Термодатчик на германиевых диодах
Особенностью германиевых полупроводниковых диодов является их высокая чувствительность к изменениям температуры воздуха. Поэтому эти радиодетали могут использоваться, как термодатчики при их обратном включении.
Их применение объясняется сильной зависимостью обратного тока от температуры окружающей среды. Эта особенность диодов используется в простой схеме регулятора скорости кулера.
Германиевые диоды, соединённые параллельно (3–4 шт.), включают в обратном направлении в цепь базы составного транзистора. Их стеклянные корпуса можно крепить прямо на кулер без всяких прокладок-теплоотводов. Резистор R1 предохраняет транзистор от теплового пробоя, а R2 определяет порог срабатывания регулятора. Если при превышении комнатной температуры вентилятор не включается, то число диодов надо увеличить. Когда кулер начинает вращать лопасти с большой скоростью количество радиодеталей уменьшают.
Порядок подключения
Схема подключения датчика температуры может существенно отличаться. Все зависит от того, какой разновидности отдано предпочтение. Прежде чем приступить к монтажу, надо определиться с требуемой точностью и назначением прибора. Если он будет использоваться для контроля температуры воздуха внутри помещения, потребуется одна схема. Если понадобиться измерить степень нагрева вещества, придется воспользоваться другой.
Как подключить кремниевый
Для подключения датчика температуры кремниевого типа может использоваться схема:
- 2-х проводная. Актуальна при отсутствии повышенных требований к высокой точности, так как в этом случае к измеренному сопротивлению добавляется сопротивление присоединенных проводов. Это существенно увеличивает величину дополнительной погрешности;
- 3-х проводная. Установка датчика температуры по данной схеме позволяет повысить точность. Такое подключение допускает измерение сопротивления проводов, а затем вычесть полученное значение из измеренного;
- 4-х проводная. По такой схеме устройство подключается таким образом, чтобы полностью исключить влияния подводящих проводов. Это позволяет избавиться от дополнительной ошибки и существенно повысить точность контроля.
Как подключить термопару
Для подключения холодных концов используются компенсационные провода либо монтаж производится напрямую к клеммам аналогового входа
При этом важно соблюдать полярность на входе в промышленный контроллер, используемый для программной компенсации температуры холодного спая и последующего расчета температуры в заданной точке
Внутреннюю компенсацию выполняют с использованием температуры модуля, используемого для подключения термопары. Для точной внешней компенсации температуру холодного спая контролируют дополнительным термометром сопротивления, подключаемым к специальному входу.
Как воспользоваться бесконтактным устройством
У датчиков температуры бесконтактного типа есть особенность определения степени нагрева устройства. Непосредственное подключение в этом случае не требуется. Устройство приближается к контролируемому объекту и обеспечивается его совмещение с соответствующим датчиком. Это оказывает существенно влияние на конечный результат, который во многом зависит от опыта и знаний специалиста, производящего измерения. Если поменяем бесконтактное устройство на контактную модель, точность увеличится.
На схеме, приводимой в инструкции к конкретному устройству, указан порядок подключения и последующей эксплуатации датчика температуры. Прежде чем приступить к монтажным работам, стоит с ней тщательно ознакомиться, чтобы избежать типовых ошибок, допускаемых неопытными пользователями при самостоятельном выполнении монтажных работ.
Применение
Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.
Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами
При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения
Использование термодатчика
Основной функцией датчика является своевременное обнаружение отклонений от температурного режима. При наступлении критического перегрева, термодатчик подает световой сигнал. Действие прибора основано на сравнении нормального напряжения с повышенным напряжением, возникающим при увеличении температуры.
Устройство оборудовано инвертирующим входом, соединенным через анод с кремниевым диодом, непосредственно выполняющим функцию термодатчика. Кроме того, здесь имеется неинвертирующий вход, подключенный к переменному резистору. Он предназначен для установки температурного порога, когда происходит срабатывание сигнализатора.
В случае изменения температуры в сторону увеличения, происходит падение напряжения на диоде. В этом случае, значение температурного коэффициента сопротивления будет отрицательным. Физические свойства датчика позволяют обнаруживать даже незначительные колебания температуры.
Датчики измерения температуры: типы, принцип работы
Классификация термодатчиков по принципу работы
По принципу измерения все датчики измерения температуры подразделяются на:
- Термоэлектрические (термопары);
- Терморезистивные;
- Полупроводниковые;
- Акустические;
- Пирометры;
- Пьезоэлектрические.
Термоэлектрические датчики температуры (термопары)
Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре.
Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений.
Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.
Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.
Видео о датчиках температуры смотрите ниже:
Терморезистивные датчики
Как следует из названия, этот тип датчиков работает по принципу изменения сопротивления проводника при изменении его температуры. Благодаря простой и надежной конструкции, датчики этого типа широко применяются в электронике и машиностроении. Неоспоримым плюсом этих измерителей является высокая точность, чувствительность и простые устройства считывания.
Примером терморезистивного датчика может служить модель 700-101BAA-B00, которая имеет начальное сопротивление в 100 Ом, и диапазон измерений от -70 С° до +500 С°.
Выполнен он с применением платиновой пластинки и никелевых контактов. Широко используется в электронике и промышленных автоматах.
Полупроводниковые термодатчики
Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения.
Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения.
Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.
Акустические датчики температуры
Принцип работы этих устройств – разная скорость звука в среде при разной температуре. Зная изначальные данные, можно рассчитать изменения температуры по скорости прохождения звуковой волны в веществе.
Это бесконтактный метод, позволяющий измерять температуру в закрытых полостях, а также в среде, недоступной для прямого измерения.
Используются такие датчики в медицине и промышленности – там, где проникновение к измеряемому веществу невозможно.
Пирометры (тепловизоры)
Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.
Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.
Пьезоэлектрические датчики температуры
Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока.
При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры.
Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.
Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.
Схемы подключения
Основные отличия в подключении датчика температуры обусловлены сферой его применения и конструктивными особенностями. Итак, в рамках статьи мы рассмотрим несколько самых распространенных и интересных вариантов. Такие соединения выполняются по двухпроводной и трехпроводной схемам.
Рис. 5. Двухпроводная схема подключения
На рис. 5 показан вариант двухпроводного подключения измерительного прибора. Этот принцип рекомендуется для всех датчиков температуры с небольшим расстоянием до контролируемого объекта. Так как сопротивление наиболее чувствительного элемента Rt не сильно изменилось от сопротивления соединительных проводников R1 и R2, соответственно, поправка измерения будет минимальной.
Рис. 6. Трехпроводная схема подключения
На больших расстояниях, от 150 м и более, подключение датчика следует производить по трехпроводной схеме, при которой значительно снижается погрешность сопротивления в проводах R1, R2, R3.
Рис. 7. Схема подключения датчика температуры двигателя
Практически в каждом современном автомобиле осуществляется постоянный контроль температурных параметров мотора. Поэтому использование датчика является обязательным требованием техники безопасности.
По двухпроводной схеме (рисунок 7) датчик подключается одним выводом к отдельно стоящей клемме вытяжки, не имеющей никаких подключений к цепи. А второй выход подключается к блоку сигнализации по образцу.
Рис. 8. Схема подключения цифрового датчика температуры
На рис. 8 показан пример включения цифрового датчика Dallas. Данная модель имеет три вывода, первый из которых по схеме GND подключается к выводу заземления микроконтроллера, второй DATA к выводу PIN 2, а третий к клемме питания +5 В. Между третьей и второй ногой включен резистор 4,7кОм.
Использование термодатчика
Основная функция датчика – своевременное обнаружение отклонений от температурного режима. При наступлении критического перегрева термодатчик подает световой сигнал. Действие прибора основано на сравнении нормального напряжения с повышенным напряжением, возникающим при повышении температуры.
Устройство снабжено инвертирующим входом, соединенным через анод с кремниевым диодом, непосредственно выполняющим функцию датчика температуры. Кроме того, имеется неинвертирующий вход, подключенный к переменному резистору. Предназначен для установки температурного порога при срабатывании сигнала.
В случае изменения температуры в сторону увеличения происходит падение напряжения на диоде. В этом случае значение температурного коэффициента сопротивления будет отрицательным. Физические свойства датчика позволяют ему обнаруживать даже незначительные колебания температуры.
Дополнительные компоненты и схема датчика
Помимо основных диодных устройств, в схему датчика температуры входит ряд дополнительных элементов. В первую очередь это конденсатор, позволяющий защитить устройство от внешних воздействий. Проблема в том, что операционный усилитель имеет повышенную чувствительность к влиянию переменных электромагнитных полей. Конденсатор снимает эту зависимость с помощью отрицательной обратной связи.
При использовании трансистори и зенибалитрона выявляются опорные стабилизированные представления. Здесь используются резисторы с более высоким классом точности при более низком температурном коэффициенте сопротивления.
Таким образом, вся схема приобретает дополнительную устойчивость. При возможных значительных изменениях температурного режима прецизионные резисторы применять нельзя. Они используются только для контроля небольших перегревов.
При удалении датчика от сигнализатора их необходимо соединить между собой двухжильным экранированным проводом. При этом выводы датчика не должны касаться металлических частей контролируемого устройства.
Схема датчика температуры и ее составляющие
Помимо основных диодных устройств, в схему датчика температуры входит ряд дополнительных элементов. Использование датчика температуры
Схемы подключения датчиков PNP и NPN
Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.
Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.
PNP выход датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)
NPN выход датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.
Призываю всех не путаться, работа этих схем будет подробно расписана далее.
На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.
Схемы подключения NPN и PNP выходов датчиков
На левом рисунке – датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.
Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.
Подключение индуктивного датчика
Не подскажите как подключить датчики к плате? Как я понимаю. поскольку они PNP придется добавить еще оптопары или реле для перехода от PNP к NPN ?
Заранее благодарен.
seaw688 Новичок Сообщения: 5Зарегистрирован: 02 апр 2016, 11:44 Репутация: Настоящее имя: Владислав
Работа схемы
Схема устройства представлена на следующем рисунке.
При изменении температуры изменяется сопротивление терморезистора (термистора). Но в нашей схеме мы не будем измерять сопротивление термистора напрямую, вместо этого мы использовали делитель напряжения, одним из резисторов которого является известное сопротивление 10 кОм, а вторым – наш терморезистор. Средняя точка делителя напряжения подключена к аналоговому входу A0 платы Arduino, поэтому при помощи аналогово-цифрового преобразования (АЦП) на этом контакте мы можем определить падение напряжение на терморезисторе в любой момент времени и, следовательно, и его сопротивление. Благодаря этим данным мы по формулам, приведенным ниже в данной статье, можем определить значение температуры.
Терморегулятор для вентилятора.
На рис. 4 показана практическая схема вентилятора охлаждения блока питания. Использование в качестве компаратора операционного усилителя средней мощности К157УД1 позволило подключить пару вентиляторов от блока питания компьютера непосредственно к выходу микросхемы, выходной ток которой равен 0,3А.
Температура включения вентилятора задается резистором R5. Схема работает следующим образом. При нормальной температуре радиатора напряжение на выходе 9 микросхемы DA1 должно быть больше, чем на выходе 8. На выходе DA1, вывод 6 потенциал будет близок к напряжению питания схемы. Напряжение вентиляторов в таких условиях будет практически равно «0».
Вентиляторы выключены. При повышении температуры теплоотводов будет увеличиваться и температура транзистора VT1, что в свою очередь вызовет уменьшение напряжения на неинвертирующем входе 8 микросхемы DA1.
Как только это напряжение станет меньше напряжения, установленного резистором R5, состояние компаратора изменится и напряжение на его выходе упадет примерно до потенциала земли. Вентиляторы включатся. Резистор R7 обеспечивает небольшой гистерезис схемы, исключающий неопределенное состояние выходного напряжения на выходе DA1 при равенстве входных напряжений.
Пластину терморегулятора лучше установить непосредственно на управляемый радиатор, чтобы его микросхема также обдувалась вентилятором. Транзистор VT1 подключается к плате тремя проводами и устанавливается в непосредственной близости от мощного ПП.
Назначение
Необходимость в использовании датчиков, контролирующих температурные параметры, может возникнуть в различных ситуациях. Это универсальные приборы используются повсеместно на предприятиях, где стабильность температурных параметров способно нанести вред качеству выпускаемой продукции либо повлиять на технические характеристики эксплуатируемого оборудования.
Их активно подключают на предприятиях нефтегазового и энергетического комплекса, обеспечивается реализация технологических процессов на литейном, машиностроительном, прокатном производстве, при изготовлении металлоконструкций и выполнении механической обработки. Они незаменимы в транспортной индустрии, на предприятиях пищевой промышленности, в фармацевтики, сельском хозяйстве.
И их помощью:
- контролирует протекание химических реакций;
- проводятся научные исследования;
- обеспечивается поддержание степени нагрева обрабатываемого изделия в заданном диапазоне;
- поддерживаются оптимальные температурные параметры в различных узлах автомобильного и железнодорожного транспорта;
- создаются нужные условия для обработки зерна и при производстве комбикорма;
- измеряется температура конкретного объекта с заданной точностью;
- реализуется обратная связь, благодаря которой удается избежать преждевременного выхода оборудования из строя.
Дизайн корпуса для термометра
Мы в нашем проекте для изготовления корпуса нашего бесконтактного термометра использовали 3D принтер. Корпус термометра состоит из двух частей. Верхняя часть термометра содержит все его основные компоненты: плату Arduino, OLED дисплей, датчик температуры и лазерный диод. Нижняя часть термометра представляет собой ручку, в которой размещены батарейка и кнопка включения термометра. Внешний вид корпуса термометра показан на следующем рисунке.
3D печать компонентов термометра
Представленная 3D модель затем была сохранена в виде STL файлов и конвертирована в G-code (G-код) с помощью программного обеспечения Cura. Для печати компонентов термометра мы использовали 3D принтер Tevo tarantula. После печати компонентов мы скрепили их вместе с помощью шурупов. Если ваш принтер поддерживает возможность печати корпуса термометра целиком, то тогда ваша задача упрощается.
Напечатанные нами элементы корпуса термометра с размещенными внутри электронными компонентами показаны на следующих рисунках.
Мы решили верхнюю часть корпуса термометра оставить открытой для возможности внесения в нее изменений, но вы можете сделать ее закрытой.
Полупроводниковые датчики с цифровым выходом
Технология изготовления полупроводниковых термометров позволяет размещать их на кристаллах интегральных микросхем. Температурные датчики можно встретить в составе микропроцессоров и микроконтроллеров, служебных мониторов микропроцессорных систем, а также в других измерительных устройствах, например датчиках влажности. Возможен и противоположный вариант — добавления различных элементов к датчикам. Примером подобных изделий могут служить датчики температуры с цифровым выходом. В отличие от аналоговых вариантов, эти устройства содержат встроенный АЦП и формирователь сигналов какого-либо стандартного интерфейса. Наибольшую популярность получили интерфейсы SPI, I2C и 1-Wire. Использование термометров с цифровым выходом значительно упрощает схемотехнику измерительного устройства, при незначительном увеличении стоимости относительно аналоговых вариантов. Также использование стандартных интерфейсов позволяет интегрировать датчики в различные системы управления или подключать несколько датчиков на одну шину. Программирование протокола обмена с большинством датчиков не представляется сложной задачей, что обусловило огромную популярность применения этих элементов в любительской практике и мелкосерийном производстве.
Примеры датчиков температуры с цифровым выходом
Модель |
Диапазон |
Точность |
Разрешение |
Интерфейс |
Производитель |
LM75 |
от -55°С до +125°С |
±3°С |
9 бит |
I2C |
National Semiconductor |
LM76 |
от -55°С до +150°С |
±1.5°С |
13 бит |
I2C |
National Semiconductor |
DS18B20 |
от -55°С до +125°С |
±2°С |
9-12 бит |
1-Wire |
MAXIM |
от -55°С до +125°С |
±1°С |
9 бит |
I2C |
MAXIM |
|
DS1722 |
от -55°С до +120°С |
±2°С |
12 бит |
SPI |
Dallas Semiconduction |
от -55°С до +125°С |
±3°С |
12 бит |
I2C |
Microchip |
|
MSP9808 |
от -40°С до +125°С |
±1°С |
12 бит |
I2C |
Microchip |
ADT7320 |
от -40°С до +150°С |
±0.25°С |
16 бит |
SPI |
Analog Devices |
Характеристики интегральных датчиков температуры с цифровым выходом в целом соответствуют характеристикам аналоговых вариантов. При этом в виду применения АЦП, добавляется такой параметр, как разрешение выходных данных. Сегодня можно встретить датчики с разрешением от 9 до 16 бит. Часто данный параметр указывается в виде температуры, определяемой младшим разрядом АЦП. Например, для высокоточного датчика LM76, предоставляющего пользователю 13-битные данные, он составляет 0.0625°С. Не следует путать этот параметр с точностью измерений, так как вес младшего разряда АЦП определяет только точность работы аналогово-цифрового преобразователя, без учета характеристики датчика. Для того же LM76, заявленная точность измерений не превышает ±1°С.
Типовая схема использования цифрового датчика температуры |
Кроме непосредственного измерения температуры, многие цифровые датчики обладают дополнительными функциональными возможностями. Наибольшее распространение получил дополнительный выход термостатирования, позволяющий использовать микросхемы без внешних устройств управления. Также можно встретить входы подключения дополнительных внешних температурных датчиков и дискретные порты ввода вывода.
Другие статьи:
You have no rights to post comments
Термопары как измерительные датчики
Термопара представляет наиболее распространенный вид температурных датчиков. Термопары популярны благодаря нескольким факторам:
- несложному устройству,
- простоте использования,
- скорости реакции,
- малогабаритным размерам.
Термопары обладают непревзойденно широким температурным диапазоном среди всех существующих температурных датчиков (от -200ºC до 2000ºC).
Этот вид термоэлектрических датчиков традиционно строится на соединении двух разнородных металлов — меди и константана, которые свариваются или сжимаются в единый спай.
ТЕРМОПАРА
Принцип действия термопары: J1 – горячий спай; J2 – холодный спай; 1 – металл железо; 2 – металл константан; 3 – поток тепла; V1, V2 – разница напряжений; Vвых – напряжение выхода
Одна часть соединения называется эталонным (холодным) спаем. Другая часть — измерительным (горячим) спаем. Когда оба контакта находятся под разными температурами, на стыке используется напряжение, которое используется для измерения температурного датчика, как показано ниже.
Конструкция термопар
Принцип работы термопары прост. Слияние двух разнородных металлов образует «термоэлектрический» эффект, который дает постоянную разность потенциалов всего в несколько милливольт (мВ).
Разность напряжений между двумя переходами называется «эффектом Зеебека». Поскольку градиент температуры генерируется вдоль проводящих контактов, создающих ЭДС, выходное напряжение термопары становится зависимым от изменений окружающей среды.
Если оба контакта находятся при одинаковой окружающей среде, разность потенциалов на двух переходах равна нулю. Другими словами, напряжение отсутствует, когда V1 = V2. Однако если соединения подключены внутри схемы и находятся под разными температурами, ситуация меняется.
Появляется выход напряжения относительно разницы значений между двумя переходами V1 — V2. Это различие в напряжении будет увеличиваться с температурой до тех пор, пока не будет достигнут пиковый уровень напряжения перехода. Этот момент будет определяться характеристиками двух разных разнородных металлов.
ЦИФРОВОЙ
Конструкция одного из вариантов датчика на термопаре: 1 – спай; 2 – специальная проводка типа «J»; 3 – оболочка их нержавеющей стали; 4 – настраиваемый уплотнительный фитинг; 5 – армирование из нержавеющей стали
Термопары изготавливаются из различных материалов, что позволяет измерять экстремальные температуры в диапазоне от -200°С до + 2000°С.
Благодаря такому большому выбору материалов и диапазону измерений, были разработаны международно-признанные стандарты в комплекте с цветовыми кодами термопары.
Цветовые коды позволят пользователю выбрать правильный датчик на базе термопары для конкретного применения. Ниже в качестве примера приведена таблица с британским цветовым кодом стандартных термопар:
Код | Проводники + / — | Рабочий диапазон, °C | Маркировка цветом |
E | нихром / константан | — 200 … + 900 | коричневый |
J | железо / константан | 0 …+ 750 | чёрный |
K | нихром / алюмоникель | — 200 … + 1250 | красный |
N | никросил / нисил | 0 … + 1250 | оранжевый |
T | медь / константан | — 200 … + 350 | синий |
U | Медь / никелин | 0 … + 1450 | зелёный |
Три наиболее распространенных материала термопар, используемые для общего измерения окружающей среды:
- железо-константан (тип J),
- медь-константан (тип T),
- никель-хром (тип K).
Выходное напряжение от термопары очень мало, всего несколько милливольт (мВ) для изменения разности температур на 10°C. Поэтому по причине малого напряжения, на выходе обычно требуется какая-нибудь форма усиления.
Схемы усиления для термопары
Тип усилителя, дискретного или операционного, необходимо тщательно подбирать, поскольку для предотвращения повторной калибровки термопары с частыми интервалами требуется хорошая стабильность дрейфа.
Это делает предпочтительным применение модулятора и усилителя измерительного типа для большинства применений температурного зондирования.
Преимущества продукции ЭЛЕМЕР-УФА
Компания предлагает большой выбор термопреобразователей (модели ТСМУ, ТСПУ, ТХАУ, ТХКУ, ТПУ), датчиков сопротивления, термопар, биметаллических термометров, отдельные чувствительные элементы для датчиков (платиновые и медные), а также кабели и провода для КИП. Доступны как высокоточные модели (класс точности АА), так и устройства с большим диапазоном рабочих температур, например, термопары с контролируемыми температурами -40. +1800 °С. По индивидуальным заказам возможно изготовление специфических моделей, например, с нижней температурной границей -200 °С.
Компания выпускает измерители РОСА-10 и ИПТВ, предназначенные для контроля температуры и влажности. Все приборы хорошо интегрируются в системы автоматического учёта и контроля благодаря поддержке интерфейса RS-232. Все датчики и преобразователи температуры изготавливаются в пыле- и влагозащищённом исполнении (классы: IP54, IP65 и IP5Х).
Квалифицированные инженеры компании предоставят полную информацию по продуктам КИПиА и помогут выбрать наиболее подходящее для целевых условий устройство. По вопросам подбора, комплектации и приобретения контрольно-измерительного оборудования можно обратиться по телефонам:
- в г. Уфа,
- в г. Казань, (843) 292-14-62
Терморегуляторы
Термостат с регулируемым гистерезисом (CD4001) У большинства схем термостатов есть некоторый гистерезис, — различие в температурах включения нагревателя и его выключения. Чем меньше гистерезис, тем точнее термостат поддерживает температуру, но при этом чаще происходит коммутация нагревательного прибора. Чем больше гистерезис …
1 186 0
Простой терморегулятор для кессона, схема и описание
Термостат предназначен для поддержания заданной температуры в кессоне, используемом для хранения овощей. Схема состоит из датчика температуры, компаратора и силового узла, осуществляющего питание и управление нагревателем. Датчиком температуры служит терморезистор RT1. Вместе с R2 он образует …
0 63 0
Простой термостабилизатор с применением микросхемы и тиристора КУ201
Это устройство предназначено для поддержания температуры в теплоизолированном ящике, установленном набалконе для хранения овощей в зимнее время. Данное устройство, работая в комплекте с нагревательным прибором будет поддерживать в таком овощехранилище температуру около 0°С …
0 96 0
Стабилизатор температуры для жала сетевого паяльника на 220В
Схема самодельного устройства, которое обеспечивает стабильность заданной регулятором температуры стержня электропаяльника на 220В. В качестве датчика температуры применена миниатюрная лампа накаливания. Предлагаемое вашему вниманию устройство — это результат желания автора получить качественные …
0 405 0
Регулятор температуры для паяльников на 4,5-15 В, без термодатчика
Схема самодельного регулятора температуры для низковльтных паяльников на 4,5-15 В, без использования отдельного датчика температуры. Предлагаемый стабилизатор оценивает температуру паяльника по зависящему от неё электрическому сопротивлению нагревателя. Измерение производится в моменты, когда …
1 153 0
Самодельный терморегулятор для хранилища с овощами (КР140УД608)
Принципиальная схема простого терморегулятора для овощехранилища, который можно собрать из деталей своими руками. Для зимнего хранения овощей многие хозяева пользуются специальными деревянными контейнерами с двойными стенками, установленными в подвалах жилых домов. Для того чтобы овощи не …
1 1098 0
Простой терморегулятор для управления теном на 220В (LM311, АОУ160А)
Схема простого самодельного терморегулятора, который предназначен для управления ТЭНом, с целью поддержания температуры в установленных пределах 20…100°C. Одним из важных достоинств данной схемы является полная гальваническая развязка цепей регулировки и термодатчика от электросети. Это …
1 1381 0
Термореле для управления охлаждающим вентилятором (LM311, LM235, 78L08)
Принципиальная схема самодельного термостата на микросхемах LM311, LM235, 78L08, который умеет управлять вентилятором для охлаждения объекта. В некоторых случаях термостат должен управлять не нагревателем, а охладителем, например, вентилятором охлаждения, чтобы не допускать перегрева чего-либо …
1 2830 2
Простое термореле для охлаждающего вентилятора (К561ЛЕ5, КТ972)
Не сложный самодельный модуль управления вентилятором охлаждения, схема собрана на микросхеме К561ЛЕ5. Обычно для управления вентилятором охлаждения применяют схему термостата либо на специализированной микросхеме, но чаще всего на компараторе или операционном усилителе …
1 2524 0
Схема простого термореле (термостата) на мультиплексоре К561КП1, CD4052A
Принципиальная схема самодельного термостата, который построен на основе микросхемы цифро-аналогового мультиплексора К561КП1 (аналог CD4052A). Эта схема может работать как термостат, если на выходе подключить устройство, включающее питание нагревателя, или как индикатор снижения температуры, если …
0 1892 1
1 …
Принципы работы датчика DHT11
Датчик DHT11 можно приобрести как в форме модуля, так и в форме датчика. Отличие между ними заключается лишь в том, что в форме модуля датчик содержит фильтрующий конденсатор и подтягивающий резистор, подключенные к выходному контакту датчика. Если же вы купили его в форме датчика, то их можно добавить внешним способом. Внешний вид датчика температуры и влажности DHT11 показан на следующем рисунке.
Датчик DHT11 поставляется в корпусе синего или белого цвета. Внутри корпуса находятся два компонента, которые используются для измерения температуры и влажности. Одним из этих компонентов является пара электродов – их электрическое сопротивление зависит от состояния влажного вещества, помещенного между ними. Таким образом, их сопротивление обратно пропорционально влажности окружающего воздуха. Чем больше относительная влажность, тем меньше значение сопротивления проводников, и наоборот. Но помните о том, что относительная влажность и фактическая влажность – это не одно и тоже. Относительная влажность показывает содержание воды в воздухе по отношению к его температуре.
Выход датчика DHT11 откалиброван на его заводе изготовителе, поэтому нам в программе не стоит беспокоиться о его калибровке. На выход датчика информация передается по протоколу 1-Wire. Распиновка и схема подключения датчика DHT11 к микроконтроллеру показаны на следующем рисунке.
Всего у датчика DHT11 4 контакта. 1-й контакт (VDD) используется для подачи питания на датчик, 4-й контакт используется для подключения к общему проводу схемы/земле (GND). 2-й контакт является контактом данных, для его подключения необходим подтягивающий резистор сопротивлением 5 кОм, однако резисторы сопротивлением 4,7 и 10 кОм также подойдут. 3-й контакт датчика никуда не подключается – его мы просто игнорируем.
Технические характеристики датчика DHT11 можно узнать в даташите на него.
Как видно из представленной таблицы, датчик DHT11 может измерять температуру в диапазоне 0-50 градусов Цельсия с точностью +/- градуса и относительную влажность (RH) в диапазоне 20-90% с точностью +/- 5%RH. Более подробные технические характеристики датчика DHT11 приведены в следующей таблице.