Виды электростанций

КПД тепловой электростанции

Хотя с началом III тысячелетия количество тепловых электростанций, задействованных в общемировой генерации энергии, несколько увеличилось за счёт развивающихся стран, однако это не избавило сами ТЭС от малой эффективности процесса энергетических преобразований.

Отсюда КПД большинства современных теплоэлектростанций в 2013 году составляло 34%, доходя до 46% у наиболее эффективных угольных станций, и достигая 61% у лучших газовых станций. Да, использование когенерации (одновременной выработки двух видов энергии – электричества и тепла – на одной установке) увеличивает расчётный КПД, но незначительно. По причине уноса тепла уходящими газами термический КПД тепловых электрических станций не превышает 36%.

Тепловые балансы характерные для ТЭЦТепловые балансы характерные для КЭСТепловой баланс газомазутной  и пылеугольной (проценты в скобках) тепловых электростанцийТепловые балансы различных ТЭС

Поиском путей повышения КПД теплоэлектростанций заняты многие учёные и исследователи. Одним из результатов их деятельности уже стал промежуточный перегрев пара, существенным образом повышающий термический КПД. Наиболее перспективные разработки обещают освоение суперсверхкритических параметров пара, что сулит увеличение КПД угольных ТЭС до 55%, а также совмещение газового и парового цикла в рамках высокоманевренного агрегата, позволяющее довести этот показатель до 60%.

Энергетика в России

Основные виды электростанций в нашей стране: тепловые, атомные, гидроэлектростанции. Больше половины энергии вырабатывают ТЭС. Они строятся в тех районах, где осуществляется добыча топлива, либо на местности с потреблением энергии. ГЭС целесообразно строить на горных полноводных реках, поэтому такие станции появились на Ангаре, Енисее.

Эти виды электростанций в России есть и на Волге. На долю ГЭС приходится около 67% вырабатываемой в стране электрической энергии.

Разные виды атомных электростанций в России располагаются в западной части страны, где наблюдается повышенное потребление энергии.

Тепловые станции

15 Ноябрь 2011 admin

Согласно общепринятому определению, тепловые электростанции – это электростанции, вырабатывающие электроэнергию посредством преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

Первые ТЭС появились еще в конце XIX века в Нью-Йорке (1882 год), а в 1883 году первая тепловая электростанция была построена в России (С.Петербург). С момента своего появление, именно ТЭС получили наибольшее распространение, учитывая все увеличивающуюся энергетическую потребность наступившего техногенного века. Вплоть до середины 70-х годов прошлого века, именно эксплуатация ТЭС являлась доминирующим способом получения электроэнергии. К примеру, в США и СССР доля ТЭС среди всей получаемой электроэнергии составляла 80%, а во всем мире – порядка 73-75%.

Данное выше определение хоть и емкое, но не всегда понятное. Попытаемся своими словами объяснить общий принцип работы тепловых электростанций любого типа.

Выработка электричества в ТЭС происходить при участии множества последовательных этапов, но общий принцип её работы очень прост. Вначале топливо сжигается в специальной камере сгорания (паровом котле), при этом выделяется большое количество тепла, которое превращает воду, циркулирующую по специальным системам труб расположенным внутри котла, в пар. Постоянно нарастающее давление пара вращает ротор турбины, которая передает энергию вращения на вал генератора, и в результате вырабатывается электрический ток.

Система пар/вода замкнута. Пар, после прохождения через турбину, конденсируется и вновь превращается в воду, которая дополнительно проходит через систему подогревателей и вновь попадает в паровой котел.

Существует несколько типов тепловых электростанций. В настоящее время, среди ТЭС больше всего тепловых паротурбинных электростанций (ТПЭС). В электростанциях такого типа, тепловая энергия сжигаемого топлива используется в парогенераторе, где достигается очень высокое давление водяного пара, приводящего в движение ротор турбины и, соответственно, генератор. В качестве топлива, на таких теплоэлектростанциях используется мазут или дизель, а также природный газ, уголь, торф, сланцы, иными словами все виды топлива. КПД ТПЭС составляет около 40 %, а их мощность может достигать 3-6 ГВт.

ГРЭС (государственная районная электрическая станция) – довольно известное и привычное название. Это не что иное, как тепловая паротурбинная электростанция, оборудованная специальными конденсационными турбинами, которые не утилизируют энергию отработанных газов и не превращают её в тепло, например, для обогрева зданий. Такие электростанции еще называют конденсационными электростанциями.

В том же случае, если ТПЭС оснащены специальными теплофикационными турбинами, преобразующих вторичную энергию отработанного пара в тепловую энергию, используемую для нужд коммунальных или промышленных служб, то это уже теплоэлектроцентрали или ТЭЦ. К примеру, в СССР на долю ГРЭС приходилось около 65% вырабатываемой паротурбинными электростанциями электроэнергии, и, соответственно, 35% — на долю ТЭЦ.

Существуют также иные виды тепловых электростанций. В газотурбинных электростанциях, или ГТЭС, генератор вращается посредством газовой турбины. В качестве топлива на таких ТЭС применяют природный газ или жидкое топливо (дизель, мазут). Однако КПД таких электростанций не очень высок, около 27-29%, так что их используют в основном как резервные источники электроэнергии для покрытия пиков нагрузки на электрическую сеть, или для снабжения электричеством небольших населенных пунктов.

Тепловые электростанции с парогазотурбинной установкой (ПГЭС). Это электростанции комбинированного типа. Они оборудованы паротурбинными и газотурбинными механизмами, и их КПД достигает 41-44%. Эти электростанции также позволяют утилизировать тепло и превращать его в тепловую энергию, идущую на отопление зданий.

Главным недостатком всех тепловых электростанций является тип используемого топлива. Все виды топлива, которые применяют на ТЭС, являются невосполнимыми природными ресурсами, которые медленно, но неуклонно заканчиваются. Именно поэтому в настоящее время, наряду с использованием атомных электростанций, ведутся разработки механизма выработки электроэнергии при помощи восполняемых или других альтернативных источников энергии.

Категория: Проекты

Главное – электричество

Обозначение «ГРЭС»  – пережиток советского индустриального мегапроекта, на начальном этапе которого, в рамках плана ГОЭЛРО, решалась задача ликвидации дефицита, прежде всего, электрической энергии. Расшифровывается оно просто – «государственная районная электрическая станция». Районами в СССР называли территориальные объединения (промышленности с населением), в которых можно было организовать единое энергоснабжение. И в узловых географических точках, обычно вблизи крупных месторождений сырья, которое можно было использовать в качестве топлива, и ставили ГРЭС. Впрочем, газ на такие станции можно подавать и по трубопроводам, а уголь, мазут и другие виды топлива завозить по железной дороге. А на Березовскую ГРЭС компании «Юнипро» в красноярском Шарыпово уголь вообще приходит по 14-километровому конвейеру.

В современном понимании ГРЭС – это конденсационная электростанция (КЭС), по сравнению с ТЭЦ, очень мощная. Ведь главная задача такой станции – выработка электроэнергии, причем в базовом режиме (то есть равномерно в течение дня, месяца или года).
Поэтому ГРЭС, как правило, расположены вдали от крупных городов – благодаря линиям электропередач такие объекты генерации работают на всю энергосистему. И даже на экспорт – как, например, Гусиноозерская ГРЭС в Бурятии, с момента своего запуска в 1976 году обеспечивающая львиную долю поставок в Монголию. И выполняющая для этой страны роль «горячего резерва».

Интересно, что далеко не все станции, имеющие в своем названии аббревиатуру «ГРЭС», являются конденсационными; некоторые из них давно работают как теплоэлектроцентрали. Например, Кемеровская ГРЭС «Сибирской генерирующей компании» (СГК). «Изначально, в 1930-е годы, она вырабатывала только электроэнергию. Тем более что энергодефицит тогда был большой. Но когда вокруг станции вырос город Кемерово, на первый план вышел другой вопрос – как отапливать жилые кварталы? Тогда станцию перепрофилировали в классическую теплоэлектроцентраль, оставив лишь историческое название – ГРЭС. Для того, чтобы работник с гордостью мог сказать: «Я работаю на ГРЭС!». Потребление угля на электричество и тепло на станции идет сегодня в пропорции 50 на 50», — объясняет «Кислород.ЛАЙФ» начальник управления эксплуатации ТЭС Кузбасского филиала СГК Алексей Кутырев.

В то же время на других ГРЭС, входящих в СГК – например, на Томь-Усинской (1345,4 МВт) и Беловской (1260 МВт) в Кузбассе, а также на Назаровской (1308 МВт) в Красноярском крае – 97% сжигаемого угля идет на генерацию электричества. И всего 3% – на выработку тепла. И такая же картина, за редким исключением – практически на любой другой ГРЭС.

Крупнейшей в России ГРЭС и третьей в мире тепловой станцией является Сургутская ГРЭС-2(входит в «Юнипро») – ее мощность 5657,1 МВт (мощнее в нашей стране – только две ГЭС, Саяно-Шушенская и Красноярская). При довольно приличном КИУМ более 64,5% эта станция выработала в 2017 году почти 32 млрд кВт*часов электрической энергии. Эта ГРЭС работает на попутном нефтяном и природном газе. Крупнейшей же по мощности ГРЭС в стране, работающей на твердом топливе (угле), является Рефтинская — она расположена в 100 км от Екатеринбурга. 3,8 ГВт электрической мощности позволяют вырабатывать объемы, покрывающие 40% потребности всей Свердловской области. В качестве основного топлива на станции используется экибастузский каменный уголь.

Какие еще виды ТЭС существуют

Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:

  1. Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 — 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.
  2. Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 — 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.

Что такое ТЭС?

Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.


Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.

На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.

Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, экологическая угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.

Движение пара после ротора

После того как водяной пар проходит турбину, его давление и температура значительно опускаются, и он поступает в следующую часть станции — конденсатор. Внутри этого элемента происходит обратное превращение пара в жидкость. Для выполнения этой задачи внутри конденсатора имеется охлаждающая вода, которая поступает туда посредством труб, проходящих внутри стен устройства. После обратного преобразования пара в воду, она откачивается конденсатным насосом и поступает в следующий отсек — деаэратор

Также важно отметить, что откачиваемая вода, проходит сквозь регенеративные подогреватели

Основная задача деаэратора — это удаление газов из поступающей воды. Одновременно с операцией очистки, осуществляется и подогрев жидкости так же, как и в регенеративных подогревателях. Для этой цели используется тепло пара, которое отбирается из того, что следует в турбину. Основное предназначение операции деаэрации состоит в том, чтобы понизить содержание кислорода и углекислого газа в жидкости до допустимых значений. Это помогает снизить скорость влияние коррозии на тракты, по которым идет поставка воды и пара.

Солнечные батареи

Рассуждая над тем, какие виды электростанций существуют в нашей стране, нельзя оставить без внимания альтернативные установки для получения электрической энергии.

Солнце – это не только источник тепла и света, благодаря ему применяют многие другие виды энергии (например, нефть, вода, уголь, ветер).

Использование солнечных батарей в северных регионах страны не настолько выгодно, чем в теплых районах. И все-таки, многие жители Российской Федерации стараются использовать альтернативную энергетику. Для принятия правильного решения по поводу результативного применения альтернативного источника энергии необходимо задуматься о стоимости солнечных батарей на отечественном рынке. Трудно назвать точную цену одного киловатта, генерируемого солнечным коллектором.

Сегодня в России 1 ватт электрической энергии, полученной солнечными батареями, имеет намного более высокую цену, чем то же количество энергии, получаемое из традиционных источников.

Когда появилась первая тепловая электростанция

Первая частная теплоэлектростанция, работающая на угле, созданная инженером из Германии Зигмундом Шуккертом, дала ток в 1878 году. Предназначалась она для освещения грота Венеры в саду замка Линденхорф, принадлежавшего Людовику Второму Баварскому.

Первая общественная угольная тепловая электростанция – осветительная станция Томаса Эдисона, начала свою работу в Лондоне 12 января 1882 года.

Первая коммерческая центральная тепловая электростанция, сооружённая компанией Edison Illuminating Company (основанной Томасом Эдисоном), что находилась в тот момент под руководством Фрэнсиса Аптона, заработала 4 сентября 1882 года. Расположена она была в деловом (финансовом) районе Манхэттена города Нью-Йорк, на улице Перл-Стрит 255-257.

Первая в мире ТЭСМиниатюра первой ТЭСРедкие миниатюры первой в мире тепловой станции, датируемые 1882-1890 годами

Станция работала на угле. Первый этаж здания занимали паровые котлы, второй – паровые и динамо-машины, третий и четвёртый – приборы измерения и контроля.

Источники энергии Первые электростанции

1.1к.15.12.2022

Выдающиеся инженерные и организаторские способности Т. Эдисона, помноженные на прагматическую расчётливость сказались и здесь. Теплоэлектростанция не только обеспечивала работу 400 осветительных ламп у 80 клиентов, но и отапливала ближние здания на Манхэттене. Впервые в истории реализуя принцип когенерации (совместного производства двух видов энергии – электричества и тепла) и, создавая предпосылку для будущего возникновения ТЭЦ.

Классификация

Все электростанции делят на следующие группы:

  • Тепловые электростанции. Виды природного топлива, применяемого на них, позволяют делить их на теплофикационные и конденсационные станции.
  • Гидроаккумулирующие и гидравлические электростанции функционируют за счет энергии падающей воды.
  • Атомные станции используют энергию ядерных превращений.
  • Дизельные электростанции.
  • ТЭС с парогазовыми или газотурбинными установками.
  • Солнечные электростанции.
  • ГЕОТЭС (геотермальные электрические станции).
  • Приливные станции.

Эти виды электростанций используют для работы тепло- и электроэнергетику.

Самым удобным видом является электрическая энергия. Превращение первичной энергии в нее осуществляется на электрических станциях.

Ископаемое топливо: характеристика, проблематика

Природные запасы ископаемого топлива – это модифицированные продукты распада животных и растений, погибших миллионы лет назад. Когда они сжигаются на специализированных предприятиях, выделяется тепловая энергия, которая применяется для производства электрической.

Теплоэнергетика России

Сегодня переход на чистые возобновляемые источники энергии является политической задачей всего мира. Это обусловлено тем, что ископаемое топливо будет исчерпано в течение последующих 200 лет, а мировые поставки сырой нефти и природного газа, по оценкам специалистов, иссякнут в течение 100 лет.

Но есть и преимущества ископаемого топлива:

  • Высокая эффективность. Оно может быть добыто относительно дешевым способом, а транспортировка его сравнительно быстра и удобна.
  • Технологии, необходимые для генерирования электроэнергии, давно отработаны, оборудование является надёжным, его легче приобрести и эксплуатировать, чем, например, устройства для солнечных или ветровых электростанций.

Помимо того, что запасы ископаемого топлива постепенно истощаются, главным недостатком процесса извлечения энергии этим способом является негативное воздействие на окружающую среду. Горение сопровождается образованием тяжелых твердых частиц и высоким выбросом углекислого газа.

Каменный уголь более качественный, но многие электростанции используют бурый, который добывать намного дешевле. Количество получаемой энергии в расчете на 1 кг веса бурого угля по сравнению с каменным примерно в 3 раза ниже (первого – 3 кВт⋅ч на кг, второго – 9 кВт⋅ч на кг). Поэтому на электростанциях, работающих на буром угле, необходимо сжигать тройную массу на единицу энергии.

Для уменьшения ущерба, наносимого окружающей среде, ТЭС имеют высотные дымоходы, которые рассеивают эти частицы и локально уменьшают их вредное влияние. Кроме того, на электростанциях устанавливаются дымоходные фильтры.

Устройство маломощных тепловых энегростанций

Мини-ТЭС представляет собой несколько блоков и электронных приборов, объединенных в единое целое. Их совместная работа позволяет преобразовывать тепловую энергию в электрическую путем сжигания топлива.

В зависимости от модели это может быть:

  • Газ;
  • Дизель;
  • Бензин.

В состав блоков входят:

  • Двигатель;
  • Генератор;
  • Теплообменники;
  • Радиатор;
  • Распределительный щит;
  • Выхлопная система;
  • Автоматика.

Работа двигателя приводит к вращению вала генератора, который отвечает за преобразование кинетической энергии в электричество. Но так как при этом выделяется тепло, то оно по теплообменникам может быть отведено в систему отопления или подогрева воды. Его излишки удаляются системой принудительного охлаждения. А отработанные газы выводятся через выхлопную трубу.

Если выразить работу тепловых электростанций двумя словами, но она основывается на технологии когенерации, а у некоторых моделей и тригенерации. В первом случае оборудование обеспечивает объект электричеством и теплом, а во втором – еще и холодом. Управление такой системой осуществляется с распределительного щита при помощи системы автоматики. Обычно этот блок располагается в отдельном помещении.

Области использования солнечных коллекторов

Они востребованы там, где предполагается применение тепла. Технология производства солнечных коллекторов была создана в 1908 году. Уильям Бейли из компании Carnegie Steel Company разработал коллектор со специальным изолированным корпусом и медными трубками. Любой солнечный коллектор скапливает энергию в трубках и металлических пластинах, установленных на крыше здания. Для максимального поглощения радиации трубки выкрашены в черный цвет. Они располагаются в стеклянном либо пластмассовом корпусе, слегка наклонены к югу, чтобы в полной мере поглощать солнечный свет.

Коллектор можно представить в качестве небольшой теплицы, аккумулирующей тепло под стеклянной панелью. Так как солнечная радиация распределена равномерно по поверхности, коллектор должен обладать большой площадью. Солнечные коллекторы могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей.

Виды тепловых электростанций

Стандартная тепловая электростанция представляет собой целый комплекс, включающий в себя различные устройства и оборудование, преобразующие топливную энергию в электричество и тепло.

Подобные установки отличаются параметрами и техническими характеристиками, по которым и выполняется их классификация:

  • В соответствии с видами и назначением поставляемой электроэнергии, тепловые станции могут быть районными и промышленными. Районные установки известны как ГРЭС или КЭС и предназначены для обслуживания всех потребителей региона. Электростанции, вырабатывающие тепло, называются ТЭЦ. Мощность районных станций превышает 1 млн. кВт. Промышленные электростанции предназначены для электро- и теплоснабжения конкретных предприятий и производственных комплексов. Их мощность значительно меньше, чем у ГРЭС и устанавливается в соответствии с потребностями того или иного объекта.
  • Все типы тепловых электростанций работают на различных источниках энергии. Прежде всего, это обычные органические ресурсы, используемые большинством ТЭС и продукты нефтепереработки. Наибольшее распространение получили уголь, природный газ, мазут. Наиболее прогрессивные установки работают на ядерном топливе и называются атомными электростанциями – АЭС.
  • Силовые установки, преобразующие энергию тепла в электричество, бывают паротурбинными, газотурбинными и смешанной парогазовой конструкции.
  • Технологическая схема паропроводов ТЭС может быть разной. В блочных конструкциях тепловые электрические станции используют одинаковые энергетические установки или энергоблоки. В них пар от котла подается лишь к собственной турбине и после конденсации он вновь возвращается в свой котел. По данной схеме построено большинство ГРЭС (КЭС) и ТЭЦ. Другой вариант предполагает использование поперечных связей, когда пар от котлов подается к общему коллектору – паропроводу, обеспечивающему работу всей паровых турбин станции.
  • По параметрам начального давления ТЭС могут быть с критическим и сверхкритическим давлением. В первом случае российские стандарты для ТЭС-ТЭЦ составляют 8,8-12,8 Мпа или 90-130 атмосфер. Второй вариант имеет более высокие параметры, составляющие 23,5 Мпа или 240 атмосфер. В таких конструкциях используется промежуточный перегрев и блочная схема.

Выводы


Как ни странно, но на сегодняшний день именно устаревшие ТЭЦ являются действительно универсальными и перспективными станциями. Используя современные нейтрализаторы и фильтры, нагревать воду можно, сжигая практически весь мусор, который производит населенный пункт. При этом достигается тройная выгода:

  • Разгружаются и расчищаются свалки.
  • Город получает дешевую электроэнергию.
  • Решается проблема с отоплением.

Кроме того, в прибрежных районах вполне реально строительство ТЭЦ, которые одновременно будут являться опреснителями морской воды. Такая жидкость вполне пригодна для полива, для животноводческих комплексов и промышленных предприятий. Словом, настоящая технология будущего!

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: