Преимущества и недостатки АЭС перед ГЭС
Преимущества и недостатки АЭС перед ГЭС связаны в основном с зависимостью ГЭС от природных ресурсов. Об этом подробнее…
- Преимущество АЭС перед гидроэлектростанциями – это теоретическая возможность строительства новых атомных станций, в то время как большинство рек и водоемов, способных работать на благо гидроэлектростанций, уже заняты. То есть открытие новых ГЭС затруднено из-за нехватки нужных мест. 2. Следующие преимущества АЭС перед ГЭС – это непрямая зависимость от природных ресурсов. ГЭС напрямую зависят от природного водоема, АЭС же только косвенно – от добычи урана, все остальное обеспечивают сами люди и их изобретения.
Недостатки АЭС перед водными станциями незначительны — ресурсы, которые использует АЭС для ядерной реакции, а конкретно урановое топливо, является не возобновляемым. В то время как количество воды – основного возобновляемого ресурса ГЭС, от работы гидроэлектростанции никак не изменится, а уран сам по себе восстановиться в природе не может.
Дизельные электростанции
Для работы дизельных электростанций, которые называют ДЭС, используются различные виды жидкого топлива. Основой системы является дизель-генератор, включающий в себя дизельный двигатель, электрический генератор, системы смазки и охлаждения, пульт управления.
Данные установки применяются как альтернативные в отдаленных районах, где являются основными источниками электроэнергии. Как правило, подведение стационарных ЛЭП в такие места экономически не выгодно. Кроме того, дизельные электростанции служат аварийными или резервными источниками питания, когда потребители не должны отключаться от электроснабжения.
Виды дизельных электростанций могут быть стационарными (4-5 тысяч кВт) и мобильными (12-1000 кВт). Благодаря небольшим размерам, они могут размещаться в небольших зданиях и помещениях. Эти станции постоянно готовы к пуску, а сам процесс запуска не занимает много времени. Большинство функций установок автоматизировано, а остальные легко переводятся в автоматический режим. Основным недостатком дизельных станций является привозное горючее и все мероприятия, связанные с его доставкой и хранением.
Энергетика в России
Основные виды электростанций в нашей стране: тепловые, атомные, гидроэлектростанции. Больше половины энергии вырабатывают ТЭС. Они строятся в тех районах, где осуществляется добыча топлива, либо на местности с потреблением энергии. ГЭС целесообразно строить на горных полноводных реках, поэтому такие станции появились на Ангаре, Енисее.
Эти виды электростанций в России есть и на Волге. На долю ГЭС приходится около 67% вырабатываемой в стране электрической энергии.
Разные виды атомных электростанций в России располагаются в западной части страны, где наблюдается повышенное потребление энергии.
Гидроэлектростанция (ГЭС)
В зависимости от мощности вырабатываемой электроэнергии, гидроэлектростанции подразделяются на: малые (до 5 МВт), средние (5-25 МВт) и мощные (свыше 25 МВт). По максимально используемому напору они делятся на: низконапорные (максимальный напор — от 3 до 25 м), средненапорные (25-60 м) и высоконапорные (свыше 60 м). Также ГЭС классифицируют по принципу использования природных ресурсов: плотинные, приплотинные, деривационные и гидроаккумулирующие.
Тепловая электростанция (ТЭС) вырабатывает электроэнергию за счет преобразования тепловой энергии, полученной в результате горения топлива. Топливом на ТЭС является: природный газ, уголь, мазут, торф или горячие сланцы.
В результате горения топлива в топках паровых котлов, происходит преобразование питательной воды в перегретый пар. Этот пар с определенной температурой и давлением по паропроводу подается в турбогенератор, где и происходит получение электрической энергии.
Энергосистемы
Энергосистемы — совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.
Что входит в энергосистему
В энергосистемы входят:
- электроэнергетическая система;
- система нефте- и газоснабжения;
- система угольной промышленности;
- ядерная энергетика;
- нетрадиционная энергетика.
Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов
Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.
В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.
Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:
- существенное снижение стоимости электро- и теплоэнергии;
- значительное повышение надёжности электро- и теплоснабжения потребителей;
- повышение экономичности работы различных типов электростанций;
- снижение необходимой резервной мощности электростанций.
Красноярская ГЭС
Первые электростанции в России строились в 50-60-е годы прошлого века. Так, Красноярская ГЭС начала возводиться еще в 1955 году, тоже на Енисее. Данная станция называется сердцем энергосистемы Сибири, так как является одним из ведущих поставщиков электроэнергии в этом регионе. На сегодня Красноярская ГЭС входит в десятку крупных станций мира, в штате которой работают больше 550 человек. Окончательно введена в эксплуатацию она была в далеком 1972 году и с тех пор постоянно совершенствовалась. Данная ГЭС состоит из нескольких объектов:
- гравитационной бетонной плотины;
- приплотинном здании ГЭС;
- установки по приему и распределению энергии;
- судоподъемника с подъодным каналом.
На возведение второй по мощности электростанции России потребовалось почти 6 млн м3 бетона. Станция отличается максимальной пропускной способностью в 14000 м3/сек, а мощность ГЭС составляет 6000 МВт. Плотиной образуется Красноярское водохранилище площадью 2000 км2. Особенность данной электростанции – в единственном в России судоподъемнике, который нужен для пропуска судов. В 1995 году гидроагрегаты ГЭС были изношены на 50%, поэтому было принято решение реконструировать их и модернизировать.
Предварительный просмотр:
Технологическая карта урока
Топливно-энергетический комплекс. Электроэнергетика
Тип урока: комбинированный
Цели и задачи:
- Показать значение, роль и состав электроэнергетики России
- Сформировать представление об основных типах электростанций и их размещении
- Выявить проблемы электроэнергетики
- Развивать умение работать с различными источниками географической информации.
- Формировать экологическую культуру, сознание бережного и экономного расходования электроэнергии.
Виды деятельности учащихся:
фронтальный опрос по пройденному материалу; самостоятельная групповая работа (или работа в парах) с учебником: с текстом, наглядным и картографическим материалом; анализ карт, составление систематизирующей таблицы.
В связи с недостатком местных потребителей и энергосистем, существуют предложения дискретной работы электростанции на энергоёмкий потребитель — регулятор, например, производство водорода, который затем транспортируется к возможным потребителям. Рассматриваются также варианты экспорта электроэнергии в страны южной Азии.
Кислогубская ПЭС
— экспериментальная приливная электростанция расположенная в губе Кислая Баренцева моря вблизи поселка Ура-Губа Мурманской области. Первая и единственная приливная электростанция России. Состоит на государственном учёте как памятник науки и техники.
Солнечная энергетика
Одна из старейших концепций альтернативной энергетики, задействующая в качестве аккумулятивного оборудования фотоэлектрические и термодинамические системы. Для реализации фотоэлектрического метода генерации используют преобразователи энергии световых фотонов (квантов) в электричество. Термодинамические установки более функциональны и за счет солнечных потоков могут вырабатывать как тепло с электричеством, так и механическую энергию для создания приводного усилия.
Схемы достаточно простые, но есть немало проблем при эксплуатации такого оборудования. Связано это с тем, что солнечная энергетика в принципе характеризуется целым рядом особенностей: нестабильностью из-за суточных и сезонных колебаний, зависимостью от погоды, низкой плотностью потоков света. Поэтому на этапе проектирования солнечных батарей и аккумуляторов много внимания уделяется исследованию метеорологических факторов.
Факты и заблуждения
Малое распространение ветроэнергетических установок и отсутствие опыта общения с ними породили массу заблуждений относительно свойств и воздействия ВЭС на организм человека. Так, широко распространено мнение о необычайно высоком уровне шума, производимого работающим ветрогенератором. Действительно, определенный шум имеется, но его уровень гораздо ниже, чем принято считать. Так, шум от промышленных моделей на расстоянии 200-300 м воспринимается на слух так же, как звук от работающего бытового холодильника.
Другая проблема, которую необоснованно раздувают несведущие люди — создание непреодолимых помех радио и телевизионным сигналам. Этот вопрос был решен раньше, чем о нем узнали пользователи — каждый мощный промышленный ветряк снабжен качественным фильтром радиопомех, способным полностью исключить влияние устройства на эфир.
Люди, живущие поблизости от турбин, будут постоянно находиться в зоне мерцания тени. Это термин, обозначающий некомфортное ощущение от мигающих световых проявлений. Вращающиеся лопасти создают такой эффект, но его значение сильно преувеличено. Даже самые чувствительные люди всегда могут попросту отвернуться от турбины, если случилось оказаться поблизости от нее.
Существуют и другие, надуманные и вполне реально существующие факты, касающиеся работы ВЭС, их воздействия на организм человека и окружающую природу. Част из них является обычными слухами, другая часть настолько преувеличена, что не заслуживает даже обсуждения. Ветроэнергетика — полноценная отрасль, способная решать вопросы энергообеспечения как в солидных масштабах, так и в пределах маленького дачного домика.
Солнечные электростанции
Солнечные электростанции преобразуют энергию солнца в тепловую или электрическую энергию, используя один из самых чистых и распространенных возобновляемых источников энергии.
Как правило, они не требуют особого ухода и служат от 20 до 25 лет.
Но первоначальные затраты на финансирование солнечных электростанций высоки, а установка требует много места.
Другая подобная технология — солнечно-термальная. Это система гигантских зеркал, размещенных таким образом, чтобы концентрировать солнечные лучи на очень небольшой площади для создания значительного количества тепла, которое затем производит пар для питания турбины, вырабатывающей электричество.
Современные способы получения электроэнергии
Вы знали, что получить электричество можно с помощью обычной картошки, лимона или комнатного цветка? Понадобятся лишь гвоздь и медная проволока. Но снабдить электроэнергией весь мир картошка и лимоны, конечно, не смогут. Поэтому с 19 века ученые начали осваивать методы получения электроэнергии с помощью генерации.
Получить электроэнергию сегодня можно следующими способами:
- Тепловая электроэнергетика – электроэнергия получается с помощью теплового сгорания органического топлива. Если просто – нефть и газ сгорают, выделяют тепло, тепло нагревает пар. Пар под давлением заставляет вращаться электрогенератор, а электрогенератор вырабатывает электроэнергию. Тепловые электрические станции, в которых происходит этот процесс, именуются ТЭСами.
- Ядерная энергетика – принцип работы АЭС (атомных станций, получающих электроэнергию с помощью ядерных установок) очень похож на работу ТЭС. Отличие лишь в том, что тепло получают не от сгорания органического топлива, а от деления атомных ядер в ядерном реакторе.
- Гидроэнергетика – в случае с ГЭС (гидроэлектростанциями), электрическую энергию получают от кинетической энергии течения воды. Вы когда-нибудь видели водопады? В основе такого способа получения энергии лежит сила водных водопадов, которые вращают роторы электрогенераторов, производящих электроэнергию. Конечно, водопады не природные. Они создаются искусственно, используя природное речное течение. Кстати, не так давно ученые выяснили, что морское течение намного мощнее речного, в планах строить морские гидроэлектростанции.
- Ветроэнергетика – в данном случае приводит в действие электрогенератор кинетическая энергия ветра. Помните мельницы? В них полностью отражен этот принцип работы.
- Гелиоэнергетика – в гелиоэнергетике платформой для преобразования служит тепло солнечных лучей.
- Водородная энергетика – электроэнергию получают путем сгорания водорода. Водород сжигают, он выделяет тепло, а дальше все происходит по уже известной нам схеме.
- Приливная энергетика – что используют для добычи электроэнергии в этом случае? Энергию морских приливов!
- Геотермальная энергетика — получение сначала тепла, а потом и электроэнергии из естественного тепла Земли. К примеру, в вулканических районах.
Виды электростанций
Определение 1
Под электростанцией понимается совокупность установок, технологического оборудования и аппаратуры, применяемых для получения электроэнергии. В состав электростанций входят также вспомогательные здания и сооружения, расположенные на её территории.
Большая часть электростанций ныне использует для своей работы энергию вращения вала генератора. Существует несколько видов электростанций.
Тепловые электростанции (ТЭС). Такие электростанции вырабатывают энергию за счет преобразования химической энергии топлива в тепловую в процессе сгорания топлива. В качестве горючего нередко используется уголь, мазут, ранее использовали торф и горючий сланец. Множество тепловых электростанций может вырабатывать лишь электричество (например, ГРЭС или КЭС). В последние годы для выработки тепла в схемах теплоснабжения часто используются ТЭЦ.
В традиционных тепловых электростанциях топливо сгорает в топке паровых котлов (ранее они назывались парогенераторами). Они нагревают питательную воду, превращая её в пар. Полученный пар с высокой температурой и давлением перекачивается в турбогенератор через паропровод. Нередко часть тепловой энергии пара в тепловых электростанциях используется для работы сетевых подогревателей.
Гидроэлектростанции (ГЭС). Они в своей работе используют в качестве источника энергии энергию водных масс. Гидроэлектростанции обычно располагаются на реках, для их функционирования необходимы плотины и водохранилища. Эффективное производство электроэнергии будет гарантировано, если обеспечен большой уклон реки и вода течет круглый год.
Принцип работы гидроэлектростанций относительно прост. Ряд гидротехнических сооружения обеспечивает необходимый напор воды, которая поступает из лопасти турбины, которая, в свою очередь, приводит в действие генератор, вырабатывающий электроэнергию. Напор воды, необходимый для работы ГЭС, определяется при строительстве плотины, и как правило, концентрации воды в одном месте. В некоторых случаях для получения необходимого объема воды в единицу времени используют совместно плотину и деривацию (естественный поток воды).
В главном здании электростанции обычно располагают всё вспомогательное оборудование. Оно может классифицироваться определенным образом в зависимости от назначения. Помимо этого, существует дополнительное оборудование, предназначенное для контроля агрегатов и управления работы ГЭС.
Атомные электростанции (АЭС). Такие электростанции представляют собой ядерную установку для производства электроэнергии. АЭС классифицируют по типу применяемых реакторов. Ректоры могут быть тепловые и на быстрых нейтронах. Первый тип реакторов включает в себя кипящие, водо-водяные, тяжеловодные, графито-водные и газоохлаждаемые реакторы.
Преимущества теплоэлектростанций
Недостатки ТЭС
Атомная электростанция (АЭС) — станция, в которой получение электроэнергии (или тепловой энергии) происходит за счет работы ядерного реактора. За 2015 год все АЭС мира выработали почти 11% электроэнергии.
Ядерный реактор при работе передает энергию теплоносителю первого контура. Этот теплоноситель поступает в парогенератор, где нагревает воду второго контура. В парогенераторе происходит преобразование воды в пар, который поступает в турбину и приводит в движение электрогенераторы. Пар после турбины поступает в конденсатор, где охлаждается водой из водохранилища. В качестве теплоносителя первого контура используется, в основном, вода. Однако, для этой цели можно использовать еще свинец, натрий и другие жидкометаллические теплоносители. Количество контуров АЭС может быть разным.
АЭС классифицируются по типу используемого реактора. В атомных электростанциях используются два вида реакторов: на тепловых и на быстрых нейтронах. Реакторы первого типа подразделяются на:
- кипящие,
- водоводяные,
- тяжеловодные,
- газоохлаждаемые,
- графито-водные.
В зависимости от вида получаемой энергии, атомные электростанции бывают двух типов:
В каждом развитом государстве существует собственная энергетика. Данная область включает в себя разные виды электростанций. Они могут использовать традиционные и нетрадиционные источники энергии. В первом случае – это природные ресурсы в виде угля, газа, продуктов переработки нефти, ядерное топливо и т.д. Второй вариант предполагает использование энергии природных явлений – солнца, ветра, приливов-отливов, подземных источников тепла. Независимо от формы использования, каждая электростанция требует много дополнительного оборудования для передачи потребителям полученной энергии.
Виды тепловых электростанций
Стандартная тепловая электростанция представляет собой целый комплекс, включающий в себя различные устройства и оборудование, преобразующие топливную энергию в электричество и тепло. Подобные установки отличаются параметрами и техническими характеристиками, по которым и выполняется их классификация:
- В соответствии с видами и назначением поставляемой электроэнергии, тепловые станции могут быть районными и промышленными. Районные установки известны как ГРЭС или КЭС и предназначены для обслуживания всех потребителей региона. Электростанции, вырабатывающие тепло, называются ТЭЦ. Мощность районных станций превышает 1 млн. кВт. Промышленные электростанции предназначены для электро- и теплоснабжения конкретных предприятий и производственных комплексов. Их мощность значительно меньше, чем у ГРЭС и устанавливается в соответствии с потребностями того или иного объекта.
- Все типы тепловых электростанций работают на различных источниках энергии. Прежде всего, это обычные органические ресурсы, используемые большинством ТЭС и продукты нефтепереработки. Наибольшее распространение получили уголь, природный газ, мазут. Наиболее прогрессивные установки работают на ядерном топливе и называются атомными электростанциями – АЭС.
- Силовые установки, преобразующие энергию тепла в электричество, бывают паротурбинными, газотурбинными и смешанной парогазовой конструкции.
- Технологическая схема паропроводов ТЭС может быть разной. В блочных конструкциях тепловые электрические станции используют одинаковые энергетические установки или энергоблоки. В них пар от котла подается лишь к собственной турбине и после конденсации он вновь возвращается в свой котел. По данной схеме построено большинство ГРЭС (КЭС) и ТЭЦ. Другой вариант предполагает использование поперечных связей, когда пар от котлов подается к общему коллектору – паропроводу, обеспечивающему работу всей паровых турбин станции.
- По параметрам начального давления ТЭС могут быть с критическим и сверхкритическим давлением. В первом случае российские стандарты для ТЭС-ТЭЦ составляют 8,8-12,8 Мпа или 90-130 атмосфер. Второй вариант имеет более высокие параметры, составляющие 23,5 Мпа или 240 атмосфер. В таких конструкциях используется промежуточный перегрев и блочная схема.
Общие сведения
Мощность станции — 1,7 МВт (первоначально 0,4 МВт).
Станция установлена в узкой части губы Кислая, высота приливов в которой достигает 5 метров. Конструктивно станция состоит из двух частей — старой, постройки 1968 года, и новой, постройки 2006 года. Новая часть присоединена к одному из двух водоводов старой части. В здании ПЭС размещено два ортогональных гидроагрегата — один мощностью 0,2 МВт (диаметр рабочего колеса 2,5 м, находится в старом здании) и один ОГА-5,0 м мощностью 1,5 МВт (диаметр рабочего колеса 5 м, находится в новом здании). Гидротурбины изготовлены ФГУП «ПО Севмаш» генераторы — ООО «Русэлпром
Кислогубская ПЭС принадлежит ОАО «РусГидро» в лице его 100 % дочернего общества — ОАО «Малая Мезенская ПЭС».
Примеры СЭС
Теперь, давайте, рассмотрим примеры солнечных электростанций, которые есть в мире.
Группа СЭС в штате Гуджарат (Индия)
Этот комплекс электростанций находится в штате Гуджарат. В этом проекте объединены 46 объектов, перерабатывающих солнечную энергию, общей мощностью 856,81 мегаватт. Самым мощным является «Солнечный парк» на севере Гуджарат в местечке Чаранка.
Индия ставит перед собой амбициозную цель – добиться 15 процентов электроэнергии из альтернативных источников. И комплекс СЭС является одним из шагов в этом направлении. В разработке и строительстве этого проекта принимали участие десятки компаний из различных стран.
Star
СЭС находится в США (штат Калифорния). Объект был запущен в конце прошлого года. Строительство было запущено в 2011 году в районе Antelope Valley. При строительстве станции использовано 3800 тысяч солнечных панелей. Пятая часть этих панелей находится на шасси и имеют возможность поворачиваться вслед за солнцем.
Год назад в США построили СЭС Star в Калифорнии Суммарная мощность электростанции составляет 579 мегаватт. Этого хватит, чтобы закрыть потребности в электроэнергии для города с населением 75 тысяч человек.
Topaz
Электростанция также находится в Калифорнии и была запущена в 2014 году. Её построила и эксплуатирует американская компания First Solar. Topaz – это один из крупнейших проектов в сфере солнечной энергетики. Стоимость строительства этой станции составляет 2,5 миллиарда долларов.
Sunlight Farm
Ещё одна СЭС в Калифорнии, которая была запущена в прошлом году. Этот проект расположен в пустыне Мохаве рядом с Национальным Лесным Парком. Мощность Sunlight Farm составляет 550 мегаватт. В её составе работает около девяти миллионов тонкопленочных фотоэлектрических панелей.
Энергетическое топливо
Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.
Органическое топливо
Газообразное
Естественным топливом является природный газ, искусственным:
- Генераторный газ;
- Коксовый газ;
- Доменный газ;
- Продукты перегонки нефти;
- Газ подземной газификации;
- Синтез-газ.
Жидкое
Естественным топливом является нефть, искусственным называют продукты его перегонки:
- Бензин;
- Керосин;
- Соляровое масло;
- Мазут.
Твёрдое
Естественным топливом являются:
- Торф;
- Бурый уголь;
- Каменный уголь;
- Антрацит;
- Горючий сланец;
- Дрова;
- Древесные отходы;
- Топливные брикеты;
- Топливные гранулы.
Искусственным твёрдым топливом являются:
- Древесный уголь;
- Кокс и полукокс;
- Углебрикеты;
- Отходы углеобогащения.
Ядерное топливо
В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС.
Ядерное топливо получают из природного урана, который добывают:
- В шахтах (Франция, Нигер, ЮАР);
- В открытых карьерах (Австралия, Намибия);
- Способом подземного выщелачивания (США, Канада, Россия).
Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90% побочного обеднённого урана направляется на хранение, а 10% обогащается до нескольких процентов (3—5% для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки, которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки.
-
Расскажите о религии древних персов чем она отличалась от верований других народов востока кратко
-
Чем отличается спор от ссоры кратко
-
Какие функции обеспечивает портал кратко
-
Как люди заботятся о культурных растениях 2 класс кратко
- Программа внеурочной деятельности в начальной школе по фгос 1 4 класс по русскому языку
Солнечные батареи
Рассуждая над тем, какие виды электростанций существуют в нашей стране, нельзя оставить без внимания альтернативные установки для получения электрической энергии.
Солнце – это не только источник тепла и света, благодаря ему применяют многие другие виды энергии (например, нефть, вода, уголь, ветер).
Использование солнечных батарей в северных регионах страны не настолько выгодно, чем в теплых районах. И все-таки, многие жители Российской Федерации стараются использовать альтернативную энергетику. Для принятия правильного решения по поводу результативного применения альтернативного источника энергии необходимо задуматься о стоимости солнечных батарей на отечественном рынке. Трудно назвать точную цену одного киловатта, генерируемого солнечным коллектором.
Сегодня в России 1 ватт электрической энергии, полученной солнечными батареями, имеет намного более высокую цену, чем то же количество энергии, получаемое из традиционных источников.
Недостатки АЭС перед ТЭС
- Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов. Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно. 2. Недостатки АЭС – это и небольшой КПД относительно ТЭС. Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур. 3. Особняком стоит общая проблема тепло и атомных электростанций. Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.
Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).
Бензиновые электростанции
Бензиновые электростанции имеют свои достоинства:
- относительно низкая стоимость оборудования по сравнению с другими типами;
- компактность;
- легкий пуск в условиях низких температур;
- невысокий уровень шума электростанции;
- простота эксплуатации.
Основное назначение бензиновых электростанций — как источник электропитания на непродолжительное время (до 7-8 часов). На сегодняшний день производители бензиновых электрогенераторов выпускают электростанции двух типов — с двухтактными и четырехтактными двигателями. Двигатели первого типа устанавливаются на бензиновые генераторы малой мощности и передвижные электростанции.
Такие установки отличаются высокой мобильностью и могут применяться практически в любых условиях, поэтому их можно назвать универсальными. Более мощные стационарные бензогенераторы комплектуются четырехтактными двигателями, обеспечивающими более высокую мощность и длительный ресурс.
Влияние отрасли на окружающую среду
Каждый тип электростанций оказывает на окружающую среду разное воздействие. Больше всего вреда наносят ТЭС. В результате использования топлива в качестве ресурса в атмосферу выбрасываются небольшие элементы золы. Чтобы уменьшить выбросы вредных частичек, начали производить фильтры с высоким уровнем очистки (95-99%). Но полноценно этим решить проблему не удалось. На многих станциях, работающих на угле, фильтры находятся в плохом состоянии и выполняют свои функции всего на 80%.
Для строительства ГЭС требуется затопление больших территорий – создание водохранилищ. Большая часть такого водного объекта – мелководье. Вода в них сильно прогревается, создаются условия для размножения и роста водорослей. Требуется регулярная чистка воды, что приводит к затоплению еще больших площадей. Берега часто обваливаются, поэтому вблизи водохранилищ местность заболачивается.
Самый большой вред от АЭС приносит его горючее, поэтому для безопасности важно его надежно изолировать. Чтобы решить задачу, топливо распределяется по брикетам
Их изготавливают из материалов, которые задерживают долю продуктов деления радиоактивных веществ. Такие брикеты помещают в тепловыделяющие отделения из сплава циркония. Если происходит утечка радиоактивных элементов, они попадут в охлаждающий реактор, способный выдержать высокое давление.
Чтобы уменьшить негативное влияние электроэнергетики на окружающую среду, разрабатывается комплекс мер:
- Усовершенствование очистного оборудования.
- С целью уменьшения количества поступления в атмосферу соединений серы, ее будут извлекать из топлива до начала горения различными методиками.
- Введение новых технологий, базирующихся на использовании автоматизированного компьютерного оборудования.
- Активное использование альтернативных источников энергии, которые практически безопасны для окружающей среды.
Принцип работы
Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.
Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.
Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.
Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО2, которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.