Датчик электромагнитного поля своими руками

10шт. lm3914n-1 dip18 lm3914n lm3914 светодиодные драйвера.

Что делать, если аккумулятор не заряжается

Если вышеперечисленные методы не помогли, то рекомендуем ознакомиться со следующими способами как оживить аккумулятор 18650.

С помощью специального зарядного устройства

Это действие осуществляется при помощи китайской копии зарядного устройства «IMAX B6» и мультиметра. Эта зарядка доступна в широкой продаже, и она отлично восстанавливает аккумулятор в домашних условиях. Для начала необходимо проверить саму батарею, путем соединения к ней мультиметра и выставляя устройство в режим измерения напряжения. Если у аккумулятора глубокий разряд, мультиметр покажет низкие показателями U в милливольтах.

Суть метода заключается в том, чтобы измерение реального количества U в аккумуляторе «мешает» контроллер. Есть два вывода, плюс и минус, которые идут непосредственно с батареи на контроллер. На выводах чаще всего напряжение составляет 2,6 В это достаточно небольшое значение.

Напряжение будет по немногу подниматься. Это значит, что восстановление li ion аккумулятора идёт успешно. Через какое-то время значение U дойдет до 3,2 вольт, и батарея начнет «раскачиваться». Позже её можно будет заряжать от «родной» зарядки.

С помощью резистора и «родного» ЗУ

Этот способ еще более проще осуществить, чем предыдущий. Здесь необходимо «минус» подзарядки подвести к «минусу» аккумулятора. А «плюс» вывести путем резистора на «плюс» батареи. После этого следует подать питание и напряжение будет возрастать. Его можно поднять до 3В, для достижения этого показателя, нужно процедуру провести в течении пятнадцати минут. Как только метод завершен, аккумулятор можно проверить на работоспособность.

С помощью вентилятора

Чтобы осуществить этот метод нам понадобится блок питания, в котором выходное напряжение было минимум 12В. «Минус» вентилятора следует подсоединить к «минусовом» разъему блока питания, а его «плюсовой» к плюсу и обязательно фиксировать вручную на аккумуляторе. Когда мы включим устройство, вентилятор начнет работать. Это значит, что в батарее уже идёт ток. Процедуру не стоит долго продолжать, где-то через 30 секунд нужно выключить сеть. После такого восстановления напряжение обычно повышается до 3В.

Восстановление 18650 аккумуляторов при помощи подзарядки от другого аккумулятора

Существует способ как реанимировать литий-ионную батарею с помощью другого автомобильного аккумулятора. Для этого нам нужна любая другая батарея на 9 В, скотч, а также тонкий провод. Метод осуществляется по следующим этапам:

  • Проводки требуется подвести к контактам батареи, которую мы хотим реанимировать. На каждый контакт провод должен быть отдельным.
  • Нельзя замыкать контакты «плюс» и «минус» лишь одним проводом. Из-за этого может произойти короткое замыкание, и оживить батарею будет нельзя.
  • Соединения нужно закрепить скотчем, на которой перед этим необходимо сделать метку маркером, какой провод с каким контактом будет соединён.
  • Провод от «плюса» девятивольтового аккумулятора следует соединить с «плюсом» восстанавливаемой батареи.
  • Минусовые контакты надо соединить по этому же методу.
  • Все контакты закрепляем изолентой, чтобы провода не отошли.
  • Ждём определенное время и следим за состоянием батареи, она должна минимально нагреться.
  • Когда аккумулятор станет тёплым, сразу же отсоединяем от АКБ батареи.
  • Проводим перезарядку.
  • Проверяем работу.

С помощью использования тренировочных циклов

Этот метод проводится для предотвращения сульфатации, а также для того чтобы определить емкости батареи. Такие циклы нужно проводить минимум один раз в год и процедура выполняется по следующим этапам:

  • Следует зарядить литий-ионный аккумулятор обычным током до того момента, пока он полностью не зарядится.
  • Выдерживаем ее четыре часа после того как прекратилось питания.
  • Корректируем плотность электролита.
  • Включаем заряд на 25-35 минут чтобы электролит был перемешенным.
  • Необходимо провести контрольную разрядку постоянным нормальным током десяти-часового режима и контролировать время полного разряда до того как напряжение спадет до 1,7 В на банку
  • Емкость батареи можно определить как уровень разрядного тока умноженный на время разряда.
  • После того, как контрольный разряд осуществлён необходимо сразу же полностью разрядить аккумулятор. Если получилось так, что емкость не заряжается аккумулятор 18650 скорее всего уже не починить.

Основные минусы данного метода:

  • Сокращается срок службы.
  • Долгое время восстановления литий-ионных аккумуляторов.
  • Огромные затраты энергии.
  • Маленькая эффективность способа.

Бытовой прибор для измерения электромагнитного излучения

Эти аппараты производятся преимущественно в Китае. При этом они не обладают точными данными. Если требуется квалифицированная помощь в этом аспекте, работу лучше доверить специалистам, обладающим соответствующими знаниями и приспособлениями. В таких сертифицированных лабораториях имеется ряд высокоточных устройств, дающих возможность провести качественную экспертизу с предоставлением комплексной оценки результатов.

Методы проверки подбираются для каждого конкретного случая, в зависимости от концентрации энергии, частотности волн, интенсивности полей. Все условия и нормы прописаны в СанПиНе. Полученные показания выводятся по специальной шкале. Частота электромагнитных сигналов зависит от спектральных параметров. Длина излучения может колебаться от 103 метров до нескольких миллиметров. ЭМИ измеряется в ГГц, а длина волны в мегаметрах (Мм)

При проведении комплексного исследования во внимание принимают электрический и магнитный аспект

Индикаторы магнитных полей с индуктивными датчиками

Индикаторы магнитных полей по схемам, представленным на рис. 10 — 13, имеют индуктивные датчики, в качестве которых может быть использован телефонный капсюль без мембраны, либо многовитковая катушка индуктивности с железным сердечником.

Рис. 10. Схема индикатора магнитных полей с индуктивным датчиком.

Индикатор (рис. 10) выполнен по схеме радиоприемника 2-V-0. Он содержит датчик, двухкаскадный усилитель, детектор с удвоением напряжения и показывающий прибор.

Индикаторы (рис. 11, 12) имеют светодиодную индикацию и предназначены для качественной индикации магнитных полей [Р 8/91-83; Р 3/85-49].

Рис. 11. Схема индикатора магнитных полей со светодиодной индикацией и телефоном в качестве датчика (катушки).

Рис. 12. Схема простого индикатора магнитных полей со светодиодной индикацией.

Более сложную конструкцию имеет индикатор по схеме И.П. Шелестова, изображенный на рис. 13.

Рис. 13. Схема индикатора магнитных полей с применением компаратора.

Датчик магнитного поля подключен к управляющему переходу полевого транзистора, в цепь истока которого включено сопротивление нагрузки R1.

Сигнал с этого сопротивления усиливается каскадом на транзисторе VT2. Далее в схеме использован компаратор на микросхеме DA1 типа К554САЗ.

Компаратор сравнивает уровни двух сигналов: напряжения, снимаемого с регулируемого резистивного делителя R4, R5 (регулятора чувствительности) и напряжения, снимаемого с коллектора транзистора VT2. На выходе компаратора включен светодиодный индикатор.

Схемы простых индикаторов электрических и магнитных полей

Индикаторы электрических полей могут быть использованы для индивидуальной защиты электромонтеров, при поиске мест повреждений электрических сетей.

С их помощью определяется наличие электростатических зарядов в полупроводниковом, текстильном производствах, хранилищах легковоспламеняющихся жидкостей.

При поиске источников магнитных полей, определении их конфигурации и исследовании полей рассеяния трансформаторов, дросселей и электродвигателей не обойтись без индикаторов магнитных полей.

https://youtube.com/watch?v=uDO6cPaai8g

Краткий экскурс в теорию

Сегодня мы не будем сильно углубляться в теоретические основы электротехники, а попытаемся кратко объяснить суть проблемы. Тем, кто желает более детально ознакомиться с данным вопросом, рекомендуем прочитать на нашем сайте серию статей по физике переменного электрического тока.

Штатная установка выключателя.

Приведем в качестве примера фрагмент бытовой электросети, где организовано подключение электролампы освещения и штепсельного разъема (розетки).

Обозначения:

Как известно, в однофазных цепях электрический ток (Ì) течет от фазы к нулю. В приведенном выше рисунке выключатель SW находится в разомкнутом положении, следовательно, лампа будет обесточена, в чем можно убедиться, измерив напряжение U2. При этом на штепсельном разъеме и части сети до выключателя (отмечено красным) будет оставаться рабочий потенциал U1, соответствующий фазному напряжению. Это штатный режим работы для данной схемы, где выключатель размыкает фазный провод.

Обратим внимание, если производить замеры индикатором напряжения, то он покажет наличие фазы на одном из контактов штепсельного разъема и ее отсутствие на обоих контактах патрона лампы

Установка выключателя на ноль

Теперь посмотрим, что произойдет, если поменять фазу и ноль местами, или, что чаще встречается на практике, установить выключатель на ноль, а не фазный провод.

Внешне такое изменение никак не проявит себя. Лампа будет так же, как и в предыдущем примере включаться и выключаться, а на контактах розетки присутствовать разность потенциалов. Но, возникают определенные нюансы, которые проявляются в виде наличия напряжения на контактах патрона и части нулевой линии между лампой и выключателем. В чем несложно убедиться, используя электрический пробник.

Такой вариант подключения несет в себе потенциальную угрозу поражения электротоком при попытке замены или ремонта светильника.

Характерно, что измерения вольтметром наличия напряжения между контактами патрона осветительного прибора не принесут результатов. Прибор покажет «0», поскольку на контактах будет один уровень потенциала фазы.

Резюмируя итоги главы можно констатировать, что неправильное подключение контактов выключателей в распределительной коробке не оказывает значимого влияния на работу электрических приборов, подключенных к розетке. Помимо этого мы выяснили о необходимости комбинированного применения измерительных приборов (вольтметра и пробника).

Светодиодный индикатор напряжения на микросхеме LM3914

Светодиодный вольтметр 10,25 v. Как вы уже поняли по напряжению, — это вольтметр для автомобиля или автомобильного зарядного устройства, но ничего не мешает его использовать и с другими целями, например, в качестве шкалы настройки приемника или индикатора напряжения блока питания, тем более, пределы измерения несложно изменить в процессе налаживания. Прибор отображает напряжение на точечной светодиодной линейной шкале. Цепь питания одновременно является измерительным входом.

Устройство представляет собой светодиодный вольтметр индикатор напряжения 12В аккумулятора, с применением широко известной микросхемы LM даташит. Данное устройство мне было необходимо для того, чтобы я знал когда автомобильный аккумулятор полностью зарядится от зарядного устройства.

Процесс сборки

Сборка предполагает использование макетной платы размером не менее 15 x 24 отверстия, и особое внимание обращается на расположение элементов на ней. На фотографиях показано рекомендуемое расположение каждого из радиоэлементов и какие связи между ними выполнить

Перемычки на печатной плате можно выполнить из фрагментов кабеля или отрезанных ножек от других элементов (резисторы, конденсаторы), которые остались после их монтажа.

Сначала надо впаять катушки L1 и L2. Хорошо отодвинуть их друг от друга, что даст нам пространство и увеличит эффект стерео. Эти катушки являются ключевым элементом схемы — они ведут себя как антенны, которые собирают электромагнитное излучение из окружающей среды.

После впайки катушек можно установить конденсаторы C1 и C2. Их емкость составляет 2,2 мкФ и определяет нижнюю частоту среза звуков, которые будут услышаны в наушниках. Чем выше значение ёмкости, тем ниже звуки воспроизводящиеся в системе. Большая часть мощного электромагнитного шума лежит на частоте 50 Гц, так что есть смысл его отфильтровать.

Далее припаиваем резисторы по 1 кОм — R1 и R2. Резисторы эти, вместе с R3 и R4 (390 кОм) определяют усиление операционного усилителя в схеме. Инвертирование напряжения не имеет в нашей системе особого значения.

Виртуальная масса — резисторы R5 и R5 с сопротивлением 100 кОм. Они являются простым делителем напряжения, который в данном случае будет делить напряжение 9 V на половину, так что с точки зрения схемы питается м/с напряжением -4,5 V и +4,5 V по отношению к виртуальной массе.

Можно поставить в панельку операционный усилитель любой со стандартными выводами, например OPA2134, NE5532, TL072 и другие.

Подключаем аккумулятор и наушники — теперь мы можем использовать этот акустический монитор для прослушки электромагнитных полей. Батарею можно приклеить к плате скотчем.

Схема для светодиода на LM358 – танцы с бубном

Везде в интернете ходит схема для запитки мощного светодиода с применением регулятора тока на микросхеме LM358. Идея хорошая – позволяет на дешевой рассыпухе собрать замену дорогому драйверу, но схемотехника – шлак полный. Прокарячившись некоторое время, пришлось всё таки подключать осциллограф, заодно начал и экспериментировать. Сразу несколько выводов – LM358 не применять, применяем LM393. Транзистор мосфет явно гораздо лучше чем любой биполярный.

Схема собрана и отлажена. В скобках указаны установленные номиналы. Транзистор лучше брать мощный мосфет, с как можно меньшим сопротивлением канала, в корпусе SOT23. На али очень дёшевы транзисторы AO3400 , AO3404 и так далее

У указанных транзисторов напряжение открытия около 1 вольта – это важно! При применении биполярного транзистора – выбираем его, по как можно меньшему напряжению насыщения коллектор-эмиттер – например 2N5551 – напряжение насыщения у него 0.3 вольт. Применяем именно компаратор LM393 – по причине меньшего напряжения на выходе у LM358 – это будет влиять при применении биполярного транзистора

На диоде 1N4148 падение напряжения при токе чуть больше 1 мА равно 0.600 вольта . Исходя из этого образцового напряжения, проводим расчет напряжения делителя для отключения схемы при разряде АКБ до выбранного вами вольтажа – у меня выбрано 3.3 вольт. Напряжение на центральном контакте подстроечного резистора должно быть равно падению напряжения на резисторе от истока мосфета на корпус при выбранном вами токе через светодиод.

Требуется ток 300 мА через светодиод. Имеем резистор номиналом 0.5 ома.

0.5 ома x 0.3 ампера = 0.15 вольт падение напряжения на резисторе в истоке мосфета.

Следовательно на центральном контакте подстроечного резистора должно быть так же 0.15 вольт. Этот пример – для расчета делителя из резисторов при установке в случае отсутствия подстроечного резистора или если вы хотите уменьшения габаритов платы.

Расчет делителя для выключения схемы при разряде АКБ до выбранного напряжения

Выбираем напряжение отключения схемы = 3.4 вольта . Общее сопротивление делителя возьмём около 100 ком – для уменьшения энергопотребления схемы .

Выберем нижний резистор делителя = 20 ком. 0.034 вольт на 1 ком х 20 ком = 0.68 вольт – слишком много, выберем номинал вместо 20 ком например – 18 ком. Проверка – 18 ком х 0.034 вольт на 1 ком = 0. 612 вольт Почти попали в стандартный ряд резисторов – так и оставим, тогда верхний резистор делителя будет равен 100 ком – 18 ком = 82 ком. При установке первых попавшихся этих резисторов получаем напряжение отключения с небольшим разбросом от выбранного нами напряжения отключения схемы при разряде АКБ .

Приставка металлоискатель к мультиметру

Далее цитата об этой приставке: этот прибор собирал, работает отлично, 5 копеек СССР свободно за 17 см берёт, но это по воздуху. Крупный металлический предмет около метра, ну и конечно есть недостатки — через каждые час-полтора приходится подстраивать резистор подстроечный СП-5 на 300 Ом в эмиттерной цепи, вот и вся настройка. Зато плюсов больше, нет никакой реакции на грунт, что руда — что песок, катушку не экранировал, питание одной кроны на месяц хватает. Конденсатор С3 обязательно не электролит. Резистор в датчике R1 установить 4,7 кОм и последовательно с ним 4,7-10 ком многооборотный типа СП-5, включаем прибор, если прибор реагирует на метал — крутить резистор пока он перестанет реагировать, затем в обратную сторону медленно, но постоянно, и когда генератор попадет в рабочий режим — услышим щелчок — это и есть его рабочая точка. Что касается катушки, 3-х литровая банка, намотано 200 витков с отводом от середины проводом 0,3 — 0,4, особой разницы нет, можно и 0,6, но тогда катушка тяжеловатая. В общем прибор работает супер! Подробнее здесь…

Схема аварийной сигнализации простого индикатора уровня воды

Индикатор для поиска скрытой проводки

Индикатор электрического поля (рис. 5) предназначен для поиска скрытой проводки, электрических цепей, находящихся под напряжением, индикации приближения к зоне высоковольтных проводов, наличия переменных или постоянных электрических полей [РаЭ 8/00-15].

Рис. 5. Схема простого индикатора для поиска скрытой проводки.

В устройстве использован заторможенный генератор светозвуковых импульсов, выполненный на аналоге инжекционно-по-левого транзистора (VT2, VT3).

При отсутствии электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 невелико, транзистор VT3 закрыт, генерация отсутствует.

Ток, потребляемый устройством, составляет единицы, десятки мкА. При наличии постоянного или переменного электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 возрастает, и устройство начинает вырабатывать светозвуковые сигналы.

Так, если в качестве антенны использован вывод затвора транзистора VT1, индикатор реагирует на приближение сетевого провода на расстояние около 25 мм.

Потенциометром R3 регулируется чувствительность, резистор R1 задает длительность светозвуковой посылки, конденсатор С1 — частоту их следования, а С2 определяет тембр звукового сигнала.

Для повышения чувствительности в качестве антенны может быть использован отрезок изолированного провода или телескопическая антенна. Для защиты транзистора VT1 от пробоя параллельно переходу затвор — исток стоит подключить стабилитрон или высокоомный резистор.

Работа ЭМП детектора

А теперь разберемся как устройство работает на самом деле. Для начала нужно разместить прибор в месте, где нет излучения ЭМП и постепенно повернуть первый потенциометр вправо. Если первый светодиод еще не активирован, продолжаем со вторым потенциометром, пока первый светодиод не загорится или не начнет слегка моргать. Затем поверните потенциометр обратно, пока не погаснет первый светодиод.

Это устройство может легко обнаруживать электромагнитные поля, создаваемые силовыми кабелями в стенах, которые находятся под напряжением и не подключены к потребителю, на расстоянии более 50 см в сверхчувствительном режиме. Например поле от электронагревателя обнаруживается на расстоянии до 1 метра. Электромагнитное поле от выключателя лампы на стене можно обнаружить с расстояния в 1,5 метра и более, если правильно настроить режим «Ультра». Старые ЭЛТ-мониторы являются очень сильным источником такого излучения, поэтому их поле можно засечь на 5 м и более.

По светодиодам и частоте тона хорошо видна сила электромагнитного поля. Представленный для самостоятельной сборки детектор является очень чувствительным, стабильным и намного лучше, чем многие коммерческие датчики ЭМП.

Индикатор напряжения аккумулятора на LM3914

Микросхема LMN фирмы National Semiconductors позволяет построить линейный светодиодный индикатор из 10 точек. Индикация может производится в режимах «точка» и «столбик». Особенностью микросхемы LM является программирование постоянного значения выходных токов формирователей. Резистор задает выходной ток, а схема компенсирует изменения прямого падения напряжения светодиодов. LM создает приблизительно одинаковый ток на каждом выходе формирователя, не зависящий в определенных пределах от прямого падения напряжения на светодиоде. Основу микросхемы LMN составляют десять компараторов, на инверсные входы которых через буферный ОУ подается входной сигнал, а прямые входы подключены к отводам резистивного делителя напряжения.

Цифровой вольтметр, Частично продублирую здесь свой пост с паяльника. Есть курсовая с таким заданием ну и в порядке

Индикатор на основе делителя напряжения

Индикатор (рис. 7) изготовлен на основе делителя напряжения, одним из элементов которого является полевой транзистор VT1, сопротивление перехода сток — исток которого определяется потенциалом управляющего электрода (затвора) с подключенной к нему антенной [Рк 6/00-19].

Рис. 7. Индикатор электрополей на основе делителя напряжения.

К резистивному делителю напряжения подключен релаксационный генератор импульсов на лавинном транзисторе VT2, работающий в ждущем режиме. Уровень начального напряжения (порог срабатывания), подаваемого на релаксационный генератор импульсов, устанавливается потенциометром R1.

Для предотвращения пробоя управляющего перехода полевого транзистора в схему введена защита (при отключении источника питания цепь затвор — исток закорочена).

Повышение уровня громкости звукового сигнала достигается введением усилителя на биполярном транзисторе VT3. В качестве нагрузки выходного транзистора VT3 можно использовать низкоомный телефонный капсюль.

Для упрощения схемы высокоомный телефонный капсюль, например, ТОН-1, ТОН-2 (либо «среднеомный» — ТК-67, ТМ-2) может быть включен вместо резистора R3.

В этом случае надобность в использовании элементов VT3, R4, С2 отпадает. Разъем, в который включается телефон, для снижения габаритов устройства, может одновременно служить выключателем питания.

При отсутствии входного сигнала сопротивление перехода сток — исток полевого транзистора составляет несколько сотен Ом, и напряжение, снимаемое с движка потенциометра на питание релаксационного генератора импульсов, мало.

При появлении сигнала на управляющем электроде полевого транзистора сопротивление перехода сток — исток последнего возрастает пропорционально уровню входного сигнала до единиц, сотен кОм.

Это приводит к увеличению напряжения, подаваемого на релаксационный генератор импульсов до величины, достаточной для возникновения колебаний, частота которых определяется произведением R4C1.

Потребляемый устройством ток при отсутствии сигнала — 0,6 мА, в режиме индикации — 0,2…0,3 мА. Дальность обнаружения токонесущего провода сети 220 В 50 Гц при длине штыревой антенны 10 см составляет 10…100 см.

Индикаторы для поиска неисправностей в новогодних электрических гирляндах

Следующие две конструкции по схемам Д. Болотника и Д. Приймака (рис. 3 и 4) предназначены для поиска неисправностей в новогодних электрических гирляндах [Р 11/88-56].

Рис. 3. Схема индикатора для поиска неисправностей в новогодних электрических гирляндах.

Индикатор (рис. 3) в целом представляет собой резистор с управляемым сопротивлением. Роль такого сопротивления опять же играет канал сток — исток полевого транзистора, дополненного двухкаскадным усилителем постоянного тока.

Индикатор (рис. 4) выполнен по схеме управляемого низкочастотного генератора. Он содержит пороговое устройство, усилитель и детектор сигнала, наведенного в антенне переменным электрическим полем.

Рис. 4. Индикатор НЧ электрических полей по схеме управляемого низкочастотного генератора.

Все эти функции выполняет один транзистор — VT1. На транзисторах VT2 и VT3 собран генератор низкой частоты, работающий в ждущем режиме. Как только антенну устройства приближают к источнику электрического поля, транзистор VT1 включает звуковой генератор.

Принципиальная схема и пояснения:

Основная часть проекта — IC 4096. Это шестнадцатеричная инверторная CMOS IC, которая состоит из шести инверторных схем. Это поможет нам обнаружить электромагнитное поле. Он подключается линейно путем размещения резистора обратной связи между контактами 1 и 2. Сопротивление резистора обратной связи поддерживается на высоком уровне, так что изменение электромагнитного поля не влияет на IC 4096.

Когда нет электромагнитного поля, тогда контакт 4 IC 4096 остается высоким, и если электромагнитное поле присутствует рядом с детекторной схемой, тогда контакт 4 становится низким, а контакт 12 становится высоким, что запускает NPN-транзистор BC547. вверх КРАСНЫЙ светодиод.

В то же время на контакте 6 также будет высокий уровень, а на выходе контакта 6 диод будет смещен в обратном направлении, что приведет к срабатыванию RC-генератора, созданного R7 и C2. Частота этого генератора будет около 1 кГц, и выходной сигнал этого генератора будет управлять зуммером.

Индикаторы магнитных полей с индуктивными датчиками

Рис. 10. Схема индикатора магнитных полей с индуктивным датчиком.

Индикатор (рис. 10) выполнен по схеме радиоприемника 2-V-0. Он содержит датчик, двухкаскадный усилитель, детектор с удвоением напряжения и показывающий прибор.

Индикаторы (рис. 11, 12) имеют светодиодную индикацию и предназначены для качественной индикации магнитных полей [Р 8/91-83; Р 3/85-49].

Рис. 11. Схема индикатора магнитных полей со светодиодной индикацией и телефоном в качестве датчика (катушки).

Рис. 12. Схема простого индикатора магнитных полей со светодиодной индикацией.

Более сложную конструкцию имеет индикатор по схеме И.П. Шелестова, изображенный на рис. 13.

Рис. 13. Схема индикатора магнитных полей с применением компаратора.

Датчик магнитного поля подключен к управляющему переходу полевого транзистора, в цепь истока которого включено сопротивление нагрузки R1.

Сигнал с этого сопротивления усиливается каскадом на транзисторе VT2. Далее в схеме использован компаратор на микросхеме DA1 типа К554САЗ.

Компаратор сравнивает уровни двух сигналов: напряжения, снимаемого с регулируемого резистивного делителя R4, R5 (регулятора чувствительности) и напряжения, снимаемого с коллектора транзистора VT2. На выходе компаратора включен светодиодный индикатор.

Источник

Индикатор для поиска скрытой проводки

Индикатор электрического поля (рис. 5) предназначен для поиска скрытой проводки, электрических цепей, находящихся под напряжением, индикации приближения к зоне высоковольтных проводов, наличия переменных или постоянных электрических полей [РаЭ 8/00-15].

Рис. 5. Схема простого индикатора для поиска скрытой проводки.

В устройстве использован заторможенный генератор светозвуковых импульсов, выполненный на аналоге инжекционно-по-левого транзистора (VT2, VT3).

При отсутствии электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 невелико, транзистор VT3 закрыт, генерация отсутствует.

Ток, потребляемый устройством, составляет единицы, десятки мкА. При наличии постоянного или переменного электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 возрастает, и устройство начинает вырабатывать светозвуковые сигналы.

Так, если в качестве антенны использован вывод затвора транзистора VT1, индикатор реагирует на приближение сетевого провода на расстояние около 25 мм.

Потенциометром R3 регулируется чувствительность, резистор R1 задает длительность светозвуковой посылки, конденсатор С1 — частоту их следования, а С2 определяет тембр звукового сигнала.

Для повышения чувствительности в качестве антенны может быть использован отрезок изолированного провода или телескопическая антенна. Для защиты транзистора VT1 от пробоя параллельно переходу затвор — исток стоит подключить стабилитрон или высокоомный резистор.

Краткий экскурс в теорию

Сегодня мы не будем сильно углубляться в теоретические основы электротехники, а попытаемся кратко объяснить суть проблемы. Тем, кто желает более детально ознакомиться с данным вопросом, рекомендуем прочитать на нашем сайте серию статей по физике переменного электрического тока.

Штатная установка выключателя.

Приведем в качестве примера фрагмент бытовой электросети, где организовано подключение электролампы освещения и штепсельного разъема (розетки).

Обозначения:

Как известно, в однофазных цепях электрический ток (Ì) течет от фазы к нулю. В приведенном выше рисунке выключатель SW находится в разомкнутом положении, следовательно, лампа будет обесточена, в чем можно убедиться, измерив напряжение U2. При этом на штепсельном разъеме и части сети до выключателя (отмечено красным) будет оставаться рабочий потенциал U1, соответствующий фазному напряжению. Это штатный режим работы для данной схемы, где выключатель размыкает фазный провод.

Обратим внимание, если производить замеры индикатором напряжения, то он покажет наличие фазы на одном из контактов штепсельного разъема и ее отсутствие на обоих контактах патрона лампы

Установка выключателя на ноль

Теперь посмотрим, что произойдет, если поменять фазу и ноль местами, или, что чаще встречается на практике, установить выключатель на ноль, а не фазный провод.

Внешне такое изменение никак не проявит себя. Лампа будет так же, как и в предыдущем примере включаться и выключаться, а на контактах розетки присутствовать разность потенциалов. Но, возникают определенные нюансы, которые проявляются в виде наличия напряжения на контактах патрона и части нулевой линии между лампой и выключателем. В чем несложно убедиться, используя электрический пробник.

Такой вариант подключения несет в себе потенциальную угрозу поражения электротоком при попытке замены или ремонта светильника.

Характерно, что измерения вольтметром наличия напряжения между контактами патрона осветительного прибора не принесут результатов. Прибор покажет «0», поскольку на контактах будет один уровень потенциала фазы.

Резюмируя итоги главы можно констатировать, что неправильное подключение контактов выключателей в распределительной коробке не оказывает значимого влияния на работу электрических приборов, подключенных к розетке. Помимо этого мы выяснили о необходимости комбинированного применения измерительных приборов (вольтметра и пробника).

СХЕМА BFO МЕТАЛЛОИСКАТЕЛЯ НА LM358

Это тестовая версия простого искателя металлов в земле, которая собрана на универсальной монтажной плате и не выглядит эстетично, зато работает вполне хорошо.

Схема металлоискателя BFO

Проблема подобных приборов заключается в довольно низкой чувствительности к мелким объектам, но это можно улучшить увеличив частоту (уменьшение конденсаторов С2, С3, С6, С7) и стабилизировать уход частоты при изменении температуры. Детектор основан на двух генераторах-трехточках в конфигурации с общей базой (транзисторы Q1 и Q2). Катушка генератора на транзисторе Q1 является измерительным датчиком. Его диаметр составляет 15 см, но его естественно можно изменить, сохранив ту же индуктивность.

  • L1 – это датчик (сама поисковая катушка), который имеет 6,2 мГн индуктивности.
  • L2 – две подстроечные катушки от автомобильного радиоприемника, соединенные последовательно и 3 дросселя по 1 мГн, похожие на резистор. Пришлось объединить это, потому что не было другого способа подобрать индуктивность.

Сигнал, поступающий от этого генератора, идёт на операционный усилитель LM358 так же, как сигнал второго генератора, поэтому остальная часть схъемы не оказывает существенного влияния на сигнал, два сигнала управляют одинаковой амплитудой. Сигналы после выхода из операционных усилителей смешиваются через два резистора, а затем усиливаются. В этом сигнале есть звук, который представляет собой разницу двух входных частот.

Два диода в схеме вытягивают эти частоты биений (верхняя и нижняя огибающие), которые затем вычитаются друг из друга на следующем элементе операционном усилителе.

Органы управления металлодетектора

  • R2 – используется для установки хорошей синусоиды и самой большой амплитуды
  • R10 – управляет амплитуда сигнала
  • R11 – управляет постоянным током
  • R9 – усиление сигнала

Конечно более простыми и эффективными являются импульсные детекторы PI. Но и такая схема пойдёт для поиска крупных металлоконструкций. Металлодетектор полностью построен на деталях с распайки плат, аккумуляторы от ноутбука нерабочего, так что стоимость получилась нулевая.

   Форум по МД

   Обсудить статью СХЕМА BFO МЕТАЛЛОИСКАТЕЛЯ НА LM358

Схема индикатора звука и принцип её действия

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: