Как узнать обороты эл двигателя. как определить обороты электродвигателя

Ошибка p0322 — датчик положения коленчатого вала/датчик частоты вращения коленчатого вала — отсутствие сигнала

Важные особенности

Следует обратить внимание, что на некоторых автомобилях датчик частоты вращения заменяет измеритель Холла: данное приспособление может передавать в главный блок управления не только сигнал о фазах механизма газораспределения, но и обороты двигателя. Если у вас именно такая ситуация, то найти прибор можно вблизи распределительного вала

В случае, когда измеритель частоты вращения коленчатого вала выйдет из строя, вы не сможете завести свой автомобиль: после доскональной проверки системы зажигания и подачи топлива, в ходе которой не будет обнаружено существенных отклонений, рекомендуется обязательно проверить работоспособность датчика оборотов.

Что представляет собой ДПКВ


Прежде чем приступить к определению неисправностей и поломок в датчике коленчатого вала (индикатора сигнализации), нужно выяснить, что именно собою являет данный датчик и для чего он нужен. Так вот, основное его предназначение заключается в том, чтобы дать системе топливного впрыска транспортного средства возможность осуществление синхронного функционирования системы зажигания и топливных форсунок.

Устройство датчика коленчатого вала совсем простое и состоит из: капронового каркаса, обмотанного медным проводом, который крепится на стальном сердечнике. Сам провод изолирован эмалью. Герметическую роль играет компаундная смола. В период своей непосредственной работы датчик и подает сигналы электронному блоку управления о положении и всей работе коленвала.

Проблемы и поломки с датчиком положения коленчатого вала лишают топливную систему возможности установления всех важнейших вышеуказанных характеристик. Именно поэтому следует знать о том, как самостоятельно проверять исправность датчика коленчатого вала.

Контроль частоты вращения зубчатого колеса обычным индуктивным датчиком

Задачу контроля частоты вращения зубчатого колеса можно решить с помощью обычного индуктивного датчика. Для этого нужно знать максимальную рабочую частоту оперирования датчика, частоту вращения зубчатого колеса и число его зубьев. Для правильного определения рабочей частоты датчика необходимо определить частоту воздействия на него зубчатого колеса.

Решение возможно с помощью простой формулы: m x n / 60= ƒ (Гц) где m — число зубьев, а n — частота вращения об/мин.

Например, ВТИЮ.1605.

Ту же задачу с помощью индуктивных датчиков «ТЕКО» можно решать в специфических условиях эксплуатации. Например, возможно внедрение индуктивного датчика ISBm WC48S8-31N-1,5-250-LZR14-1H-V в редуктор для контроля частоты вращения вала. Датчик безотказно и долго работает в условиях непрерывной вибрации и попадания брызг масла. Это возможно за счет герметичного и вибростойкого корпуса. Таким образом с помощью индуктивного бесконтактного выключателя Вы предотвращаете вероятность аварии, которая может случиться из-за сбоя в скорости вращения вала.

Гарантия на прибор — 2,5 года

Конструкция и общий принцип работы автомобильного сенсора оборотов

При рассмотрении вопроса, какой датчик отвечает за обороты двигателя во всех аспектах, надо отметить, что это группа сенсоров. А именно: холостого хода (ДХХ), дроссельной заслонки (ДПДЗ), распредвала (ДПРВ), расхода воздуха (ДМРВ), рециркуляции газов. Но именно считает частоту оборотов для нормальной работы системы зажигания ДПКВ. В целом признаки поломки общие для него и перечисленных детекторов, но есть характерный только для измерителя синхронизации признак: часто именно при его поломке автомобиль вообще не заводится.

На Toyota:

Алгоритм функционирования ДПКВ в своей основе схож для всех его типов. Основывается на мониторинге изменений в создаваемой им же среде (магнитополе, индукция, оптические явления), которые провоцирует специальная ответная зубчатая часть коленвала (диск с выступами, реперный, синхронизации).

Рассмотрим этапы работы автомобильного ДЧВ в несколько обобщенном виде:

  1. Коленвал имеет специальный зубчатый (реперный) диск. На месте двух зубцов (стартового, нулевого) пустое место, без них выступов 58, они расположены по окружности через каждые 6°.
  2. Колесо крутится, выступы проходят через магнитное поле, оптические или другие импульсы, посылающиеся сенсором в зависимости от его типа, изменяют их.
  3. Прибор отслеживает указанные модификации среды, передает их на ЭБУ машины.
  4. При прохождении детектора мимо участка без двух зубцов характер импульсов фиксируется как сигнал, уведомляющий о начальном положении КВ. Таким образом сенсор различает полный оборот.
  5. Компьютер электронного управления системой автомобиля на основании показателей от ДПКВ узнает о размещении коленвала и все необходимые данные, производит вычисления, направляет сигналы в исполнительные узлы, работа системы зажигания, впрыска корректируется, мотор работает стабильно.

Наиболее ярко охарактеризовать работу датчика синхронизации можно на примере индуктивной его разновидности. При вращении сигнального колеса (во время работы ДВС) его выступы задевают магнитное поле ДПКВ. Создаются периодические импульсы напряжения, характеризующие частоту движения и положение КВ, поступающие на контроллер ЭБУ, который и рассчитывает момент для сработки модуля зажигания и форсунок.

Надо сказать, что такой алгоритм характерный в своей основе для всех типов датчиков положения коленвала: зубчики изменяют чувствительную среду, создающуюся ДПКВ, что и отслеживает через него ЭБУ.

Ниже рассмотрим виды ДПКВ и их нюансы.

Суть идеи измерения частоты вращения электродвигателя

На шкив двигателя крепим постоянный магнит, напротив магнита помещаем датчик Холла, выход датчика Холла подключаем к линейному входу звуковой карты компьютера. Возникающий сигнал в датчике при попадании его в магнитное поле постоянного магнита записываем программой звуковой редактор (я использовал программу Nero Wave Editor из комплекта Nero6).

Затем из записанного фрагмента выбираем промежуток в одну секунду и подсчитываем количество импульсов, после чего умножаем на 60 и получаем количество оборотов двигателя в минуту.

В качестве был использован аналоговый SS495A. Магнит был прикреплен несколькими оборотами изоленты. Желательно чтобы расстояние между датчиком и магнитом было минимальным.

В рабочей практике происходит множество процессов, которые требуют подсчета частоты вращения или следования объектов. Например, это обязательный контроль частоты вала ленточного транспортера, привода крыльчатки бетономешалки, частоты следования ковшей нории, частоты вращения шестерни коробки передач.

От выполнения этих задач зависит производительность оборудования, поэтому Вы стараетесь выбирать надежные и долговечные инструменты для их решения:

  • проверенные опытным путем
  • с гарантией качества
  • по выгодным, стабильным ценам
  • и с возможностью срочной/бесплатной доставки.

В «ТЕКО» Вы получите полный спектр выгод и широкий выбор инструментов для подсчета частоты.

Необходимый материал и инструмент для ремонта двигателя стиральной машинки

Давайте разделим на две группы. В первую отнесем, что точно Вам понадобится при любом ремонте электродвигателя стиральной машины автомат, а во вторую дополнительные инструменты которые понадобятся, если, что-то пойдет не так как планировали.

Гарантированно потребуется для ремонта машины:

  1. Отвертка с индикацией;
  2. Пара отверток (крестовая ,плоская, звездочка) (Пример для замены щеток);
  3. Набор гаечных ключей;
  4. Мультиметр;
  5. Пассатижи (Плоскогубцы);
  6. Паяльник;
  7. Фонарь или переносная лампа;

Рекомендовано иметь следующий инструмент:

  • Пинцет-кусачки;
  • Клещи для хомутов;
  • Линейка;
  • Молоток (обычный и деревянный);
  • Металлический сервисный крюк;
  • Небольшая газовая горелка;
  • Длинный стержень с зеркалом на конце (позволяет осмотреть труднодоступные области автомата);
  • Клещи, служащие для запрессовки контактов в разъемы;
  • Магнит;
  • Съемник для подшипников СМА;
  • Шуруповерт;
  • Дрель.

Расходные материалы.

Когда, что-то делаешь лучше быть готовым к большему, чем планировал. Особенно это хорошо если делаешь работу не у себя дома (в селе у родных, у друзей в городе и т.д.), а стиральная машина — всегда полна сюрпризов и подключение ее может быть не таким простым

  • Герметик желательно силиконовый;
  • Клей на водостойкой основе;
  • Термоусадочная трубка и/или изолента;
  • Резинки для прокладок;
  • Хомуты;
  • Смазка (WD-40 или аналоги);
  • Для автомат стиральных машин от LG — берите сразу же датчик Холла. В 90% — вышел из стоя именно он.

Что такое электродвигатель?

Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.

Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока

P = U х I,

где P – мощность, U – напряжение, I – сила тока.

Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.

Диагностика

Признаки поломки датчика числа оборотов свойственные и неполадкам многих других узлов, что обуславливает необходимость комплексной диагностики ДВС.

Самый простой способ, показывающий результат со стопроцентной точностью, — использовать диагностический сканер, подключаемый к разъему ODBII который есть в каждом современном автомобиле с ЭБУ. Прибор считает ошибки, покажет код поломки, который расшифровывается в спецификации конкретной марки.

Первым делом осматривают сам датчик количества оборотов ДВС автомобиля. Если замечены следы грязи, стружки на торце, отошедшие контакты и крепление, производят чистку, устанавливают прибор должным образом. Затем — подключить сканер, считать им коды. Цифровая комбинация неисправности именно ДПКВ часто PO335 или 0336 в зависимости от наличия сигнала от узла. Могут быть иные варианты для конкретной модели авто, например, в буфере ошибок может отобразиться код 35 или 19.

При обнаружении ошибок их удаляют из памяти ЭБУ и проводят тест-драйв — так проверят, появятся ли они снова. Если есть повторное выявление сбоев, приступают к анализу непосредственного самого детектора синхронизации оборотов иными способами.

Принцип управления

При задании скорости вращения вала двигателя резистором в цепи вывода 5 на выходе формируется последовательность импульсов для отпирания симистора на определенную величину угла. Интенсивность оборотов отслеживается по тахогенератору, что происходит в цифровом формате. Драйвер преобразует полученные импульсы в аналоговое напряжение, из-за чего скорость вала стабилизируется на едином значении, независимо от нагрузки. Если напряжение с тахогенератора изменится, то внутренний регулятор увеличит уровень выходного сигнала управления симистора, что приведёт к повышению скорости.

Микросхема может управлять двумя линейными ускорениями, позволяющими добиваться требуемой от двигателя динамики. Одно из них устанавливается по Ramp 6 вывод схемы. Данный регулятор используется самими производителями стиральных машин, поэтому он обладает всеми преимуществами для того, чтобы быть использованным в бытовых целях. Это обеспечивается благодаря наличию следующих блоков:

  • Стабилизатор напряжения для обеспечения нормальной работы схемы управления. Он реализован по выводам 9, 10.
  • Схема контроля скорости вращения. Реализована по выводам МС 4, 11, 12. При необходимости регулятор можно перевести на аналоговый датчик, тогда выводы 8 и 12 объединяются.
  • Блок пусковых импульсов. Он реализован по выводам 1, 2, 13, 14, 15. Выполняет регулировку длительности импульсов управления, задержку, формирования их из постоянного напряжения и калибровку.
  • Устройство генерации напряжения пилообразной формы. Выводы 5, 6 и 7. Он используется для регулирования скорости согласно заданному значению.
  • Схема усилителя управления. Вывод 16. Позволяет отрегулировать разницу между заданной и фактической скоростью.
  • Устройство ограничения тока по выводу 3. При повышении напряжения на нем происходит уменьшение угла отпирания симистора.

Использование подобной схемы обеспечивает полноценное управление коллекторным мотором в любых режимах. Благодаря принудительному регулированию ускорения можно добиваться необходимой скорости разгона до заданной частоты вращения. Такой регулятор можно применять для всех современных двигателей от стиралок, используемых в иных целях.

https://youtube.com/watch?v=yLHAaZTr0hQ

Разновидности двигателей

В настоящее время рынок стиральных машин представлен 3 типами двигателей:

  • асинхронный (устаревший);
  • коллекторный (самый популярный);
  • инверторный (самый современный).

При этом у всех двигателей есть преимущества, недостатки и отличительные технические особенности.

Асинхронный двигатель

Такие моторы бывают трех- и двухфазными, но последние практически не выпускаются в настоящее время. Они состоят из ротора и статора. Вращение обеспечивает ремень, соединенный с барабаном. Мотор может обеспечить до 2,8 тыс. оборотов в минуту.

Преимущества асинхронных двигателей:

  • невысокая цена;
  • простота ремонта и обслуживания;
  • низкий уровень шума во время работы.

Для ухода за двигателем достаточно менять подшипники, а также периодически обновлять смазку.

Стоит отметить, что в современных стиралках данный тип двигателей не используется из-за малого КПД и трудного управления электросхемами. Их применяют разве что в бюджетных моделях.

Коллекторный двигатель

Данный вид двигателя используется в большинстве стиральных машин. Он состоит из алюминиевого корпуса, нескольких щеток, а также ротора, статора и тахометра.

В моторе может располагаться 4, 5 или даже 8 выводов. Щетки необходимы для обеспечения контакта между мотором и ротором.

Двигатель находится внизу конструкции и соединяется со шкивом при помощи ремня. Отсюда и вытекает основной минус этого двигателя − сильная изнашиваемость некоторых элементов, приводящая к поломке стиральной машинки.

Инверторный двигатель

Инвертор представляет собой крышку, оборудованную магнитами и обоймой с катушками. Ключевой особенностью данного типа двигателей является отсутствие щеток и ремня передачи, поскольку инвертор интегрирован непосредственно в барабан.

Существуют 2 способа размещения магнитов ротора: внутри статора и снаружи. В стиральных машинах используется последний тип. Во время работы двигателя напряжение подается на обмотки, проходя преобразование в инверторный вид.

Благодаря этим особенностям, появляется возможность контролировать и изменять скорость оборотов.

Среди преимуществ данной технологии выделяют следующие:

  • простота конструкции;
  • небольшие габариты;
  • отсутствие быстроизнашивающихся деталей;
  • невысокое энергопотребление;
  • низкий уровень шума при работе;
  • минимальная вибрация при отжиме.

Инверторному двигателю для работы не нужно преодолевать силу трения. Данная особенность уменьшает расходы на электроэнергию. Однако уровень экономии невелик (около 5%).

Методы проверки ДПКВ

Перед тем как мы перейдем к описанию способов анализа, порекомендуем очень простой выход из ситуации. Варианты проверки датчика оборотов не всегда покажут стопроцентный результат, отображая лишь некоторые свойства изделия. Самым практичным решением будет, если пользователь одолжит аналогичный сенсор синхронизации у знакомых, поставит его и если автомобиль будет работать без проблем, то логично — поломка именно в нем.

Рассмотрим способы анализа датчика положения коленвала от простого к сложному. Осмотр и применение сканера ODBII мы описали выше. Надо сказать, что сенсоры оборотов моторов сами по себе ломаются чрезвычайно редко из-за простоты конструкции. Чаще причины поломки для ДПКВ это механические повреждения, например, когда изделие задето инструментами при ремонте автомобиля, а также попадание сторонних предметов между реперным диском и сенсором.

При проверке мультиметром сопротивления можно не снимать ДПКВ. Но удобнее будет его демонтировать. Перед снятием отмечают и запоминают исходное положение изделия

Чтобы избежать раскалибровки, важно маркером отметить позицию, сделать фото смартфоном. Далее, снимают клемму с аккумулятора автомобиля и вынимают детектор — отстегивают кабель контроллера/питания, болтики крепления откручивают

Анализ датчика коленвала омметром

Данный способ проверки применяется для индуктивных сенсоров синхронизации и положения коленвала, то есть для тех, которые имеют катушку, индуцирующую магнитную среду. Замеряется её сопротивление. Надо перевести мультиметр в режим замера указанной величины на отметку 200 кОм, можно аналогично воспользоваться омметром. К контактам катушки (к клеммам датчика на его пластиковой фишке, туда же подсоединяется кабель контроллера/питания) прикасаются щупами, полярность не имеет значения.

Значение сопротивления прописывается в спецификации сенсора (вся информация есть не только в бумажной инструкции, но и в интернете), обычно оно в пределах 500–700 или 800–900 Ом.

Минус данного метода в том, что сломанными могут быть и иные части детектора коленвала, проверку которых он не охватывает.

Комплексная проверка с анализом индуктивности

Комплексный метод, о котором пойдет речь, также применяется к ДПКВ, работающим на основе принципа индуктивности.

Процедура включает вышеописанный способ и ряд других действий, главные из которых — анализ индуктивности.

Порядок действий:

  1. Мультиметром замеряют сопротивление, как описано выше.
  2. Для замеров индуктивности витков потребуется спецприбор «измеритель индуктивности», Нормальное значение — 200–400 мГц. Анализ можно провести и мультиметром, но к нему придется купить или изготовить (в сети есть множество описаний) специальную приставку.
  3. Мегаомметром измеряют сопротивление изоляционной обмотки между концами детектора. При напряжении 500 В не должно быть выше 20 мОм.
  4. Размагнитить сетевым трансформатором или иным способом катушку, реперный диск. Если же и после этого будет наблюдаться поломка, то потребуется замена ДПКВ.

Индуктивные датчики скорости вращения

Конструкция и принцип действия Датчик монтируется прямо напротив ферромагнитного зубчатого колеса (поз. 7) с определенным воздушным зазором. Он имеет сердечник из магнитомягкой стали (полюсный контактный штифт, поз. 4) с обмоткой (5). Полюсный контактный штифт соединен с постоянным магнитом (1). Магнитное поле распространяется через полюсный контактный штифт, проходя в зубчатое колесо. Магнитный поток, проходящий через катушку, зависит от того, попадает ли расположение датчика напротив впадины или зуба колеса. Зубец соединяет в пучок магнитный поток рассеяния, исходящий от магнита. Через катушку происходит усиление сетевого потока. Впадина, наоборот, ослабляет магнитный поток. Эти изменения магнитного потока при вращении зубчатого колеса индуцируют в катушке синусоидальное выходное напряжение, пропорциональное скорости изменения и числу оборотов двигателя. Амплитуда переменного напряжения интенсивно возрастает с увеличением числа оборотов (несколько мВ… > 100 В). Достаточная амплитуда присутствует, начиная с минимального числа оборотов от 30 в минуту.

Плавный запуск двигателя с фазным ротором

Система плавного разгона электродвигателя с фазным ротором работает автоматически. Оператор нажимает кнопку «Пуск», дальше автоматика все делает сама.

Главный контактор подключает к трехфазному напряжению обмотку статора. Двигатель начинает вращение с минимально возможной скоростью, так как в цепь его ротора включены резисторы с максимально возможным сопротивлением.

Через фиксированную задержку, формируемую реле времени, включается первый контактор, шунтирующий первую секцию сопротивлений в цепи ротора. Скорость вращения немного возрастает. Проходит еще время, второе реле времени запускает следующий контактор. Шунтируется следующая секция сопротивлений, ток в цепи ротора возрастает, скорость вращения – увеличивается. И так далее, до полного исключения всех сопротивлений из цепи ротора. При этом электродвигатель выходит на номинальные обороты.

Советуем изучить — Характеристики и пусковые свойства синхронных двигателей


Схема плавного пуска асинхронного электродвигателя с фазным ротором

Число ступеней разгона выбирается из условий тяжести запуска. Разгон получается не таким уж плавным, ток в статоре возрастает ступенями. При старте и переходе на каждую последующую ступень, электродвигатель все равно потребляет пусковой ток, хоть и меньшего значения.

Этого недостатка лишены электродвигатели, для разгона которых используются жидкостные пускатели (или стартеры). В них в качестве резистора используется жидкость с высоким удельным сопротивлением. Это – дистиллированная вода с растворенной в ней специальной солью. Уменьшение сопротивления достигается за счет уменьшения расстояния между электродами, помещенными в эту жидкость. Электроды приводятся в движение небольшим электродвигателем через червячную передачу. За счет этого уменьшение сопротивления в цепи ротора и разгон электродвигателя происходят плавно.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C!  Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла.

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

где

Supply Voltage — напряжение питания датчика

Ground — земля

Voltage Regulator — регулятор напряжения

А — операционный усилитель

Hall Sensor — собственно сама пластинка Холла

Output transisitor Switch — выходной переключающий транзистор (транзисторный ключ)

Как проверить исправность двигателя своими руками

Поскольку сегодня используются только коллекторные и инверторные моторы, рассмотрим пути диагностики на их примере.

Прямоприводной тип

Проверить его исправность в домашних условиях сложно. Можно использовать системное тестирование, если оно предусмотрено в вашей модели стиралки. Также самодиагностика может выдавать код неисправности на дисплее машины. Расшифровав код, вы поймете, в чем проблема и стоит ли обращаться в мастерскую.

Если вы все-таки решите снять двигатель, делайте это правильно:

  • Отключите стиральную машинку от питания.
  • Снимите заднюю крышку, выкрутив болты по периметру.
  • Под ротором двигателя расположены винты, которые крепят проводку. Их нужно выкрутить.
  • Выкрутите центральный болт, удерживающий ротор. Для этого используйте головку на 16 (для модели LG).
  • При откручивании болта второй рукой удерживайте ротор, чтобы он не вращался.
  • Снимите сборку ротора.
  • За ней расположена сборка статора, которую удерживают 6 болтов.
  • Для их выкручивания возьмите головку на 10.
  • Отсоедините разъемы проводки от статора.

Можно начинать осмотр и проверить работоспособность двигателя.

Коллекторный тип

Существует несколько способов проверки коллекторного двигателя. Но сначала достаньте мотор из корпуса:

  • Снимите заднюю крышку СМА.
  • Отсоедините провода от двигателя.

Открутите болты и вытащите мотор из корпуса.

Приступите к диагностике. Соедините провода обмотки статора и ротора, как указано на схеме ниже. Затем подключите обмотку к электричеству 220 Вольт. Если ротор начал вращаться, считается, что прибор исправен.

В данном методе есть недостатки. Во-первых, вы не сможете точно подтвердить функциональность двигателя, особенно как он будет работать в разных режимах. Во-вторых, прямое подключение грозит испортить мотор, если его замкнет.

Исходя из сказанного выше, в данную схему можно включать балласт, который служит защитой. В качестве балласта можно использовать ТЭН от стиралки. Подключение согласно схеме:

В таком случае при замыкании элемент начнет нагреваться, защищая двигатель от сгорания.

Поскольку коллекторный мотор состоит из нескольких элементов, их все нужно проверить.

Электрические щетки

По бокам корпуса мотора находятся две щетки. Поскольку выполняются они из мягкого материала, со временем они стирается. Достаньте щетки из корпуса и, если они изношены, установите новые детали.

Узнать, что со щетками проблема, можно при подключении двигателя. Если вы соединили его проводку с сетью, а при вращении он начал искрить, значит, дело в электрощетках.

Купить новые элементы вы можете в магазине, показав старые щетки либо назвав модель машины.

Проблема в ламелях

Через ламели посредством щеток передается электричество к ротору. Поскольку ламели крепятся на клей к валу, при заклинивании мотора они могут отслаиваться. С небольшими отслоениями можно справиться при помощи токарного станка, проточив коллекторы. Стружка тщательно вычищается мелкой шкуркой.

При осмотре ламелей обращайте внимание на отслоения и заусенцы, которые указывают на неполадки в работе

Обмотки ротора и статора

При проблемах с обмоткой двигатель СМА становится менее мощным, либо вообще прекращает работать. Происходит это потому, что в обмотках возникает замыкание, мотор сильно перегревается и срабатывает термистор, который отключает его для безопасности.

Проверить обмотки можно мультиметром. Настройте его в режим измерения сопротивления. Прикладывайте щупы мультиметра к ламели, как показано на картинке. В норме показатели должны быть от 20 до 200 Ом. Если сопротивление меньше – это замыкание. Если больше – обрыв обмотки.

Чтобы проверить статор, включите на мультиметре режим зуммера и по очереди прикладывайте щупы к концам проводки. Если прибор молчит, не издавая сигнала, значит, все в порядке.

Чтобы найти место замыкания, один щуп мультиметра подсоедините к проводке, другой к корпусу. В норме не должно быть никаких звуков.

Если вы нашли поломку, не пытайтесь проводить самостоятельный ремонт. Для этого нужно заново создавать обмотку. В данном случае проще заменить электродвигатель.

Как видно, проверить двигатель своими руками несложно. В некоторых случаях вы сможете самостоятельно отремонтировать двигатель или обратиться в сервисный центр.

Датчик абсолютного давления воздуха (ДАД)

Конструктивно представляет собой четыре резистора с индивидуальным параметром сопротивления и соединением с помощью так называемого моста.

Все элементы клеятся на диафрагму, которая тянется или сжимается с учетом давления воздуха на трубопроводе впуска.

Назначение устройства состоит в контроле давления на впуске с учетом частоты работы коленвала и текущей нагрузки.

Механические параметры преобразуются в электрические и направляются в ЭБУ. В свою очередь, блок управления принимает решение о времени подачи горючего в камеру сгорания и угле опережения.

При этом место монтажа ДАД является, как правило, впускной тракт. В некоторых моделях расположение может быть иным.

Признаки неисправности ДАД:

  • «плавание» ХХ;
  • ухудшение динамических параметров;
  • увеличение прожорливости силового агрегата;
  • уменьшение мощности мотора;
  • сильный запах бензина возле заслонки дросселя;
  • трудности с запуском двигателя;
  • появление ошибок Р 0105/0106/0107/0108/0109;
  • провалы при начале движения, переключении скоростей, перегазовке.

К возможным причинам поломки датчика давления воздуха стоит отнести:

  • плохое качество соединения входного штуцера и ДАД;
  • обрыв «минуса»;
  • загрязнение трубопровода;
  • повреждение датчика температуры;
  • поломка внутри датчик;
  • разгерметизация вакуумной трубки.

Для проверки ДАД измерьте сопротивление между 13-й ножкой ЭБУ и первым контактом датчика. Нормальный параметр около 1-2 Ом.

Также нужно подключиться к 3-му контакту ДАД и 50-й клемме блока. Нормальное напряжение — около 5 В.

Определение мощности по габаритам

Итак, частоту вращения мы узнали, переходим к самой мощности. Для этого вам нужно измерить габаритные размеры движка.

Что сюда входит?

диаметр вала

длина вылета вала

его высота над лапами (высота оси вращения)

расстояние между лапами (длина, ширина)

Если у вас движок фланцевый, в этом случае необходимо сделать:

замер диаметра фланца

а также диаметр самих отверстий на фланце

Для более точных замеров используйте штангенциркуль, а не линейку. Получив и записав результаты, переходим к заводским табличным данным. Вот эти параметры:

Таблица 1 – Определение мощности по валу двигателя

Таблица 2 – Определение мощности по расстоянию между лапами

Таблица 3 – Определение мощности по диаметру фланца

Сравнив полученные цифры с табличными данными, вы без какого-либо подключения к эл.сети узнаете мощность вашего движка.

Экономическое обоснование эффекта от инвертора

Время окупаемости инвертора рассчитывается отношением затрат на покупку к экономии энергии. Экономия обычно равна от 20 до 40% от номинальной мощности мотора.

Затраты снижают факторы, повышающие производительность частотных преобразователей:

  1. Уменьшение затрат на обслуживание.
  2. Повышение ресурса двигателя.

Экономия рассчитывается:

где Э – экономия денег в рублях;

Р пч – мощность инвертора;

Ч – часов эксплуатации в день;

Д – число дней;

К – коэффициент ожидаемого процента экономии;

Т – тариф энергии в рублях.

Время окупаемости равно отношению затрат на покупку инвертора к экономии денег. Расчеты показывают, что период окупаемости получается от 3 месяцев до 3 лет. Это зависит от мощности мотора.

Старые и бывшие в использовании асинхронные машины советского производства считаются наиболее качественными и долговечными. Однако, как известно многим электромеханикам, шильдики на них могут быть абсолютно нечитабельными, да и в самом двигателе мог быть перемотан. Определить номинальную частоту вращения можно по количеству полюсов в обмотке, но если речь идет о машинах с фазным ротором или разбирать корпус нет желания, можно прибегнуть к одному из проверенных методов.

Как влияет датчик скорости на работу двигателя

Исправный датчик скорости передает сигнал в контроллер, который в свою очередь отправляет данные о текущей скорости в электронный блок управления двигателем. На основании этих данных осуществляется расчет подачи топлива и, если водитель убирает ногу с педали газа, подача топлива резко уменьшается, что позволяет двигателю расходовать его достаточно рационально. Возникающие неисправности с датчиком приводят к тому, что блок управления не получает необходимой информации.

При этом, ЭБУ устанавливает текущие обороты на значение 1500/мин и деактивирует режим отсечки подачи топлива. Все это приводит к существенному перерасходу топлива, а также к неравномерной работе самого двигателя, который работает с рывками. Для справки — работающий режим отсечки подачи топлива помогает экономить до 2-х литров горючего при движении в городской черте.
Кроме этого, датчик скорости влияет на корректное переключение передач автоматической коробкой. Если он неисправен, не будет работать круиз-контроль, а на некоторых моделях авто будут отмечаться и перебои в работе электроусилителя руля.

Совет!
Если внезапно начались подергивания стрелки спидометра или тахометра, важно сразу же проверить состояние тросика, поскольку промедление может привести к необходимости замены самого устройства

Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.


Переподключение пусковой намотки

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: