Описание и назначение устройств
Электроустановки высокой мощности работают с питанием, достигающим несколько сот Вт, при силе тока, превышающей десятки кА. Логично, что произвести измерения величин подобного порядка, обычными приборами, попросту невозможно. Для этого используют трансформаторы тока, выполняющие одновременно несколько функций. Благодаря появлению преобразователей, значительно расширился потенциал измерительных приборов. И открылась возможность передачи энергии по гальванической развязке.
Конструкция аппаратов является их дополнительным преимуществом. К примеру, если бы существовали типовые устройства для измерения напряжения высоковольтных сетей переменного тока, они были бы очень габаритными и дорогостоящими. В отличие от трансформаторов, которые выглядят, относительно, компактно и имеют защиту от неблагоприятных внешних факторов и механических повреждений.
Основная задача трансформаторов тока – преобразовать первичную величину (подаваемого напряжения) до уровня, позволяющего подключить измерительные приборы и системы защиты. Дополнительная функция – обеспечить гальваническую развязку между потребителями низкого и высокого питания, устраняя риски для обслуживающего персонала.
Выбор
При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.
Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.
Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:
- Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
- Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
- Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.
Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.
Пример расчета трансформатора тока
Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.
Подключение счетчика через трансформаторы тока
Трансформаторы тока (далее ТТ) – это устройства, предназначенные для преобразования (снижения) тока до значений, при которых возможна нормальная работа приборов учета.
Проще говоря, они используются в щитах учета для измерения расхода электроэнергии потребителей большой мощности, когда непосредственное или прямое включение счетчика недопустимо из-за высоких токов в измеряемой цепи, способных привести к сгоранию токовой катушки и выводу прибора учета из строя.
Конструктивно эти устройства представляют собой магнитопровод с двумя обмотками: первичной и вторичной. Первичная (W1) подключается последовательно к измеряемой силовой цепи, к вторичная (W2) – к токовой катушке прибора учета.
Первичная обмотка выполняется с большим сечением и меньшим количеством витков чем вторичная, часто выполняется в виде проходной шины. Снижение тока (собственно, коэффициент трансформации) – это отношение тока W1 к W2 (100/5, 200/5, 300/5, 500/5 и т. д.).
Помимо преобразования измеряемого тока до допустимых для измерения значений, ввиду отсутствия связи W1 с W2 в ТТ происходит разделение измерительных и первичных цепей.
Специальные виды трансформаторов
К этой группе относят:
Разделительные трансформаторы
Размещение двух обмоток совершенно одинаковой конструкции на общем магнитопроводе позволяет из 220 вольт 50 герц на входе получать такое же напряжение на выходе.
Напрашивается вопрос: зачем делать такое преобразование? Ответ прост: в целях обеспечения электрической безопасности.
При пробое изоляционного слоя провода первичной схемы, на корпусе прибора появляется опасный потенциал, который по случайно сформированной цепи через землю способен поразить человека электрическим током, нанести ему электротравму.
Гальваническое разделение схемы позволяет оптимально использовать питание электрооборудования и в то же время исключает получение травм при пробоях изоляции вторичной схемы на корпус.
Поэтому разделительные трансформаторы широко используются там, где проведение работ с электроинструментом требует принятия дополнительных мер безопасности. Также они широко используются в медицинском оборудовании, допускающем непосредственный контакт с телом человека.
Высокочастотные трансформаторы
Отличаются от обычных материалом магнитопровода, который способен, в отличие от обычного трансформаторного железа, хорошо, без искажений передавать высокочастотные сигналы.
Используется в электротермии, в частности при индукционном нагреве в электротермических установках для высокочастотной сварки металлов, плавки, пайки, закалки и т.д.
Согласующие трансформаторы
Основное назначение — согласование сопротивлений разных частей в электронных схемах. Согласующие трансформаторы нашли широкое применение в антенных устройствах и конструкциях усилителей на электронных лампах звуковых частот.
Сварочные трансформаторы
Первичная обмотка создается с большим число витков, позволяющих нормально обрабатывать электрическую энергию с входным напряжением 220 или 380 вольт. Во вторичной обмотке число витков значительно меньше, а ток протекающий по ним высокий. Он может достигать тысяч ампер.
Поэтому толщина провода этой цепи выбирается повышенного поперечного сечения. Для управления сварочным током существует много различных способов.
Сварочные трансформаторы массово работают в промышленных установках и пользуются популярностью у любителей изготавливать различные самоделки своими руками.
Рассмотренные виды трансформаторов являются наиболее распространёнными. В электрических схемах работают и другие подобные устройства, выполняющие специальные задачи технологических процессов.
Область применения тахогенератора
Тахогенераторы должны быть прочными, надежными, точными, чувствительными и стабильными. Эти приборы (тахогенераторы постоянного тока, тахогенераторы переменного тока, бесщеточные тахогенераторы постоянного тока) адаптированы для любой отрасли:
- станки;
- системы дозирования;
- подъемно-транспортные системы;
- подъемники;
- оборудование для производства бумаги;
- текстильные машины;
- линии по производству стекла;
- прокатные станы;
- железнодорожная промышленность и т.п.
Эти датчики производятся с различными механическими вариациями и размерами корпуса, а также с различными электрическими характеристиками, например, для напряжений от 2 до 6000 вольт при 1000 об / мин, скорости вращения до 12000 об / мин, машин с валом и подшипниками, машин с полым валом.
Фото — внешний вид тахогенератора
Метод определения тока с помощью датчика потока
Насыщаемый индуктор является основным компонентом метода обнаружения с помощью датчика потока (Fluxgate). Из-за этого датчик Fluxgate называется датчиком тока насыщаемой индуктивности. Сердечник индуктора, который используется для датчика потока, работает в области насыщения. Уровень насыщения этого индуктора высокочувствителен, и любая внутренняя или внешняя плотность потока изменяет уровень насыщения индуктора. Проницаемость сердечника прямо пропорциональна уровню насыщения, поэтому индуктивность также изменяется. Это изменение значения индуктивности анализируется датчиком потока для измерения тока. Если ток высокий, индуктивность становится меньше, если ток низкий, индуктивность становится высокой.
Датчик Холла работает аналогично датчику потока, но между ними есть одно отличие. Разница в основном материале. Датчик потока использует насыщаемый индуктор, а датчик эффекта Холла использует воздушный сердечник.
На изображении выше показана базовая конструкция датчика потока. В нем есть две катушки первичной и вторичной обмотки вокруг насыщаемого сердечника индуктора. Изменения в потоке тока могут изменить проницаемость сердечника, что приведет к изменению индуктивности через другую катушку.
Преимущества:
- Можно измерять ток в широком диапазоне частот
- Имеет большую точность
- Низкое смещение
Недостатки:
- Высокое вторичное энергопотребление
- Увеличивается фактор риска повышения шума напряжения или тока в первичном проводнике
- Подходит только для постоянного или низкочастотного переменного тока
Датчики потока используются в инверторах солнечной энергии для измерения тока. Кроме этого, измерение переменного и постоянного тока с обратной связью может быть легко выполнено с помощью таких датчиков. Этот датчик тока также может быть использован для измерения тока утечки, обнаружения перегрузки по току и т. д.
Виды конструкций измерительных трансформаторов
В зависимости от исполнения, данные устройства делятся на следующие виды:
-
Катушечные, пример такого ТТ представлен ниже.
Катушечный ИТТ
Обозначения:
- A – Клеммная колодка вторичной обмотки.
- В – Защитный корпус.
- С – Контакты первичной обмотки.
- D – Обмотка (петлевая или восьмерочная) .
- Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4.
Рисунок 4. Пример установки встроенного ТТ
Обозначения:
- А – встроенный ТТ.
- В – изолятор силового ввода трансформатора подстанции.
- С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
-
Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ.
Шинные ТТ производства Schneider Electric
- Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.
Такой вариант конструкции существенно упрощает монтаж/демонтаж.
Перечень основных параметров
Технические характеристики трансформатора тока описываются следующими параметрами:
- Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
- Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
- Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
- Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.
Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.
Перечень основных параметров измерительного трансформатора тока ТТ-В
Режимы работы трансформатора
Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены.
Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.
В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора.
Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.
Схема режима работы трансформатора тока.
Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны.
Будет интересно Масляные трансформаторы – что это такое, устройство и принцип работы
Поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения. Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1
где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке.
Если U2> U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.
Обслуживание
Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:
Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
При обнаружении неисправности производится замена прибора
Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.
Как проверить полярность?
Для проверки синфазности включения обмоток ТТ в измерительную цепь могут применяться как простейшие способы с использованием миллиамперметра и батарейки, так и профессиональные методы, основанные на применении специальных измерительных приборов.
С помощью батарейки и миллиамперметра
В ней источником является элемент питания с заявленным напряжением от 2-х до 6 Вольт. Типовая батарейка типа 3R12 на 4,5 Вольта с подпаянными к клеммам проводами вполне сгодится для этого.
Функцию измерителя выполняет миллиамперметр, имеющий пределы от 10-ти до 100 мА.
Обратите внимание: Следует выбрать индикатор с нулем по центру шкалы, что позволит отслеживать изменения любой полярности. В начале измерений за правильную маркировку силовой обмотки принимается обозначение, указанное на рисунке (Л1 – справа, а Л2 – слева)
Подсоединив «+» батарейки к началу Л1, а минус – к ее концу Л2 и замкнув тумблер, обнаружим, что стрелка индикатора на мгновение отклонилась вправо
Это значит, что изменение токов в обеих катушках происходит синфазно и что они включены правильно
Подсоединив «+» батарейки к началу Л1, а минус – к ее концу Л2 и замкнув тумблер, обнаружим, что стрелка индикатора на мгновение отклонилась вправо. Это значит, что изменение токов в обеих катушках происходит синфазно и что они включены правильно
В начале измерений за правильную маркировку силовой обмотки принимается обозначение, указанное на рисунке (Л1 – справа, а Л2 – слева). Подсоединив «+» батарейки к началу Л1, а минус – к ее концу Л2 и замкнув тумблер, обнаружим, что стрелка индикатора на мгновение отклонилась вправо. Это значит, что изменение токов в обеих катушках происходит синфазно и что они включены правильно.
Если же стрелка при измерении отклонилась влево – это означает противоположность процессов. Когда в первичной обмотке ток возрастает, то одновременно во вторичной его значение уменьшается. В данной ситуации контакты И1и И2 следует поменять местами.
С помощью РЕТОМ-21
В меню прибора РЕТОМ-21 выбирается значение параметра первичной обмотки, а ток во вторичной цепи измеряется встроенным модулем РА. При этом на дисплее регистрируются его значение и фазный сдвиг. Если прибор показывает нулевую разницу фаз – катушки включены правильно (синфазно). В противном случае он будет показывать значение, близкое к 180-ти градусам.
С использованием ВАФ
Измерение этим прибором аналогично уже описанному выше способу, согласно которому в первичную обмотку поступает токовый импульс заданной величины. Вместе с тем на дисплее индицируется значение вторичного тока и его фаза по отношению к первичному. При нулевых фазных показаниях следует считать, что катушки включены правильно. В противном случае (разница фаз – 180 градусов) контакты второй обмотки придется поменять местами.
Трансформатор
Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.
Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.
Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.
Измерение тока при помощи трансформатора тока
Не всегда получается просто измерить переменный ток, особенно если схема связана с сетью. Существует оригинальное решение этой проблемы с помощью трансформатора тока. Известно, что проводник с током создает магнитное -поле, напряженность которого пропорциональна этому току. Если расположить датчик, в данном случае катушку, в непосредственной близости от проводника, можно уловить, а затем обработать наведенный в катушке сигнал.
На практике удобно использовать тороидальный сердечник (такие компоненты применяются в антипомеховых дросселях), намотав на него большое число витков эмалированного провода малого сечения. Количество витков должно быть тем больше, чем меньше измеряемый ток. Проводник с измеряемым током пропускают сквозь тороидальный сердечник. Таким образом формируется первичная обмотка трансформатора (рис. 4.3). Ток во вторичной обмотке может быть небольшим, если предусмотрена его обработка с помощью операционного усилителя, включенного по схеме преобразователя тока в напряжение.
Рис. 1. Включение трансформатора тока
Например, ток силой 0,5 А в первичной обмотке создаст ток 5 мА во вторичной обмотке при 100 витках провода и напряжении 0,5 В на выходе усилителя. Это значение соответствует номиналу резистора, указанному на рис. 4.3. Форма сигнала сохраняется, поэтому, чтобы получить постоянное напряжение, потребуется выполнить операции выпрямления и фильтрации. Большое преимущество схемы такого типа — полная изоляция измеряемого проводника от цепи обработки сигнала. Именно этот принцип используется в электроизмерительных клещах. В некоторых случаях можно подключить амперметр непосредственно к вторичной обмотке трансформатора.
Источник
Реферат:
Изобретение относится к измерительной технике, в частности к приборам измерения переменного и постоянного тока с использованием цифровой измерительной техники, преимущественно при напряжениях от 10 до 1500 кВ. Сущность: оптоэлектронное устройство для измерения тока содержит датчик тока, аналого-цифровой преобразователь и передатчик, помещенные внутрь токопровода под потенциалом высокого напряжения, и передает информацию о величине измеряемого тока в цифровом виде по оптическому каналу. Технический результат заключается в упрощении конструкции прибора, уменьшении массогабаритных показателей, увеличении точности измерений и увеличении надежности эксплуатации в части высоковольтной изоляции, защиты цифровой измерительной части от импульсных электромагнитных помех и погрешностей, связанных с неравномерным нагревом. 2 ил.
Назначение и устройство ИТТ
Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.
Конструкция измерительного трансформатора тока
Обозначения:
- Первичная обмотка с определенным количеством витков (W1).
- Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
- Вторичная обмотка (W2 — число витков).
Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.
Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.
В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.
Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.
Назначение и устройство ИТТ
Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.
Конструкция измерительного трансформатора тока
Обозначения:
- Первичная обмотка с определенным количеством витков (W1).
- Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
- Вторичная обмотка (W2 — число витков).
Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.
Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.
В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.
Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.
Правила установки трансформаторов тока.
В зависимости от характера реализуемой релейной защиты бывают нескольких видов.
- Соединение вторичных обмоток ТТ в полную звезду применяется для защиты от однофазных и многофазных КЗ (Рис. 5). Допустим в первичной обмотке проходит ток, направленный от начала к концу. Тогда во вторичных обмотках проходят токи обратного направления. В нормальных условиях этот ток не достаточен для срабатывания токовых реле КА1-КА3. Ток, проходящий через реле КА0, определяется как геометрическая сумма токов I2A, I2Bи I2Cи равен нулю. При трехфазном КЗ в условиях симметричного замыкания всех фаз срабатывание реле КА0 также не происходит, реле в каждой фазе вызывает отключение. При двухфазном КЗ ток протекает только через две поврежденные фазы (в неповрежденной фазе тока нет). В идеальном случае при полностью идентичных ТТ ток в реле КА0 равен нулю. При замыкании на землю ток протекает через поврежденную фазу и «нулевое» реле КА0.Рис. 5
- Схема включения в неполную звезду применяется, в основном для защиты от межфазных КЗ в линиях с заземленной нейтралью (Рис. 6).При трехфазном коротком замыкании, через обратный провод также проходит ток. При двухфазном КЗ срабатывают, в зависимости от поврежденных фаз одно или два реле. Если произошло замыкание на землю в фазе B, срабатывание какого-либо реле не происходит. Таким образом соединение ТТ в неполной звезде обеспечивает гарантированную защиту только от многофазных КЗ. В связи с этим схема неполной звезды применяется для маломощных сетей, когда имеются другие, дублирующие виды защиты.Рис. 6
- Смешанное соединение – в полную звезду на вторичной обмотке и соединение треугольником на первичных обмотках ТТ (Рис. 7) применяется в дифференциальной защите трансформаторов при таком же соединении его обмоток.Рис. 7
- Работа на КЗ при смешанном соединении аналогична другим схемам.Рис. 8
- В релейной защите от межфазных КЗ применяется встречное соединение вторичных обмоток ТТ (Рис. 8). Ток, проходящий через обмотку КА равен геометрической сумме токов обмоток трансформаторов тока. Данная схема реагирует на все виды коротких замыканий, кроме замыканий на землю. Применяется для реализации защиты трансформаторов на первичных обмотках.Рис. 9
- Для защиты от одно- и двухфазных замыканий на землю применяют схему, где первичный обмотки ТТ соединены в так называемый фильтр нулевой последовательности (рис. 9).
Трансформаторы тока впервые появились в схемах релейной автоматики, когда основным коммутационным элементом были обычные электромеханические реле. Однако, в современных условиях, для цифровых схем управления, ТТ также широко применяются в виду их простоты конструкции и легкости установки.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Область техники
Изобретение относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного тока, преимущественно при напряжениях от 10 до 1500 кВ.
Технический результат заключается в упрощении конструкции прибора, уменьшении массогабаритных показателей, увеличении точности измерений и увеличении надежности эксплуатации в части высоковольтной изоляции, исключении влияния термических градиентов. Устройство позволяет произвести точное измерение переменного или постоянного тока путем непосредственного замера падения напряжения на шунте под потенциалом высокого или сверхвысокого напряжения с последующей передачей полученной информации на потенциал земли в цифровом виде.
Виды конструкций измерительных трансформаторов
В зависимости от исполнения, данные устройства делятся на следующие виды:
- Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ
Обозначения:
- A – Клеммная колодка вторичной обмотки.
- В – Защитный корпус.
- С – Контакты первичной обмотки.
- D – Обмотка (петлевая или восьмерочная) .
- Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ
Обозначения:
- А – встроенный ТТ.
- В – изолятор силового ввода трансформатора подстанции.
- С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
- Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schneider Electric
- Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.
Такой вариант конструкции существенно упрощает монтаж/демонтаж.
Приложение 7.1
Термин | Определение |
Потребитель электрической энергии | Организация, учреждение, территориально обособленный цех, объект, площадка, строение, квартира и т п.., присоединенные к электрическим сетям и использующие энергию с помощью имеющихся приемников электрической энергии |
Абонент | Потребитель, непосредственно присоединенный к сетям энергоснабжающей организации, имеющий с ней границу балансовой принадлежности электрических сетей, право и условия пользования электрической энергией которого, обусловлены договором энергоснабжающей организации с потребителем или его вышестоящей организацией. Для бытовых потребителей — квартира, строение или группа территориально объединенных строений личной собственности |
Граница балансовой принадлежности | Точка раздела электрической сети между энергоснабжающей организацией и абонентом, определяемая по балансовой принадлежности электрической сети |
Точка учета расхода электроэнергии | Точка схемы электроснабжения, в которой с помощью измерительного прибора (расчетного счетчика, системы учета и т. п.) или иным методом определяются значения расходов электрической энергии и мощности, используемые при коммерческих расчетах.. Точка учета соответствует границе балансовой принадлежности электрической сети |
Расчетный прибор учета | Прибор учета, система учета на основании показаний, которых в точке учета определяется расход электрической энергии абонентом (субабонентом), подлежащей оплате |
Контрольный прибор учета | Прибор учета, на основании показаний которого в данной точке сети определяется расход электрической энергии, используемой для контроля |
Присоединенная мощность потребителя | Суммарная мощность присоединенных к электрической сети трансформаторов потребителя, преобразующих энергию на рабочее (непосредственно питающее токоприемники) напряжение и электродвигателей напряжением выше 1000 В. В тех случаях, когда питание электроустановок потребителей производится от трансформаторов или низковольтных сетей энергоснабжающей организации, за присоединенную мощность потребителя принимается разрешенная к использованию мощность, размер которой устанавливается энергоснабжающей организацией и указывается в договоре на отпуск электрической энергии |