Простой сумеречный выключатель

Неинвертирующий усилитель

Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже

Схема включения неинвертирующего усилителя.

Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.

Таким образом, основные параметры данной схемы описываются следующим соотношением

Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя

Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.

Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.

Несколько простых примеров использования операционного усилителя LM324

Светодиодный индикатор акустического сигнала на LM324

Низкочастотный сигнал с выхода усилителя подается на инвертирующие входы всех операционных усилителей LM324. Прямые входы их подключены к делителю напряжения построенного из цепи постоянных резисторов R2…R9. Переменным резистором можно выставить необходимую чувствительность светодиодного индикатора. Сопротивления R12…R19 ограничивают максимальный ток, протекающий через светодиоды.

Простая светодиодная мигалка на ОУ LM324

Схема позволяет плавно поочередно включать и выключать светодиоды. Светодиодная мигалка построена на операционном усилителе LM324 и двух транзисторах разной проводимости. От сопротивления резистора R3 и емкости конденсатора C1 зависит скорость переключения светодиодов.

Микрофонный усилитель

Данная схема предназначена для усиления слабого сигнала электретного микрофона. Схема микрофонного усилителя представляет собой инвертирующий усилитель по переменному току с коэффициентом усиления 220 (R5/R3).

Источник питания из радиолюбительского набора с регулируемым напряжением и током защиты — схема принципиальная и фото собранной платы. Это радиоконструктор — однополярный блок питания с «грубой» и «плавной» регулировками выходного напряжения, регулировкой ограничения по току и индикацией режима работы. В качестве регулирующего элемента используется полевой транзистор IRLZ44N, управляемый ОУ LM324. Сама схема по параметрам реально неплохая, поэтому развел свою печатною плату. Может кто-то захочет повторить конструкцию, так что печатная плата и список деталей БП прилагается.

В нескольких схемах рассмотрим, можно ли параллельно включать стабилизаторы напряжения, микросхемы типа LM317 и аналогичные.

Линейный светодиодный драйвер мощностью 3 Вт с кнопкой и резистором регулировки тока — схема на IS32LT3120.

Класс A — схема самодельного УМЗЧ высокого качества на полевых MOSFET транзисторах.

Буферный блок питания 12 В с аккумулятором — схема принципиальная и подробное описание работы.

Линейный светодиодный драйвер мощностью 3 Вт с кнопкой и резистором регулировки тока — схема на IS32LT3120.

Противопомеховые фильтры — параметры, свойства, выбор подходящей схемы и радиоэлементов.

Почему электрические провода нагреваются, откуда берется вообще тепло и сколько энергии теряется из-за сопротивления?

Регулируемый источник питания является одним из основных приборов в электронной лаборатории, ателье или на рабочем месте каждого электронщика. Представленный источник, несмотря на простоту конструкции, имеет хорошие характеристики.

Он имеет возможность плавной регулировки выходного напряжения в диапазоне от 0 до 30 В, а также плавной регулировки силы тока до 1 А. Вся схема построена на четырехкаскадном операционном усилителе типа LM324. Каскад D работает как источник напряжения смещения. Каскад В служит для измерения выходного тока, в то же время схема А работает как компаратор, управляющий светодиодом, сигнализирующим состояние перехода источника тока в состояние стабилизации тока.

Потенциометр Р1 служит для регулировки выходного напряжения. Потенциометром Р2 регулируется порог ограничения тока источника. Монтажным потенциометром PR1 следует установить верхний предел регулировки тока следующим образом: потенциометр Р2 установить в максимальное значение.

Выход источника тока нагрузить, например проволочным резистором с сопротивлением в несколько ом. В разрыв с резистором включить амперметр. Регулируя выходное напряжение, установить ток, протекающий через резистор, на 1 А. Покручивая монтажным потенциометром PR1, добиться зажигания светодиода. Весь источник тока смонтирован на одной печатной плате.

Выходной транзистор Т2 необходимо прикрепить к радиатору поверхностью не менее 1 дм2. Питающий трансформатор должен подавать напряжение не более 25 В, так чтобы напряжение на конденсаторе С1 не было более 33 В (допустимая величина для схемы LM324). Ток нагрузки трансформатора должен быть, по крайней мере, равным максимальному току нагрузки источника тока.

Система, собранная согласно схеме, действует правильно сразу же после включения питания. Выход источника питания необходимо блокировать конденсатором, не имеющим собственной индуктивности, например керамическим, емкостью 100 нФ/50 В как можно ближе к выходным зажимам.

К операционным усилителям бюджетного спектра относятся микросхемы LM324. Они отличаются прямым дифференциальным входом, компенсацией внутренних частот при разовом усилении и невозможностью короткого замыкания.

Lm393 80

Со склада 400 руб. ×от 3 шт. — 370 руб.от 30 шт. — 350 руб.
Со склада 8 руб. ×от 25 шт. — 7 руб.от 250 шт. — 6.20 руб.
Со склада 8 руб. ×от 25 шт. — 7 руб.от 250 шт. — 5.70 руб.
Со склада 7 руб. ×от 25 шт. — 6 руб.от 250 шт. — 5 руб.
LM393MX, Двойной компаратор 0.4MA Со складаПр-во: Fairchild Со склада 6 руб. ×от 25 шт. — 5.50 руб.от 250 шт. — 5.20 руб.
Со склада 16 руб. ×от 15 шт. — 13 руб.от 150 шт. — 12 руб.
2-3 недели 75 руб. ×от 50 шт. — 65 руб.от 100 шт. — 42 руб.
2-3 недели 32 руб. ×от 50 шт. — 29 руб.от 100 шт. — 16 руб.
2-3 недели 75 руб. ×от 50 шт. — 65 руб.от 100 шт. — 42 руб.
2-3 недели 44 руб. ×от 50 шт. — 39 руб.от 100 шт. — 24 руб.
2-3 недели 57 руб. ×от 50 шт. — 50 руб.от 100 шт. — 32 руб.
LM393APSR, LM393 Dual Comparator OC2-3 неделиПр-во: Texas Instruments 2-3 недели 38 руб. ×от 125 шт. — 18 руб.от 500 шт. — 14 руб.
LM393AD3-4 неделиПр-во: Texas Instruments 3-4 недели 38 руб. ×от 10 шт. — 28.40 руб.от 100 шт. — 15.50 руб.
LM393DG43-4 неделиПр-во: Texas Instruments 3-4 недели 38 руб. ×от 10 шт. — 23.90 руб.от 100 шт. — 14.90 руб.
LM393PWR3-4 неделиПр-во: Texas Instruments 3-4 недели 35 руб. ×от 10 шт. — 28.10 руб.от 25 шт. — 25.30 руб.
LM393M/NOPB5 днейПр-во: Texas Instruments 5 дней 69 руб. ×от 37 шт. — 40 руб.от 95 шт. — 35 руб.

Включение 4

Вообще, лучше, конечно, пользоваться первыми двумя общепринятыми схемами, чтобы не было путаницы.

О нагрузке. В даташите о максимальном токе коллектора сказано, что больше 6-20 мА микросхема не выдаст. То есть включить один светодиод — не проблема, а вот что побольше…

Кусок светодиодной ленты, подключенный прямо к выходу компаратора (по третьей или четвертой схеме, без резистора R3) светил слабо (1 мА). Пришлось поддать напряжения до 12 вольт, и тогда ток коллектора вырос до 14 мА. При подключении ленты напрямую к блоку питания — 32 мА. Таким образом, как ни крути, а максимум, что можно получить конкретно от этой LM-ки — 14 мА.

Вывод — что-то прожорливое есть смысл пускать через транзистор, загнанный в ключевой режим. При этом каскаду с общим эмиттером, инвертирующему сигнал, как нельзя лучше подойдет третья или четвертая схемы включения. Ведь если сигнал инвертировать дважды — получится опять исходный сигнал.Например, на прямом входе компаратора «единица» (по привычной логике — на прямом входе напряжение больше, чем на инвертирующем). Третья схема сделает из нее «ноль» на выходе. А каскад с общим эмиттером, «перевернув» этот «ноль», опять даст «единицу».

А если включать нагрузку в коллектор транзистора, то «единицы» и «нули» по входу и выходу будут совпадать.В общем, простор для творчества — колоссальный.

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Развязывание напряжения питания схем на ОУ с однополярным питанием

Чтобы работать с положительными и отрицательными полуволнами переменного сигнала, схемам на ОУ с однополярным питанием требуется синфазное смещение входа. При использовании для реализации такого смещения шины питания, для сохранения значения КОНИП требуется соответствующее развязывание.

Обычной и неправильной практикой для смещения неинвертирующего входа на уровень VS/2 является применение резистивного делителя 100/100 кОм с развязывающим конденсатором емкостью 0,1 мкФ. При таких номиналах элементов развязывание напряжения источника питания недостаточно, так как частота полюса составляет всего 32 Гц. Часто возникает нестабильность схемы (низкочастотная генерация типа «шум мотора»), особенно при работе на индуктивную нагрузку.

Рис. 12. Неинвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен 1+R2/R1

На рис. 12 (неинвертирующая схема) и рис. 13 (инвертирующая схема) показаны улучшенные схемы для получения развязанного напряжения смещения VS/2. В обеих схемах смещение подведено к неинвертирующему входу, обратная связь приводит инвертирующий вход к той же величине смещения, и единичный коэффициент усиления на постоянном токе смещает оба входа на одинаковое напряжение. Развязывающий конденсатор C1 понижает коэффициент усиления ниже частоты BW3 до единицы.

 

Рис. 13. Инвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен – R2/R1

Схемы датчиков движения

Схема датчика выглядит примерно так.

Схема датчика движения LX-02 и аналогов

Вот ещё подобная схема, но более простая. Это схема охранного датчика. Выражаю благодарность источнику – www.guarda.ru.

Датчик движения. Схема 2

В различных моделях датчика схема может незначительно изменяться, но принцип работы один. Коротко его можно описать так.

Сигнал с пиродатчика (чаще всего применяется 1vy7015) поступает на усилитель, далее работает компаратор, с выхода которого сигнал через транзистор идет на катушку реле. Реле своими контактами включает-выключает нагрузку.

Третья схема приведена в конце статьи.

LM393. Описание, datasheet, схема включения, аналог

Микросхема LM393 имеет в своем корпусе два независимых компаратора напряжения. Компаратор LM393 может работать, как от однополярного источника питания в широком диапазоне напряжений, так и от двухполярного источника. При использовании двухполярного – разница между потенциалами должна составлять от 2 В до 36 В.

https://youtube.com/watch?v=R0GCcIKGl7o

Ток потребления компаратора не зависит от напряжения питания

Необходимо обратить внимание, что данный компаратор имеет выход с открытым коллектором

Ключевая особенность LM393

  • Широкий диапазон напряжения питания: 2…36 В или ±1…±18 В
  • Очень низкий ток потребления (0,45 мА)
  • Низкий входной ток смещения: 20 нА
  • Низкий входной ток смещения: ± 3 нА
  • Низкое входное напряжение смещения: ± 1 мВ тип
  • Низкое выходное напряжение насыщения: 80 мВ
  • TTL, DTL, ECL, MOS, CMOS совместимые выходы
  • Компаратор LM393 доступен в корпусе: DFN8 2х2, MiniSO8, TSSOP8 и SO8

 Принцип работы LM393

Чтобы понять как же работает данный компаратор, рассмотрим простую схему сумеречного автомата.

Глядя на схему мы видим, что оба входа компаратора подключены к делителям напряжения. Первый делитель напряжения, подключенный к инвертирующему входу (2), состоит из постоянного резистора и фоторезистора.

Как известно сопротивление неосвещенного фоторезистора имеет очень большое сопротивление (более 1МОм), и малое при освещении. Поэтому в ночное время суток, согласно логике работы делителя напряжения, напряжение на входе (2) компаратора будет выше, чем в дневное время суток.

Теперь компаратор будет сравнивать два уровня напряжения (на выводах 2 и 3). Если напряжение на входе 2 будет больше чем на входе 3, то светодиод загорится. Как только напряжение на входе 2 опустится (при освещении фоторезистора) ниже уровня напряжения на входе 3, светодиод погаснет.

Скачать datasheet LM393 в формате pdf (595,7 Kb, скачано: 3 664)

Замкнутый контур операционного усилителя (усилители)

В схеме операционного усилителя с обратной связью выходной контакт операционного усилителя соединен с любым из входных контактов для обеспечения обратной связи. Эта обратная связь называется соединением с обратной связью. Во время замкнутого контура операционный усилитель работает как усилитель, именно в этом режиме операционный усилитель находит много полезных применений, таких как буфер, повторитель напряжения, инвертирующий усилитель, неинвертирующий усилитель, суммирующий усилитель, дифференциальный усилитель, вычитатель напряжения и т. Д. вывод Vout подключен к клемме инвертирования, тогда она называется цепью отрицательной обратной связи (как показано ниже), а если она подключена к клемме неинвертирующей связи, она называется цепью положительной обратной связи.

Обратная связь ОУ

Как я уже упоминал операционные усилители почти всегда используют с обратной связью (ОС). Но что представляет собой обратная связь и для чего она нужна? Попробуем с этим разобраться.

С обратной связью мы сталкиваемся постоянно: когда хотим налить в кружку чая или даже сходить в туалет по малой нужде Когда человек управляет автомобилем или велосипедом то здесь также работает обратная связь. Ведь для того, чтобы ехать легко и непринужденно  мы вынуждены постоянно контролировать управление в зависимости от различных факторов: ситуации на дороге, технического состояния средства передвижения и так далее.

Если на дороге стало скользко ? Ага мы среагировали, сделали коррекцию и дальше двигаемся более осторожно. В операционном усилителе все происходит подобным образом

В операционном усилителе все происходит подобным образом.

Без обратной связи при подаче на вход определенного сигнала на выходе мы всегда получим одно и тоже значение напряжения. Оно будет близко напряжению питания (так как коэффициент усиления очень большой). Мы не контролируем выходной сигнал. Но если часть сигнала с выхода мы отправим обратно на вход то что это даст?

Мы сможем контролировать выходное напряжение. Это управление будет на столько эффективным, что можно просто забыть про коэффициент усиления, операционник  станет послушным и предсказуемым потому что его поведение будет зависеть лишь от обратной связи. Далее я расскажу как можно эффективно управлять выходным сигналом  и как его контролировать, но для этого нам нужно знать некоторые детали.

Положительная обратная связь,  отрицательная обратная связь

Да, в  операционных усилителях применяют обратную связь и очень широко. Но обратная связь   может быть как положительной так и отрицательной. Надо бы разобраться в чем суть.

Положительная обратная связь в операционниках применяется не так широко как отрицательная. Более того положительная обратная связь чаще бывает нежелательным побочным явлением некоторых схем и положительной связи стараются избегать.  Она является нежелательной потому, что эта связь может усиливать искажения в схеме и в итоге привести к нестабильности.

С другой стороны положительная обратная связь не уменьшает коэффициент усиления операционного усилителя что бывает полезно. А нестабильность также находит свое применение в компараторах, которые  используют в АЦП (Аналого-цифровых преобразователях).

А вот отрицательная обратная связь просто создана для операционных усилителей. Несмотря на то, что она способствует некоторому ослаблению коэффициента усиления, она приносит в схему стабильность и управляемость.  В результате схема становится независимой от коэффициента усиления, ее свойства полностью управляются отрицательной обратной связью.

При использовании отрицательной обратной связи операционный усилитель приобретает одно очень полезное свойство. Операционник контролирует состояния своих входов и стремится к тому, потенциалы на его входах были равны. ОУ подстраивает свое выходное напряжение так, чтобы результирующий входной потенциал (разность Вх.1 и Вх.2) был нулевым.

Подавляющая часть схем на операционниках строится с применением отрицательной обратной связи! Так что для того чтобы разобраться как работает отрицательная связь нам нужно рассмотреть схемы включения ОУ.

Примеры использования операционного усилителя LM324

Светодиодный индикатор акустического сигнала на LM324

Низкочастотный сигнал с выхода усилителя подается на инвертирующие входы всех операционных усилителей LM324. Прямые входы их подключены к делителю напряжения построенного из цепи постоянных резисторов R2…R9. Переменным резистором можно выставить необходимую чувствительность светодиодного индикатора. Сопротивления R12…R19  ограничивают максимальный ток, протекающий через светодиоды.

Простая светодиодная мигалка на ОУ LM324

Схема позволяет плавно поочередно включать и выключать светодиоды. Светодиодная мигалка построена на операционном усилителе LM324 и двух транзисторах разной проводимости. От сопротивления резистора R3 и емкости конденсатора C1 зависит скорость переключения светодиодов.

Микрофонный усилитель

Данная схема предназначена для усиления слабого сигнала электретного микрофона. Схема микрофонного усилителя представляет собой инвертирующий усилитель по переменному току с коэффициентом усиления 220 (R5/R3).

Даташит на микросхему

Интегратор

Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже



Интегратор на операционном усилителе.

Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих RC и RL цепочек. Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками. Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.

Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит

Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования

Наблюдения Боба Пиза

Эта проблема неподключенных входов еще в 2007 году была предметом обсуждения между аналоговым гуру Бобом Пизом (Bob Pease) и Деннисом Монтичелли (Dennis Monticelli), занимавшим в то время пост технического директора National Semiconductor. Монтичелли отметил: «Проблема возникает, когда два входа соединены между собой, а затем куда-то подключены, например, к земле. Тогда состояние выхода становится неопределенным».

Пиз отвечал: «Ну, мы согласны с тем, что это почти никогда не может быть правильным решением для неиспользованных входов. При каком-то знаке напряжения смещения выход мог бы вести себя странно. А если бы напряжения смещения имело другой знак, измерения могли бы показать, что на первый взгляд все нормально, но другой компонент в таких же условиях может испортиться и перегреться. Правильно?»

Монтичелли прокомментировал: «Раньше было обычной практикой включать неиспользуемый операционный усилитель повторителем с неинвертирующим входом, соединенным с любым подходящим напряжением смещения системы, которое оказывается в пределах допустимого синфазного диапазона усилителя».

Пиз ответил: «Да, но если диапазон синфазных напряжений включает землю или минус питания, и вы закорачиваете вход «+» на эту шину, то ток, потребляемый по питанию некоторыми усилителями, и разогрев все же могут вывести их из строя».

Монтичелли подумал: «Нет, если вы включаете его повторителем и сохраняете напряжения входов в разрешенном диапазоне синфазных напряжений».

На это Пиз сказал: «У National Semiconductor есть, по крайней мере, один счетверенный операционный усилитель, который, если вы включите его повторителем и соедините вход«+» с минусовой шиной питания (даже если ее напряжение находится в пределах допустимого диапазона), забирает много мощности и ему становится жарко. Я должен спросить Пола Рако, что это такое. Услышав об этом, он был удивлен. Мы сошлись на том, что это ошибка. Может быть, мы разберемся, что надо делать, чтобы он не перегревался и не сажал батарею».

Импортные и отечественные аналоги

ИМС LM324 широко применяется в радиолюбительских разработках и электронных устройствах радиотехнический промышленности. Ее отличительные особенности, – наличие дифференциальных входов и высокий коэффициент усиления используется при конструировании различных электронных схем повышенной функциональности: интегрирующих, дифференцирующих, модулирующих узлах и блоках, а также в сумматорах и вычитателях. Это только небольшая часть областей применения LM324. Кроме того, промышленность постоянно выпускает новые приборы, в которых используется данная ИМС.

Естественно, что производители электронных радиокомпонентов предлагают большой перечень микросхем-операционных усилителей, которые можно использовать для замены LM324.

Производители Аналоги
Импортные ULN4336N, GL324, LA6324, IR3702, HA17324, MB3614, NJM2902D, SG324N, TDB0124, UA324, TA75902P
Отечественные 1401УД2, 1435УД2

Подача опорного напряжения на ОУ, ИУ и АЦП

На рис. 7 приведена схема с однополярным питанием, в которой напряжение на несимметричный вход аналого-цифрового преобразователя (АЦП) подается с инструментального усилителя. Опорное напряжение усилителя обеспечивает напряжение смещения, соответствующее нулевому дифференциальному входному напряжению, а опорное напряжение АЦП обеспечивает коэффициент масштабирования. Для снижения внеполосного шума между выходом ИУ и входом АЦП часто применяется простой сглаживающий RC-фильтр нижних частот. Разработчики часто соблазняются простыми решениями — например, для подачи опорного напряжения на ИУ и АЦП применяют резистивные делители вместо низкоомного источника. Для некоторых ИУ это может послужить причиной появления погрешности.

Рис. 7. Типичная схема подачи сигнала с ИУ на АЦП с однополярным питанием

Конфигурация выводов

Она производится в корпусах DIP-типа: пластиковом CDIP, керамическом PDIP или SO-типа для поверхностного монтажа: SOIC, TSSOP. Конструктивно устройство имеет 14 выводов. Поэтому, в некоторых технических описаниях, встречается обозначение DIP-14 или SO-14.

Назначение выводов для разных корпусов идентичное: 2,3, 5,6, 9,10, 13,12 — входы, 1,7,8,14 – выход, 4 – плюс источника питания, 11 – минус источника питания.

Технические характеристики

Электрические параметры (при Uпит. +5 В и TA +25 °C):

  • Напряжение смещения на входе Uсм (VIO) от 2…7 мВ (mV);
  • Входной ток смещения Iвх.(IIB) от 45…100 нА (nA);
  • Выходное нап. Uвых.(Vout): от 0… Uпит. – 1,5 В (V);
  • Коэффициент усиление (K): 100 дБ (dB);
  • Ширина полосы пропускания (f) 1 МГц;
  • Ток потребления без нагрузки Iпот. (ICC): не более 700 мкА (µA);
  • Разность входных токов (ток сдвига) Iсдв. (IIO) от 5…30 нА (nA);
  • Рассеиваемая мощность PР макс (P tod) зависит от типа корпуса: PDIP 1130 мВ(mW); CDIP 1260 мВ(mW); SOIC 800 мВ(mW).
  • Диапазон рабочих температур окружающей среды TA: 0…+70°C;
  • Температура хранения Tхран. (Tstr):-65… +150 °C.

Параметры lm324 разных компаний немного отличаются друг от друга, поэтому при разработке своих схем рекомендуется ознакомиться с официальной технической документацией на применяемое устройство от конкретного производителя.

Дифференциальный диапазон входного напряжения достигает напряжения питания. Для lm324 нижний предел диапазона входного синфазного сигнала на 0,3 В ниже, чем V—, а размах выходного напряжения ограничен снизу значением V—. Как на входах, так и на выходе предельное значение состовляет на 1,5 В меньше, чем V+.

Частота единичного усиления fi (от 100 КГц до 30 МГц), это частота на которой коэффициент усиления микросхемы (К) становится равным единице (0 дБ).

Имеет внутреннюю частотной коррекции для единичного усиления.

Диапазон входного синфазного напряжения включает землю.

Длительность короткого замыкания Tкз (Tsc) на выходе неограниченна.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: