Источники тока химические. виды химических источников тока и их устройство

Химические источники тока (хит): характеристики, применение

Их переработка

Полезные ископаемые требуют переработки для дальнейшего использования и получения необходимых продуктов.

Переработка нефти

В сыром виде данный ресурс не применяется. Переработка может быть первичной и вторичной.

1. Первичная переработка–заключается в ректификации нефти, путем ее нагревания, не приводящая к химическим изменениям вещества. В процессе повышения температуры улетучиваются сначала легкокипящие элементы, затем требующие более высокой температуры.

Схема ректификационной колонны

На подготовительном этапе требуется очитка нефти от воды, солей и твердых механических частиц. Далее вещество поступает в трубчатую печь, где подвергается нагреванию до 350 °С. Горячий состав перемещается в нижнюю часть ректификационной колонны, в которой осуществляется испарение отдельных фракций на разные уровни, в зависимости отих температуры кипения:

  • ректификационные газы (верхняя часть,  температура кипения не более 40 оС);
  • бензиновая фракция (35 -200 оС);
  • лигроиновая фракция (150 — 250 оС);
  • керосиновая фракция (190 — 300 оС);
  • дизельную фракцию (200 -300 оС);
  • мазут (нижняя часть колонны, температура кипения более 350 оС).

2. Вторичная: крекинг и риформинг – необходимы для повышения выхода после переработки более дорогих и качественных фракций.

Крекинг – способ обработки мазута путем нагревания с совместным воздействием катализатора, для увеличения выхода бензиновой фракции.

Риформинг – направлен на улучшение качественных характеристик бензиновой фракции путем реакций дегидроциклизации.

Переработка природного газа

Содержание примесей в природном газе затрудняет его дальнейшую транспортировку и использование. В связи с этим он подвергается переработке:

  1. Сушке – для удаления серы и воды.
  2. Переработка производственным методом  в целях придания товарного вида:
    • термохимическим способом – при высокой температуре и давлении;
    • физико-энергетическим – охлаждением или нагреванием ресурса для его сжатия и деления;
    • химико-каталитическим – методом парциального окисления  или паровой, углекислой конверсии.

В результате процессов образуются вещества:  источники энергии и химические продукты (аммиак, уксусная кислота, метонол и др.).

Соединение химических источников питания

Электрические цепи постоянного тока
  • Электрический ток
  • Электрическая цепь и ее элементы
  • Закон Ома
  • Электрические сопротивле ние и проводимость
  • Зависимость сопротивления от температуры
  • Проводниковые материалы
  • Работа и мощность
  • Преобразование электричес кой энергии в тепловую
  • Электрическая нагрузка проводов и защита их от перегрузки
  • Потеря напряжения в проводах
  • Первый закон Кирхгофа
  • Последовательное соеди нение сопротивлений
  • Параллельное соединение сопротивлений
  • Смешанное соединение сопротивлений
  • Два режима работы источника питания
  • Второй закон Кирхгофа
  • Расчет сложных цепей
  • Химические источники питания
  • Соединение химических источников питания
  • Нелинейные электрические цепи
• Обзор сайта •
  • Электрооборудование до 1000 В
  • Электрические аппараты
  • Электрические машины
  • Эксплуатация электро оборудования
  • Электрооборудование электротехнологических установок
  • Электрооборудование общепромышленных установок
  • Электрооборудование подъемно-транспортных установок
  • Электрооборудование металлообрабатывающих станков
  • Электрооборудование выше 1000 В
  • Электрические аппараты высокого напряжения
  • Электротехника
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока
  • Электромонтаж
  • С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
  • Монтаж электропроводки
  • Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
  • Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
  • Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
  • Электромонтаж и заземле ние розеток
  • Электромонтаж уравнива ния потенциалов
  • Электромонтаж контура заземления
  • Электромонтаж модульного штыревого контура заземле ния
  • Электромонтаж нагреватель ного кабеля для подогрева полов
  • Электромонтажные работы по прокладке кабеля в зем ле
  • Электричество в частном доме
  • Проект электроснабжения
• Электротехника •
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

Если напряжение и ток, необходимые для питания потребителей, превышают соответствующие величины одного источника питания, то применяется соединение нескольких источников в батарею для совместнои работы. Элементы, соединяемые в батарею, должны иметь одинаковые э. д. с. Е0 и одинаковые внутренние сопротивления r0. Последовательное соединение элементов (рис. 2-16) применяется в том случае, если ток потребителя не превышает номинальный ток одного элемента, а напряжение потребителя U больше э. д. с. элемента (E0). В этом случае число элементов n, соединенных последовательно, определяется отношением n >= U/E0 . При одинаковом направлении э. д. с, для чего отрицательный зажим одного элемента должен соединяться с положительным зажимом следующего и т. д., э. д. с. батареи в n раз больше э. д. с. элемента:

внутреннее сопротивление батареи

Разрядный ток батареи равен разрядному току элемента.

Параллельное соединение элементов (рис. 2-17) применяется в том случае, если напряжение потребителя U равно напряжению элемента U0, а сила тока потребителя I значительно больше разрядного тока элемента Iр. В этом случае число элементов m, соединенных параллельно, определяется отношением m >= I/Iр. При этом способе соединения положительные зажимы всех элементов соединяются в один узел, а отрицательные зажимы — в другой, таким образом, э. д. с. батареи E равна э. д. с. Е0 каждого элемента:

внутреннее сопротивление батареи

разрядный ток батареи в m раз больше разрядного тока элемента:

Групповое соединение — это сочетание последовательного и параллельного соединений элементов (рис. 2-18). Оно применяется в тех случаях, когда напряжение и ток потребителя больше номинального напряжения и тока элемента. Число последовательно соединенных элементов n в группе и число параллельных групп m определяются по ранее приведенным формулам.

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Превращение энергии излучения в электрическую

Рассмотрим еще одно интересное превращение энергий. Возьмем пластину из кремния (или оксида меди, селена). Направим на нее включенную лампу (рисунок 6).

Рисунок 6. Превращение энергии излучения в электрическую

Опять мы увидим, что по проводнику течет ток. При этом у пластины происходит потеря отрицательного электрического заряда, она теряет электроны.

Так энергия излучения (свет от лампы) переходит в электрическую. Это явление называется фотоэффектом, а такой источник тока — фотоэлементом.

Термоэлементы и фотоэлементы вы более подробно изучите в старших классах. 

{"questions":,"answer":}}}]}

Отходы производства и потребления – это: определение понятий, главные отличия

Чтобы определить, к какой категории относят отработанные вещества, изделия, нужно разобраться с теорией:

  • отходы производства – это материалы, утратившие первоначальные свойства в процессе изготовления продукции на предприятиях, которые относятся к определенной форме бизнеса (ЮЛ, ИП);
  • отходы потребления – мусор, который остается в результате предоставления услуг, жизнедеятельности человека.

Классификация отходов производства облегчает задачу по определению вида отработанных материалов. Основные критерии:

  • способ образования (сфера деятельности организации, в которой получен мусор);
  • этап технологии, на котором остаются невостребованные материалы;
  • агрегатное состояние;
  • степень вреда (категория определяется по классификатору ФККО);
  • количество изделий, объем материалов;
  • пригодность для дальнейшей переработки, включая возможность производства вторсырья для изготовления новой продукции.

Понять, какие из отработанных материалов могут относиться к производственным, а какие – к бытовым отходам, можно, благодаря характерным особенностям. Так, первую группу представляют изделия, вещества однородной структуры, их не нужно сортировать. Для сравнения, к отходам потребления (бытовым) относятся разнородные материалы. Они смешаны, т. к. пока не действует система сортировки отходов.

Производственный утильОтходы потребления

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Вам это будет интересно Средства защиты от статического электричества

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства

Общие сведения

Электрический ток — упорядоченное движение заряженных частиц под действием приложенной к веществу силы. Любой материал состоит из элементарных носителей заряда. В качестве их выступает атом, состоящий из протонов, нейтронов и вращающихся по орбитали электронов. Все эти частицы обладают энергией. Атомный заряд считают положительным, а электронный — отрицательным.

В нормальном состоянии, когда на физическое тело не действуют дополнительные силы, энергетическое состояние вещества находится в состоянии равновесия. Количество электронов равняется числу протонов. Силы взаимодействия (кулоновские) не дают частицам разорвать связь, поэтому электрон не может покинуть свою орбиталь. Но вместе с тем в кристаллической решётке существуют и свободные носители. Это частицы, не имеющие связей с атомом. Каждая из них обладает определённым количеством энергии.

Если же к телу приложить силу, которая позволит упорядочить направление движения электронов, появится электроток. Генераторами энергии служат источники тока. Чтобы появилось направленное движение частиц, электрическая цепь, к которой подключается генератор, должна быть замкнутой. Кроме этого, нужен приёмник, потребляющий вырабатываемый ток. Суть работы источника силы заключается в следующем:

  • устройство потребляет энергию любого вида, например, тепловую, механическую;
  • из-за различных внутренних процессов материя преобразуется в электричество;
  • под действием напряжения (электрического поля) электроток начинает поступать в нагрузку.

Источник тока — устройство, в котором сила энергии не зависит от напряжения. Другими словами, вне зависимости от разницы потенциалов, возникающей на нагрузке, число носителей заряда, проходящих по проводнику, не изменяется. Обозначают прибор на принципиальных схемах кружком, внутри которого рисуют стрелку, указывающую направление протекания тока. Устройство является двухполюсным, поэтому на схеме показывают и выводы генератора в виде прямых линий.

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.


Аккумулятор

Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.


Батарейка

Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.


Механический принцип устройства

Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Тепловое устройствоВажно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.


Идеальный и реальный

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.


Источники

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Вторичный химический источник — ток

Вторичные химические источники тока допускают многократное их использование — аккумуляторы. Анод аккумулятора при разрядке служит катодом при зарядке. Наиболее распространены свинцовый ( кислотный) и железо-никелевый ( щелочной) аккумуляторы.

Вторичные химические источники тока, действие которых основано на использовании обратимых электрохимических систем. Под обратимыми электрохимическими системами понимают такие, в которых вещества, образовавшиеся в процессе разряда, могут быть превращены в первоначальные активные вещества.

Вторичные химические источники тока допускают многократное их использование — это аккумуляторы. Анод аккумулятора при разрядке служит катодом при зарядке.

Распространяется на первичные и вторичные химические источники тока. Устанавливает требования безопасности к конструкции источников тока.

Противоэлемент — это вторичный химический источник тока, практически не имеющий полезной емкости и используемый для встречного включения в цепь аккумуляторной батареи с целью регулирования ее напряжения.

Настоящий стандарт распространяется на первичные и вторичные химические источники тока.

Стартерные свинцовые аккумуляторные батареи являются вторичными химическими источниками тока. Заложенные в них активные вещества используются многократно.

Свинцовые аккумуляторы пользуются наибольшим спросом среди вторичных химических источников тока. Многообразие их электрических и эксплуатационных параметров в зависимости от назначения обеспечивается прежде всего различием технологии и конструкции электродных пластин. Наибольшее распространение получили стартерные аккумуляторы с пастиро-ванными пластинами, которые изучаются в предлагаемой лабораторной работе.

Группу щелочных аккумуляторов с окисно-никелевым электродом составляют вторичные химические источники тока трех систем: никель-железный ( сокращенно HJK), никель-кадмиевый ( сокращенно НК) и никель-цинковый. Последний обладает рядом существенных недостатков и прежде всего — малым сроком службы ( меньше 200 циклов) и большим саморазрядом ( до 90 % за месяц), поэтому в настоящее время его не применяют. Однако высокая удельная энергия никель-цинкового аккумулятора, достигающая 60 Вт — ч / кг, дает основания считать его перспективным в будущем.

Кислотные свинцовые аккумуляторы являются наиболее распространенными среди вторичных химических источников тока. Разнообразие их электрических и эксплуатационных параметров в зависимости от назначения обеспечивается прежде всего различием технологии и конструкции электродных пластин.

Из сказанного следует, что один и тот же электрод вторичного химического источника тока может являться и анодом и катодом в зависимости от того, подвергается ли источник заряду или разряду. Поэтому, чтобы правильно применять при рассмотрении вторичных ХИТ термины анод и катод, необходимо знать природу процессов, протекающих на данном электроде при заряде и разряде источника тока, учитывая при этом, что процессу окисления отвечает термин анод, а процессу восстановления — термин катод.

В отличие от простых ( первичных) гальванических элементов ( см. 8.4) аккумуляторы являются вторичными химическими источниками тока.

Пропускание электрического тока через электролитическую ячейку вызывает в ней определенные изменения. Если протекающие электрохимические поцессы обратимы, то можно вновь получить электрическую работу за счет накопленной химической энергии. Такие обратимые элементы называются аккумуляторами, или вторичными химическими источниками тока.

Пропускание электрического тока через электролитическую ячейку вызывает в ней определенные изменения. Если протекающие электрохимические процессы обратимы, то можно вновь получить электрическую работу за счет накопленной химической энергии. Такие обратимые элементы называются аккумуляторами, или вторичными химическими источниками тока.

Отечественной промышленностью выпускается обширный ассортимент малогабаритных источников питания, которые могут использоваться в переносной аппаратуре. Герметические дисковые кадмиево-никелевые аккумуляторы и батареи типа Д-006; Д-01; Д-02; 7Д — 0.1, применяющиеся в приборах широкого потребления, имеют небольшие габариты и вес, однако ограниченный температурный диапазон ( от 5 до 35 С), при котором техническими условиями гарантируется их работоспособность, недостаточен для полевой аппаратуры. Серебряно-цинковые аккумуляторы по своим характеристикам превосходят все вторичные химические источники тока.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: