Как проверить однофазный двигатель мультиметром?

Схема подключения электродвигателя к сети 220 вольт

Какие электромоторы можно проверить мультиметром?

Существуют разные модификации электрических двигателей, и перечень их возможных неисправностей достаточно велик. Большинство неполадок можно диагностировать, воспользовавшись обычным мультиметром, даже если вы не специалист в этой области.

Современные электродвигатели разделяются на несколько видов, которые перечислены ниже:

  • Асинхронный, на три фазы, с короткозамкнутым ротором. Этот тип электрических силовых агрегатов является самым популярным благодаря простому устройству, которое обеспечивает легкую диагностику.
  • Асинхронный конденсаторный, с одной или двумя фазами и короткозамкнутым ротором. Такой силовой установкой обычно оснащается бытовая техника, запитывающаяся от обычной сети на 220В, наиболее распространенной в современных домах.
  • Асинхронный, оснащенный фазным ротором. Это оборудование имеет более мощный стартовый момент, чем моторы с короткозамкнутым ротором, в связи с чем его используют как привод в крупных силовых устройствах (подъемники, краны, электростанки).
  • Коллекторный, постоянного тока. Такие двигатели широко используются в автомобилях, где они играют роль привода вентиляторов и насосов, а также стеклоподъемников и дворников.
  • Коллекторный, переменного тока. Этими моторами оснащается ручной электроинструмент.

Первый этап любой диагностики – визуальный осмотр. Если даже невооруженным взглядом видны сгоревшие обмотки или отломанные части мотора, понятно, что дальнейшая проверка бессмысленна, и агрегат нужно везти в мастерскую. Но зачастую осмотра недостаточно, чтобы выявить неполадки, и тогда необходима более тщательная проверка.

Проверка коллекторного электродвигателя на неисправность

Самая сложна задача, которая встанет перед вами это разбор. Оказывается коллекторный электродвигатель сложно разбирать. Приводить разбор демонтажа двигателя для всех видов устройств в рамках одной статьи будет излишним, так что лучше найти специальную инструкцию непосредственно под ваше устройство. Более того, это исключит вероятность дополнительных поломок при работе со специфическими конструкциями разных производителей. Не забудьте о технике безопасности, любое устройство при разборе должно быть отключено от источников питания. Используйте инструменты с изоляционным материалом. В рамках статьи будет рассмотрены случае, когда прибор неисправен полностью, работает с перебоями или некорректно.

Когда электродвигатель демонтирован, попробуйте подать на него напряжение. Если двигатель работает, но искрение на щеточных контактах повышенное (хвосты искр при вращении распределяются неравномерно, охватывают иногда боле 90°), скорее всего, пришло время их заменить или отрегулировать крепление механизма — при плохом контакте могут возникать неполадки. В крайнем случае, это может означать даже межвитковое замыкание внутри двигателя. Заменять щетки необходимо только на однотипные. Щетки чаще всего крепятся при помощи фиксатора или болтов. Иногда они закреплены на специальном держателе. Если щетки в порядке, но плохо закреплены, нужно отрегулировать прижимающие пружины.

Если контакты на коллекторы почернели, необходимо произвести чистку. Лучше всего для этого подходит наждачная бумага с мелкой крошкой. Если же это не помогло тогда в половине случаев причина неисправности — износ подшипников. Если в работе вы замечали шум, дополнительную вибрацию, то это верные признаки необходимости замены подшипников. Если аппарат совсем не запускается, проверьте визуально целостность обмоток, отсутствие почернения.

Обгоревшую изоляцию необходимо почистить, а в случае наличия графитовой пыли все тщательно прочистить. Пыль может вызывать замыкание. Всю электропроводку необходимо протестировать мультиметром. Если обмотка не показывает проводимости, то, к сожалению, ремонт двигателя в большинстве случаев обойдется дороже нового. Так ремонтируется и проверяется данный электродвигатель .

Motor Control Circuits

Что нужно знать для подключения электродвигателя своими руками

Общий принцип работы электродвигателя известен всем еще со школы. Но на практике знания о вращающихся магнитных потоках и ЭДС, индукционных процессах и эквивалентах правильно выполнить даже простейшее подключение однофазного электродвигателя явно не помогут, поэтому для работы будет достаточно:

  • Понимать суть конструкций двигателей;
  • Знать предназначение обмоток и схему подключения;
  • Ориентироваться во вспомогательных устройствах, таких как балластные сопротивления и пусковые конденсаторы.

К сведению! Нельзя подключать электродвигатель, не зная точно его марку, какие из выводов жгута проводов корпуса соответствуют обмоткам прибора, и на какое напряжение он рассчитан.

Советская промышленность выпускала электродвигатели с обязательной металлической табличкой, приклепанной к корпусу, на которой был указан тип и модель, напряжение питания, и даже рисовалась схема подключения. Позже на табличке остались только модель, мощность, потребляемый ток и номер. Сегодня на современном электродвигателе с трудом можно найти маркировку модели, и не более.

Поэтому при выборе схемы подключения необходимо узнать из справочника тип и мощность, прозвонить мультиметром проводку относительно корпуса и между выводами на жгуте. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Схема подключения обмоток электродвигателя треугольником

Вот так выглядит борно электродвигателя и здесь обмотки соединены треугольником.  Т.е. конец обмотки соединён с началом следующей обмотки.

Фазное и линейное напряжение равны. Линейный  ток в 1,73 раза больше фазного.

Формула полной мощности будет выглядеть вот так:

Если обратить внимание на формулу полной мощности при подключении
звездой, то мы заметим, что формулы полной мощности одинаковые. А чтобы найти активную мощность применим следующую формулу:

А чтобы найти активную мощность применим следующую формулу:

где cosф- коэффициент мощности, n- КПД

 Из формулы активной мощности выразим ток:

где cosф- коэффициент мощности, n- КПД

Внимательный читатель должен был заметить, что формула мощности
одинаковая при подключении треугольником и при подключении звездой.  Так и есть, просто, чтобы поддержать
необходимую мощность, у нас будет меняться ток.

Но чтобы двигатель не сгорел при переключении с треугольника
на звезду, надо уменьшить нагрузку на валу двигателя до тех пор, пока фазный
ток не станет равный фазному току при подключении треугольником.

Поэтому и говорят, что мощность при подключении обмоток электродвигателя звездой меньше, чем при соединении треугольником.

Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя ), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

Подбирайте конденсаторы грамотно

Конденсаторы

Для правильного подбора конденсатора нужно знать, какой емкостью он должен обладать. Для этого существует очень сложная формула, но в бытовых условиях будет достаточно и соблюдения нескольких рекомендаций ниже:

  • если устройство будет выполнять функцию рабочего конденсатора, его нужно выбирать из расчета 0,7-0,8 мкФ на 1 кВт мощности привода;
  • если функция будет пусковой, то емкость конденсатора должна быть в 2-3 раза больше.

Рабочее напряжение всех конденсаторов обязательно должно быть на 150% больше, чем рабочее напряжение сети. То есть для сети на 200 В, нужно брать устройство с напряжением минимум 330 В. Для пусковых конденсаторов существуют специальные маркировки со словами Start (Starting). Запуск двигателя с таким прибором будет проходить гораздо лучше, но покупать их необязательно.

Разница между асинхронными и коллекторными электродвигателями

Самый простой способ понять отличия между двигателями можно по специальному шильдику – табличек, на который есть все данные о машине. Но если электродвигатель уже подвергался ремонту, доверять этой информации уже нельзя, ведь кто знает, что может вас ждать под корпусом. Так что всегда лучше узнавать нужную информацию опытным путем.

Включение в сеть

Чтобы устройство работало, нужна однофазная сеть, напряжение в которой составляет 220 В. То есть, такой двигатель легко подключается в обычную бытовую розетку. Это и является одной из основных причин распространенности таких механизмов. Все бытовые приборы, от мясорубки до соковыжималки, обладают именно такими электроприводами.

Все однофазные асинхронные двигатели на 200 В можно разделить на две подгруппы:Существует 2 типа электромоторов: с пусковой обмоткой и с рабочим конденсатором:

  1. Машины с пусковой фазой. В таких моторах обмотка работает так, как описано выше (отключается, когда двигатель набирает нормальную скорость и работает с одной обмоткой).
  2. С рабочим конденсатором. Тут вспомогательная обмотка не отключается, а работает на протяжении всего времени работы двигателя. Она подключается через конденсатор.

Однофазный двигатель с пусковым конденсатором

Электромотор от одного прибора можно подключить к другому, здесь нет никакой разницы. К примеру, его можно снять с поломанной стиральной машины (если причина поломки не в двигателе, конечно) и поставить в пылесос, газонокосилку или какой-либо станок для обработки.

Мы уже говорили о том, что пусковая и рабочая обмотки перпендикулярны друг другу. Исходя из этого, чтобы появилось вращающееся магнитное поле, ток вспомогательной обмотки должен быть сдвинут перпендикулярно току в главной.

Это можно осуществить, если подключить к цепи питания фазосмещающий элемент. Обычно, в целях смещения фазы на 90° используют конденсатор. Но можно использовать и пусковой резистор. Он последовательно подключается к вспомогательной обмотке. Так получают сдвиг между токами двух обмоток на 30°. Это хватит, чтобы запустить механизм. Между токами обмоток, чего будет вполне достаточно для старта механизма.

Помимо этого, сдвиг фаз можно осуществить, если использовать пусковую фазу, сопротивление относительно рабочей у которой выше, а индуктивность ниже. Такая обмотка состоит из меньшего количества витков, а провода в ней более тонкие.

Однофазный двигатель с рабочим конденсатором

Но только с конденсатором однофазный электропривод переменного тока будет обладать лучшими пусковыми характеристиками.

С конденсатором в роли фазосмещающего элемента, электромоторы с одной рабочей фазой могут иметь следующие конструктивные особенности:

  1. Когда работа вспомогательной обмотки происходит с помощью конденсатора и только в момент пуска. Такая цепь хорошо запускается, но выдает мощность ниже номинальной. Пусковая обмотка в таких электродвигателях обладает повышенным активным сопротивлением.
  2. Вторая версия подключения конденсатора самая популярная. Устройство в ней постоянно подключено к электрическому источнику (в первой схеме только в момент пуска). Такой способ подключения конденсатора обладает не совсем хорошими показателями во время запуска, зато рабочие характеристики у него отменные.
  3. В третьем случае, с подключением двух конденсаторов, также предусмотрено кратковременное включение пусковой обмотки, но осуществляется оно не с помощью конденсатора, а через сопротивление. В итоге получается, так сказать, среднее «арифметическое» между двумя приведенными выше ситуациями. Здесь также требуется кнопка ПНВС, включающая конденсатор только на то время, пока мотор набирает скорость. Только включенными потом будут обе обмотки (пусковая через конденсатор).

Из всей этой информации можно сделать вывод о том, что первая схема будет актуальна в том случае, когда пусковые характеристики важнее рабочих (это могут быть устройства с тяжелым пуском, например, бетономешалки). А вот рабочий конденсатор пригодится там, где важна рабочая характеристика электродвигателя (вентилятор).

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Формы и схема векторного управления

Все существующие на сегодня системы векторного управления работой двигателей можно разделить на две группы:

  1. Датчиковые. Блок управления работой двигателя имеет с ним обратную связь по скорости, с помощью расположения на валу соответствующих датчиков,
  2. Бездатчиковые. Это системы, которые работают без датчиков скорости на основном валу.

Датчиковые системы являются более сложными, так как точность контроля составляет 1:10000. Бездатчиковые системы работают на уровне не более 1:100. Все частотники с учетом уровня создаваемых помех устанавливаются в центральных или отдельных шкафах. Если представить все выше сказанное как наглядную схему, то получится нечто следующее.

Здесь можно видеть такие ключевые компоненты системы управления, как:

  • АД – собственно, асинхронный двигатель (объект контроля),
  • БРП – логический блок регуляторов для переменных уравнения,
  • БВП – логический блок, отвечающий за вычисления по переменным,
  • БЗП – блок, задающий значения переменных,
  • ДС – датчик скорости на валу двигателя,
  • АИН ШИМ – блок амплитудно-импульсной/широтно-импульсной модуляции.

То, что на схеме отображено в виде блоков, на практике является всего лишь параметрическими элементами цепи управления, которая реализуется на микроконтроллере. Соответственно, сам контроллер и сопутствующие исполнительные механизмы монтируются в электрический шкаф. Для правильного монтажа разрабатывается технологическая карта.

Подключение однофазного двигателя

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

Обратите внимание

В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

Важно

Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

 Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

 В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: