалентные схемы цепей заряда конденсаторов связи мультивибратора с анодной связью.| Схема мультивибратора, работающего в режиме автоколебаний, рассчитанного в примере 8 — 4.

Рассчитать симметричный мультивибратор, работающий в режиме автоколебаний ( рис. 8 — 27) налампебЛ), длительность селекторного импульса которого составляет 50 мксек.

Схема симметричного мультивибратора ( рис. 12.3) представляет собой двухкаскадный усилитель напряжения с емкостной связью, в котором создана положительная обратная связь за счет соединения выходных и входных зажимов.

Синхронизация симметричного мультивибратора, в зависимости от способа подачи синхронизирующего напряжения, возможна при четных и при нечетных коэффициентах деления. В обоих случаях синхронизируются как весь период, так и его отдельные части.

Расчет симметричного мультивибратора с коллекторно-базовыми связями ( рис. 8 — 7) производят следующим образом.

В симметричном мультивибраторе при С — С2 С и Rs R52Ro длительности полупериодов одинаковы.

В симметричном мультивибраторе транзисторы, сопротивления резисторов в цепях коллекторов и баз, а также емкости конденсаторов С3 и С2 одинаковы. Устойчивое состояние схемы, при котором оба транзистора отперты, невозможно. Всякое изменение одного из токов или напряжений ведет к лавинообразному процессу, в результате которого один из транзисторов запирается, а другой отпирается. Время пребывания схемы в этом состоянии определяется постоянной времени цепи разряда конденсатора С2 или Сз. Когда напряжение на конденсаторе достигнет нулевого значения, один транзистор отпирается, а другой запирается. Процесс этот повторяется, при этом амплитуда импульсов на коллекторах транзисторов близка к напряжению источника питания.

Схемы синхронизации симметричного мультивибратора при.| Временные диаграммы импульсного делителя с малой скважностью при делении частоты следования коротких импульсов.

Зовы синхронизации симметричного мультивибратора, построенные по уравнениям ( 16 — 17) — ( 16 — 20), показаны на рис. 16.8 а.

Зоны синхронизации ( п 1, 2, 3, 4 импульсного делителя с малой скважностью при делении частоты следования. а — коротких импульсов. б — прямоугольник импульсов.

б — прямоугольник импульсов.

При синхронизации симметричного мультивибратора синусоидальными колебаниями лучше всего в цепи управления подавать синфазные сигналы ( рис. 16.6 а), если необходимо получить четный коэффициент деления, и противофазные сигналы ( рис. 16.6 6), если необходимо получить нечетный коэффициент деления. Для рассмотрения каждого случая удобно представить напряжение в цепях управления в виде, показанном на рис. 16.9 а и б, где, с учетом принятой ранее идеализации, изображены оба полупериода мультивибратора на одной временной диаграмме.

Осцилляторные схемы симметричных мультивибраторов.

Осцилляторные схемы симметричных мультивибраторов на транзисторах и лампах ( рис. 17.4) получены при замене одного из времяза-дающих конденсаторов мультивибратора кварцевым резонатором.

Рассмотрим работу симметричного мультивибратора, изображенного на рис. 5.50. Схема мультивибратора представляет собой двухкаскадный усилитель, замкнутый петлей положительной обратной связи.

Рассмотрим работу симметричного мультивибратора, как наиболее простого. Так как схема симметричная, то можно предположить, что после ее включения токи в транзисторах и напряжения на конденсаторах достигнут одинаковой величины и мультивибратор будет находиться в равновесии.

Калейдоскоп полезных схем на несимметричном мультивибраторе

Питание светодиода от 1,5 В

Элементы генератора подобраны таким образом, что частота следования вспышек составляет около 2 кГц, поэтому они воспринимаются глазом как непрерывное свечение фонаря. Потребляемый устройством ток около 4 мА.

Рис. 11. Фонарь на светодиоде

Хотя микросхема LM3909 предназначена для управления светодиодными индикаторами прерывистого свечения типа «маяк», она может управлять и обычными лампами накаливания, применяемыми в карманных фонарях.

Генератор кода Морзе

Рис. 20. Генератор кода Морзе

Схема генератора кода Морзе, использующая небольшое число внешних элементов и потребляющая от источника питания минимальный ток, показана на рис. 20.Один генератор одновременно управляет динамиками ВА1 на одной и ВА2 на другой сторонах. Динамики ВА1 и ВА2 размещаются в небольших корпусах объёмом примерно один кубический дециметр и работают на частоте резонанса (в районе 400 Гц) для наиболее приятного тона с минимальным энергопотреблением.

Для каждого определённого типа динамика размеры корпуса и ёмкость конденсатора С1 выбираются экспериментально по наиболее стабильному резонансному току в пределах изменения напряжения элемента питания от 1 до 1,5 В.

Рис. 21. Генератор частотой до 800 кГц

колебательного контура

↑ Список источников

1. Мосягин В.В. Секреты радиолюбительского мастерства. – М.: СОЛОН-Пресс. – 2005, 216 с. (с. 47 – 64). 2. Шустов М.А. Практическая схемотехника. 450 полезных схем радиолюбителям. Книга 1. – М.: Альтекс-А, 2001. – 352 с. 3. Шустов М.А. Практическая схемотехника. Контроль и защита источников питания. Книга 4. – М.: Альтекс-А, 2002. – 176 с. 4. Низковольтная «мигалка». (За рубежом) // Радио, 1998, №6, с. 64. 5. Датагорская статья «Главный инструмент — паяльник!» 6. Датагорская статья «Пайка SMD деталей в домашних условиях» 7. Даташит на LM3909 8. Шумейкер Ч. Любительские схемы контроля и сигнализации на ИС. – М:.Мир, 1989 (схема 46. Простой индикатор разряда батареи, с. 104; схема 47. Маркер фалиня (мигающий), с. 105). 9. Генератор на LM3909 // Радиосхема, 2008, №2. 10. Nahrada obvodu LM3909 // Prakticka electronic A Radio, 2009, №6, с. 22. 11. Одинец А.Л. Необычное применение LM3909 // Радиоаматор, 2009, №12, с. 16. 12. Борисевич К. ИМС LM3909 в радиолюбительских конструкциях // Радиомир, 2010, №1, с. 19. 13. Discrete Version Of The LM3909 Oscillator IC 14. Белоусов О.В. Эквивалент ИМС LM3909 на деталях для поверхностного монтажа // Радиоаматор, 2011, №11, с. 34, 35.

Включение питания

В первый момент после включения питания оба транзистора начинают открываться. Откуда берётся открывающий ток? Рассмотрим на примере транзистора T1

Рис. 3. Момент включения питания: токи, открывающие транзистор

Первый, очевидный путь — через Rб1, на рисунке синяя стрелка. Второй, не столь очевидный — через конденсатор C1. Не будем забывать, что в первый момент времени конденсатор разряжен, его сопротивление практически нулевое, и в цепи возникает ток заряда через Rк2 — С1 — эмиттерный переход T1. Этот путь показан красной стрелкой.

Тут важно отметить, что коллекторные сопротивления Rк в этой схеме значительно меньше базовых Rб, как минимум на порядок, а то и на несколько.  Значит, «красная» составляющая в первый момент будет давать больший вклад

Принцип действия мультивибратора

Мультивибратор может создавать волну почти любой формы, в зависимости от двух факторов: сопротивления и емкости каждого из двух каскадов усилителя и от того, откуда в цепи снимается выход.

Например, если сопротивление и емкость двух каскадов равны, один каскад проводит 50% времени и другой каскад проводит 50% времени. Для обсуждения мультивибраторов в этом разделе предполагается, что сопротивление и емкость обоих каскадов равны. Когда эти условия существуют, выходной сигнал является прямоугольной волной.

Бистабильные мультивибраторы (или «флип-флоп») имеют два устойчивых состояния. В устойчивом состоянии один из двух каскадов усилителя находится в состоянии проводимости, а другой каскад не проводит. Для того, чтобы перейти от одного устойчивого состояния к другому, бистабильный мультивибратор должен получить внешний сигнал.

Этот внешний сигнал называется внешним импульсом триггера. Он инициирует переход мультивибратора из одного состояния в другое. Другой триггерный импульс необходим, чтобы перевести цепь обратно в ее исходное состояние. Эти триггерные импульсы называются «запуск» и «перезапуск».

Помимо бистабильного мультивибратора, существуют также моностабильный мультивибратор, который имеет только одно устойчивое состояние и астабильный мультивибратор, который не имеет устойчивого состояния.

Совершенство достигнуто не тогда, когда нечего добавить, а тогда, когда нечего убрать. Антуан де Сент–Экзюпери

Некоторые считают поверхностный монтаж трудно реализуемым в домашних условиях в силу малых размеров SMD элементов и… отсутствия отверстий под выводы деталей.Отчасти так оно и есть, но при внимательном рассмотрении выясняется, что малые размеры элементов требуют просто аккуратности при монтаже, конечно при условии, что разговор идет о простых SMD компонентах, не требующих для установки специального оборудования. Отсутствие опорных точек, коими являются отверстия под выводы деталей, лишь создают иллюзию трудности выполнения рисунка печатной платы.

Нужна практика в создании простых конструкций на SMD элементах, чтобы приобрести навыки, уверенность в своих силах, убедиться в перспективности поверхностного монтажа для себя лично.
Ведь процесс изготовления печатной платы упрощается (не нужно сверлить отверстия, формовать выводы деталей), а получаемый выигрыш в плотности монтажа заметен невооруженным глазом.

Основой наших конструкций является схема несимметричного мультивибратора на транзисторах различной структуры.

Соберем «мигалку» на светодиоде, которая будет служить талисманом, а также создадим задел для будущих конструкций, изготовив прототип популярной у радиолюбителей, но не совсем доступной микросхемы .

Детали и печатная плата прототипа микросхемы LM3909

В схеме применены резисторы типоразмера 0805, транзисторы в корпусе SOT-23. VT1 – BC817-40, корпус SOT-23 – 1 шт., VT2, VT3 – BC847, корпус SOT-23 – 2 шт., VT4 – BC857, корпус SOT-23 – 1 шт., R1 – Чип резистор J0805-12 Ом – 1 шт., R2 – Чип резистор J0805-6,2 кОм – 1 шт., R3 – Чип резистор J0805-3 кОм – 1 шт., R4, R5 – Чип резистор J0805-390 Ом – 2 шт., R6, R8 – Чип резистор J0805-20 кОм – 2 шт., R7 – Чип резистор J0805-10 кОм – 1 шт., R9 – Чип резистор J0805-100 Ом – 1 шт., Печатная плата 27,5×20 мм.

Размеры печатной платы прототипа ИМС LM3909 выбраны не самые маленькие (27,5×20 мм), что позволило не мельчить с расположением элементов (рис. 10) и сделать доступной сборку начинающим радиолюбителям.

Монтаж поверхностных компонентов на печатной плате осуществляется в следующей последовательности: R7 –> R9 –> R8 –> VT2 –> VT3 –> VT4 –> VT1 –> R1 –> R4 –> R6 –> R5 –> R3 –> R2. Фотография смонтированной печатной платы показана во вводной части статьи.

Видеоролик мультивибратора

Ток потребления нашей «мигалки» составляет всего лишь 7,3 мА. Это позволяет питать данный экземпляр от «кроны
» довольно длительное время. В целом всё безотказно и познавательно, а главное предельно просто! Желаю добра и успехов в ваших начинаниях! Готовил материал Даниил Горячев (Alex1
).

Обсудить статью СИММЕТРИЧНЫЙ МУЛЬТИВИБРАТОР ДЛЯ СВЕТОДИОДОВ

Работа схемы мультивибратора

Симметричный мультивибратор на транзисторах

Схематически мультивибратор состоит
из двух усилительных каскадов с общим эмиттером, выходное напряжение каждого из которых подается на вход другого. При подсоединении схемы к источнику питания Ек оба транзистора пропускают коллекторные точки — их рабочие точки находятся в активной области, поскольку на базы через резисторы RБ1 и RБ2 подается отрицательное смещение. Однако такое состояние схемы неустойчивое. Из-за наличия в схеме положительной обратной связи выполняется условие?Ку>1 и двухкаскадный усилитель самовозбуждается. Начинается процесс регенерации — быстрое увеличение тока одного транзистора и уменьшение тока другого транзистора. Пусть в результате любого случайного изменения напряжений на базах или коллекторах несколько увеличится ток IK1 транзистора VT1. При этом увеличится падение напряжения на резисторе RK1 и коллектор транзистора VT1 получит приращение положительного потенциала. Поскольку напряжение на конденсаторе СБ1 не может мгновенно измениться, это приращение прикладывается к базе транзистора VT2, подзапирая его. Коллекторный ток IK2 при этом уменьшается, напряжение на коллекторе транзистора VT2 становится более отрицательным и, передаваясь через конденсатор СБ2 на базу транзистора VT1, еще больше открывает его, увеличивая ток IK1. Этот процесс протекает лавинообразно и заканчивается тем, что транзистор VT1 входит в режим насыщения, а транзистор VT2 — в режим отсечки. Схема переходит в одно из своих временно устойчивых состояний равновесия. При этом открытое состояние транзистора VT1 обеспечивается смещением от источника питания Ек через резистор RБ1, а запертое состояние транзистора VT2 — положительным напряжением на конденсаторе СБ1 (Ucm = UБ2 > 0), который через открытый транзистор VT1 включен в промежуток база — эмиттер транзистора VT2.

Для сооружения мультивибратора

1. Два транзистора типа КТ315. 2. Два электролитических конденсатора на 16в, 10-200микрофарад (Чем меньше емкость, тем чаще моргание). 3. 4 резистора номиналом: 100-500 ом 2 штуки (если вы ставите 100 ом, то схема будет работать даже от 2.5в), 10 ком 2 штуки. Все резисторы мощностью в 0.125 ватт. 4. Два не ярких светодиода (Любого цвета, кроме белого).

Печатная плата формата Lay6 . Приступим к изготовлению. Сама печатная плата имеет такой вид:

Припаивываем два транзистора, не перепутайте коллектор и базу на транзисторе — это частая ошибка.

Паяем конденсаторы 10-200 Микрофарад

Обратите внимание, что конденсаторы на 10 вольт крайне нежелательны для использование в этой схеме, если вы будете подавать питание 12 вольт. Помните, что у электролитических конденсаторов существует полярность!

Мультивибратор почти готов. Остается припаять светодиоды, и входные провода. Фото готового устройства выглядит примерно так:

И чтобы вам всё стало наглядно понятно, видеоролик работы простого мультивибратора:

На практике, мультивибраторы применяют в качестве генераторов импульсов, делителей частоты, формирователей импульсов, бесконтактных переключателей и так далее, в электронных игрушках, устройствах автоматики, вычислительной и измерительной техники, в реле времени и задающих устройствах. С вами был Boil-:D

. (материал был приготовлен по запросу Демьян»

a)

Обсудить статью МУЛЬТИВИБРАТОР

Мультивибратор — прибор для создания несинусоидальных колебаний. На выходе получается сигнал любой другой формы, кроме синусоидальной волны. Частота сигнала в мультивибраторе определяется сопротивлением и емкостью, а не индуктивностью и емкостью. Мультивибратор состоит из двух каскадов усилителя, выход каждого каскада подается на вход другого каскада.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: