Расчет электрической сети и выбор аппаратов защиты

Таблица выбора предохранителя по току

Предохранители переменного тока в цепях постоянного тока

Для примера, с учетом указанного выше, проверим, можно ли применить какой-либо конкретный предохранитель в цепи постоянного тока. Приведенная ниже информация относится к прямоугольным предохранителям стандартной серии на 660, 690, 1000 и 1250 В переменного тока. Причем в их каталоге не сообщается о том, могут ли они использоваться в цепях постоянного тока. Тем не менее эти предохранители допустимо применять в цепях с постоянным напряжением. Однако для этого нужно провести определенный проверочный расчет.

Отключающая способность предохранителей зависит от сочетания:

  • максимального приложенного постоянного напряжения;
  • постоянной времени цепи L/R;
  • минимального предполагаемого тока короткого замыкания Ipmin цепи;
  • преддугового интеграла I2t выбираемого предохранителя.

Пример расчета

Исходная информация (рис. 4):

  • Используется предохранитель 170M6149 со следующими параметрами: 1100 A, 1250 В AC, I2t — 575 000 A2с.
  • Прилагаемое напряжение E = 500 В DC.
  • Возможный ток короткого замыкания Ip = E/R = 500/16 = 31,3 кA.
  • Постоянная времени L/R = 40 мс (0,64/16).

Рис. 4. Условная схема рассчитываемой цепи

Расчет проводился в следующем порядке.

Шаг 1

График на рис. 5 показывает зависимость максимума приложенного напряжения постоянного тока от L/R с тремя уровнями тока Ip в качестве параметра.

Рис. 5. Зависимость максимума приложенного напряжения постоянного тока от L/R

Необходимо выбрать кривую 1, 2 или 3 выше точки пересечения известного напряжения и постоянной времени. Находим точку пересечения для прилагаемого напряжения 500 В и постоянной времени, равной 40 мс. Непосредственно выше этой точки пересечения находится кривая 2.

Если выше точки пересечения напряжения и постоянной времени нет никакой кривой, то нужно выбрать плавкий предохранитель с номиналом переменного напряжения более 1250 В.

Шаг 2

Для правильного применения предохранителя необходимо использовать коэффициент F, связывающий I2t с предполагаемым током срабатывания Ipmin. На рис. 6 показана зависимость коэффициента F от L/R. По параметру 2 (выбранной кривой 2) для постоянной времени L/R = 40 мс находим коэффициент F = 26,5.

Рис. 6. Определение промежуточного коэффициента F в зависимости от постоянной времени

Шаг 3

Для прилагаемого напряжения 500 В по пересечению с кривой номинального напряжения используемого предохранителя находим пиковое напряжение дуги при срабатывании предохранителя. Как видно из графика на рис. 7, для данного случая пиковое напряжение дуги при срабатывании предохранителя будет достигать значения 1900 В.

Рис. 7. Определение пикового напряжения дуги при срабатывании предохранителя

Шаг 4

Минимальный уровень тока (Ipmin) цепи должен соответствовать следующему условию:

Ipmin ≥ F × √I2t = 26,5 × √575 000 = 20 кА.

Проверка с конкретными параметрами цепи показала, что отключающая способность выбранного предохранителя достаточна при следующих основных условиях:

  • максимальное прилагаемое напряжение 500 В;
  • постоянная времени 40 мс (допустимо до 46 мс);
  • минимальный необходимый ток срабатывания Ip равен 20 кА (имеем для данной цепи 31,3 кА, что вполне соответствует условию);
  • пиковое напряжение дуги при срабатывании предохранителя 1900 В.

Следует помнить, что приведенная методика проверки применимости относится конкретно к прямоугольным предохранителям стандартной серии на 660, 690, 1000 и 1250 В переменного тока. Возможность использования в цепях постоянного тока других быстродействующих предохранителей необходимо уточнять в справочных данных соответствующих каталогов.

Таким образом, плавкие предохранители допускают работу в цепях как переменного, так и постоянного тока, но с существенной коррекцией максимально допустимых параметров, в частности напряжения. Однако не существует универсальной достоверной методики подбора предохранителя для постоянного тока, основанной на его параметрах для переменного тока. Поэтому производитель рекомендует в цепях постоянного тока применять специально разработанные для этого предохранители или предохранители, в справочных данных которых оговаривается возможность работы в режиме постоянного тока.

Как рассчитать диаметр провода для предохранителя?

В современных электроприборах повсюду встречаются предохранители, или если говорить «по научному» — плавкие вставки. Они обеспечивают защиту сети и собственно самого прибора от коротких замыканий или перегрузки. Конструкция плавких вставок самая разнообразная, как и размеры.

Номинальные токи и напряжения на которые выпускаются предохранители соответствуют стандартным значениям. От величины номинального напряжения предохранителя зависят его габаритные размеры, а именно длина, чем выше номинальное напряжение предохранителя тем больше расстояние между контактами.

Номинальный ток определяется сечением проволоки внутри предохранителя.

Хотя в более дорогих устройствах уже можно встретить и самовосстанавливающиеся электрические предохранители, большинство приборов по-прежнему оснащены обычными предохранителями.

Общие понятия, знакомство с предохранителями трубчатой конструкции

Наиболее распространенные предохранители это так называемые, трубчатые. Они представляют из себя керамическую или стеклянную трубку с металлическими контактами-чашками с торцов. Эти чашки соединены между собой проволокой, сечение которой, как уже говорилось, определяет номинальный ток предохранителя. Этот ток указывается на трубке или одной из контактных частей предохранителя. Например: F0,5A – это значит, что данный предохранитель рассчитан на ток 0,5 ампера.

На электрических принципиальных схемах предохранитель обозначается прямоугольником с проходящей через него прямой линией. Рядом с условным графическим обозначением указывается его позиционное обозначение, например F1 (F – fuse, предохранитель по-английски); и если это не загромождает схему — номинальный ток, например 100 mA.

Принцип работы предохранителя предельно прост. При протекании по проволоке, соединяющей контакты предохранителя, номинального тока, эта проволока разогревается до температуры около 70 ˚С. А вот при превышении тока, проволока разогревается сильнее, и при превышении температуры плавления – расплавляется, т.е. перегорает. Именно по этой причине предохранители еще называют – плавкими или плавкой вставкой. Чем выше ток, тем быстрее нагрев, тем быстрее происходит расплавление, а соответственно и перегорание предохранителя.

Таким образом все плавкие вставки работают на одном и том же принципе – превышение тока в цепи вызывает перегрев и расплавление проволоки внутри предохранителя и как следствие отключение этой цепи от источника питающей сети.

Существует две основных причины перегорания плавких вставок: броски напряжения питающей сети и возникшая неисправность внутри самого электроприбора.

Проверка предохранителя, индикатор неисправности предохранителя

Проверить плавкую вставку можно любой «прозвонкой» или тестером. Задача состоит в том, чтобы убедиться, что цепь предохранителя цела и способна проводить электрический ток.

Проверять предохранитель, во избежание поражения электрическим током, допускается только при отключенном электроприборе!

Кроме этого можно купить или самостоятельно изготовить индикатор перегорания предохранителя, который уведомит вас о том, что предохранитель перегорел.

Схема такого устройства чрезвычайно проста и представлена на следующем рисунке.

Индикатор не светится, если предохранитель исправен, и светится в случае его перегорания.

Индикатор не светится если нагрузка отключена.

Такой схемой очень удобно дополнять блоки питания собственного изготовления.

Немного изменив (упростив) схему можно получить индикатор перегорания предохранителя на неоновой лампе, хотя она и не так эффективно смотрится как светодиод.

Подбор предохранителя по номинальной мощности электроприбора

После проверки предохранителя и определения, что он вышел из строя, необходимо его заменить. А для этого надо узнать его номинал, чтобы выполнить правильную замену.

Если вам известна мощность потребляемая электроприбором, обычно она указывается на шильде прибора, вы можете самостоятельно рассчитать номинальный ток предохранителя по следующей формуле:

Iном = Рмакс / Uном

Номинальный ток (Ампер) равен частному от максимальной мощности (Ватт) электроприбора деленной на номинальное напряжение сети (Вольт).

Например, сгорел предохранитель в телевизоре, разобрать, что указано на корпусе предохранителя, его номинал, не представляется возможным, но на шильде телевизора указана мощность потребления 150 ВА.

Плавкие вставки. Как выбрать и расчет тока. Работа и применение

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).

Повторно использовать плавкие вставки можно, но осторожно…

Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.

Понятие номинала

Чтобы изучить все существующие виды предохранителей, используемых для авто, недостаточно знать про конструкцию и материал. Здесь большое значение играют номиналы, то есть размеры силы тока, который элемент способен через себя пропустить. При выборе предохранителей для авто, которые нужны в качестве замены сгоревшим, всегда и обязательно необходимо смотреть на эту характеристику. Дело всё в том, что на различные электролинии в транспортном средстве подключается разное количество электрозависимого оборудования. У каждого энергопотребителя есть своя определённая мощность. Вполне логично и закономерно, что для цепи питания головной оптики нужна пропускная способность значительно выше, чем в случае с цепью для питания подсветки салона. Это означает, что предохранитель фар обязан иметь большую мощность, чем защитный элемент для салонной подсветки. Номинал, означающий силу тока, способную проходить через предохранитель, измеряют в Амперах. Номинал во многом зависит от того, какой тип предохранителя используется. Флажковые значительно разнообразнее в этом компоненте, и представлены с разными номинальными значениями. А уже достаточно устаревшие пальчиковые конструкции имеют всего 2 вида номиналов. Это 16 и 8 Ампер.

Зависимость цвета от номинала

Опытные автомобилисты могут просто по цвету флажкового предохранителя точно сказать, какой номинал у того или иного предохранителя. Не лишним будет изучить все виды номиналов и типы их цветового обозначения. Представленные разновидности защитных элементов стандартизированы, а потому применяются на всех современных автомобилях. То есть автомобильные предохранители разных марок и моделей всё равно примерно имеют одинаковые цветовые оформления в зависимости от значения номинала. Могут отличаться по оттенкам. Предлагаем вам также ознакомиться с этой характеристикой и узнать, при каком цвете какое номинальное значение силы тока будет у защитного компонента.

  • предохранители на 1 Ампер всего окрашиваются чёрным цветом;
  • если цвет серый, то сила тока, проходящего через элемент, будет 2 А;
  • фиолетовым окрашивают девайсы с номиналом 3 А;
  • 5 А определяются по коричнево-жёлтому цвету;
  • чисто коричневый цвет соответствует 7,5 А;
  • если видите флажок красного цвета, это 10 Ампер;
  • для 15 А используют голубую краску;
  • все жёлтые предохранители идут на 20 А;
  • 25-амперные предохранители делают белыми;
  • зелёные элементы означают, что номинал здесь 30 А;
  • оранжевые флажки предусматривают 40 А;
  • синим цветом идентифицируют предохранители на 60 А;
  • светло-коричневые элементы означают 70 А;
  • 80 А можно узнать по светло-жёлтому цвету;
  • все сиреневые устройства идут на 100 А.

Важно учитывать, что оттенки девайсов могут несколько отличаться. Потому лучше предварительно заглянуть в руководство по эксплуатации конкретно вашего автомобиля, а также внимательно изучить информацию на крышке предохранительного блока и цифровые обозначения на самих предохранителях

Значение номинала рассчитывают исходя из того, какая нагрузка ложится на электроцепь, когда включаются все запитанные через предохранитель потребители, плюс даётся небольшой запас по прочности. Все эти параметры просчитывают ещё на этапе производства. Информация о расположении и назначении каждого отдельно взятого предохранителя детально описывается в руководстве по эксплуатации и в инструкциях по ремонту. Плюс сама крышка блока с предохранителями также содержит полезную и необходимую автомобилисту информацию. Прежде чем менять сгоревший элемент, нужно проверить, какое у него значение номинала, купить такой же флажок, и установить его на место старого элемента защиты.

Как рассчитать диаметр провода для предохранителя?

В современных электроприборах повсюду встречаются предохранители, или если говорить «по научному» — плавкие вставки. Они обеспечивают защиту сети и собственно самого прибора от коротких замыканий или перегрузки. Конструкция плавких вставок самая разнообразная, как и размеры.

Номинальные токи и напряжения на которые выпускаются предохранители соответствуют стандартным значениям. От величины номинального напряжения предохранителя зависят его габаритные размеры, а именно длина, чем выше номинальное напряжение предохранителя тем больше расстояние между контактами.

Номинальный ток определяется сечением проволоки внутри предохранителя.

Хотя в более дорогих устройствах уже можно встретить и самовосстанавливающиеся электрические предохранители, большинство приборов по-прежнему оснащены обычными предохранителями.

Общие понятия, знакомство с предохранителями трубчатой конструкции

Наиболее распространенные предохранители это так называемые, трубчатые. Они представляют из себя керамическую или стеклянную трубку с металлическими контактами-чашками с торцов. Эти чашки соединены между собой проволокой, сечение которой, как уже говорилось, определяет номинальный ток предохранителя. Этот ток указывается на трубке или одной из контактных частей предохранителя. Например: F0,5A – это значит, что данный предохранитель рассчитан на ток 0,5 ампера.

На электрических принципиальных схемах предохранитель обозначается прямоугольником с проходящей через него прямой линией. Рядом с условным графическим обозначением указывается его позиционное обозначение, например F1 (F – fuse, предохранитель по-английски); и если это не загромождает схему — номинальный ток, например 100 mA.

Принцип работы предохранителя предельно прост. При протекании по проволоке, соединяющей контакты предохранителя, номинального тока, эта проволока разогревается до температуры около 70 ˚С. А вот при превышении тока, проволока разогревается сильнее, и при превышении температуры плавления – расплавляется, т.е. перегорает. Именно по этой причине предохранители еще называют – плавкими или плавкой вставкой. Чем выше ток, тем быстрее нагрев, тем быстрее происходит расплавление, а соответственно и перегорание предохранителя.

Таким образом все плавкие вставки работают на одном и том же принципе – превышение тока в цепи вызывает перегрев и расплавление проволоки внутри предохранителя и как следствие отключение этой цепи от источника питающей сети.

Существует две основных причины перегорания плавких вставок: броски напряжения питающей сети и возникшая неисправность внутри самого электроприбора.

Проверка предохранителя, индикатор неисправности предохранителя

Проверить плавкую вставку можно любой «прозвонкой» или тестером. Задача состоит в том, чтобы убедиться, что цепь предохранителя цела и способна проводить электрический ток.

Проверять предохранитель, во избежание поражения электрическим током, допускается только при отключенном электроприборе!

Кроме этого можно купить или самостоятельно изготовить индикатор перегорания предохранителя, который уведомит вас о том, что предохранитель перегорел.

Схема такого устройства чрезвычайно проста и представлена на следующем рисунке.

Индикатор не светится, если предохранитель исправен, и светится в случае его перегорания.

Индикатор не светится если нагрузка отключена.

Такой схемой очень удобно дополнять блоки питания собственного изготовления.

Немного изменив (упростив) схему можно получить индикатор перегорания предохранителя на неоновой лампе, хотя она и не так эффективно смотрится как светодиод.

Подбор предохранителя по номинальной мощности электроприбора

После проверки предохранителя и определения, что он вышел из строя, необходимо его заменить. А для этого надо узнать его номинал, чтобы выполнить правильную замену.

Если вам известна мощность потребляемая электроприбором, обычно она указывается на шильде прибора, вы можете самостоятельно рассчитать номинальный ток предохранителя по следующей формуле:

Iном = Рмакс / Uном

Номинальный ток (Ампер) равен частному от максимальной мощности (Ватт) электроприбора деленной на номинальное напряжение сети (Вольт).

Например, сгорел предохранитель в телевизоре, разобрать, что указано на корпусе предохранителя, его номинал, не представляется возможным, но на шильде телевизора указана мощность потребления 150 ВА.

Плавкие вставки. Как выбрать и расчет тока. Работа и применение

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

Типы плавких предохранителей

По назначению и конструкции плавкие предохранители бывают следующих типов:

  • Вилочные (в основном применяются для защиты электропроводки и приборов в автомобилях);
  • С слаботочными вставками для защиты электроприборов с током потребления до 6 ампер;
  • Пробковые (устанавливаются в щитках жилых домов, рассчитаны на ток защиты до 63 ампер);
  • Ножевые (применяются в промышленности для защиты сетей при токе потребления до 1250 ампер);
  • Газогенерирующие;
  • Кварцевые.

Рассмотренная в статье технология ремонта предназначена для восстановления вилочных, со слаботочными вставками, пробковых и ножевого типа предохранителей.

Трубчатые плавкие предохранители

Предохранитель трубчатой конструкции представляет собой стеклянную или керамическую трубочку, закрытую с торцов металлическими колпачками, которые соединены между собой проволокой калиброванной по диаметру, проходящей внутри трубочки. Внешний вид трубчатых плавких предохранителей Вы видите на фотографии.

К колпачкам проволока приваривается точечной сваркой или припаивается припоем. В предохранителях, рассчитанных на очень большие токи, часто полость внутри трубочки заполняют кварцевым песком.

Автомобильные плавкие предохранители

Предохранители в автомобилях выходят из строя очень редко. Обычно только в случаях, когда отказывает оборудование.
Чаще всего при перегорании . Дело в том, что когда обрывается нить накаливания у лампочки, образуется Вольтова дуга, нить при этом сгорает и становится короче, сопротивление резко уменьшается и величина тока многократно увеличивается.

Бывает, плавкий предохранитель в автомобиле сгорает и при заклинивании стеклоочистителей. Реже при коротких замыканиях в электропроводке. На фотографии Вы видите широко применяемые автомобильные плавкие предохранители ножевого (вилочного) типа. Под каждым предохранителем приведен ток его защиты в амперах.

Перегоревший предохранитель в авто положено заменять предохранителем такого же номинала, но можно его и отремонтировать, заменив перегоревший в предохранителе провод медным соответствующего диаметра. Напряжение бортовой сети автомобиля значения не имеет. Главное – соответствие тока защиты. Если трудно определить номинал сгоревшего авто предохранителя, то можно воспользоваться цветовой маркировкой.

Цветовая маркировка автомобильных предохранителей

Ток защиты, Ампер 5,0 7,5 10,0 15,0 20,0 25,0 30,0 40,0 60,0 70,0
Цвет корпуса предохранителя оранжевый коричневый красный голубой желтый прозрачный зеленый фиолет синий черный

Расчет плавких предохранителей

Каждый предохранитель выполняет функцию защиты электрических цепей и оборудования от перегревания при прохождении тока с показателями, значительно превышающими номинальные. Для того, чтобы правильно обеспечить надежную защиту необходимо заранее делать расчет плавких предохранителей. Данные элементы рассчитаны на эксплуатацию в самых различных условиях, поэтому требуется их индивидуальный подбор для каждого конкретного случая.

  1. Группы предохранителей
  2. Принцип действия плавких предохранителей
  3. Общие правила расчета
  4. Онлайн расчет диаметра провода для плавких вставок предохранителей
  5. Плавкие вставки

Как выбрать сечения проводника

Существует ещё несколько критериев, которым должно соответствовать сечение используемых проводов:

  1. Длина кабеля. Чем больше провод по длине, тем большие в нём наблюдаются потери тока. Это происходит опять-таки в результате увеличения сопротивления, нарастающего по мере увеличения длины проводника. Особенно это ощущается при использовании алюминиевой проводки. При применении медных проводов для организации электропроводки в квартире, длина, как правило, не учитывается — стандартного запаса в 20–30% (при скрытой проводке) с лихвой достаточно, чтобы компенсировать возможные увеличения сопротивления, связанные с длиной провода.
  2. Тип используемых проводов. В бытовом электроснабжении используются 2 типа проводников — на основе меди или алюминия. Медные провода качественнее и обладают меньшим сопротивлением, но зато алюминиевые дешевле. При полном соответствии нормам, алюминиевая проводка справляется со своими задачами не хуже медной, так что необходимо тщательно взвесить свой выбор перед покупкой провода.
  3. Конфигурация электрощита. Если все провода, питающие потребителей, подключены к одному автомату, то именно он и будет являться слабым местом в системе. Сильная нагрузка приведёт к нагреву клеммных колодок, а несоблюдение номинала к его постоянному срабатыванию. Рекомендуется разделять электропроводку на несколько «лучей» с установкой отдельного автомата.

Для того, чтобы определить точные данные для выбора сечения кабелей электрической проводки, необходимо учитывать любые, даже самые незначительные параметры, такие как:

  1. Вид и тип изоляции электрической проводки;
  2. Длина участков;
  3. Способы и варианты прокладки;
  4. Особенности температурного режима;
  5. Уровень и процент влажности;
  6. Максимально возможная величина перегрева;
  7. Разница в мощностях всех приемников тока, относящихся к одной и той же группе. Все эти и многие другие показатели позволяют значительно увеличить эффективность и пользу от использования энергии в любых масштабах. Кроме того, правильные расчеты помогут избежать случаев перегревания или быстрого истирания изоляционного слоя.

Для того, чтобы правильно определить оптимальное кабельное сечение для любых человеческих бытовых нужд, необходимо во всех общих случаях использовать стандартизированные следующие правила:

  • для всех розеток, которые будут монтироваться в квартире, необходимо использовать провода с соответствующим сечением в 3,5 мм²;
  • для всех элементов точечного освещения необходимо использовать кабеля электрической проводки с сечением в 1,5 мм²;
  • что же касается приборов повышенной мощности, то для них следует использовать кабеля с сечением в 4-6 мм².

Если в процессе монтажа или расчетов возникают некоторые сомнения, лучше не действовать вслепую. Идеальным вариантом будет обратиться к соответствующей таблице расчетов и стандартов.

Сечение жил, проводящих ток (мм) Медные жилы проводов и кабелей
Напряжение 220 В Напряжение 380 В
Ток (А) Мощность (кВТ) Ток (А) Мощность (кВТ)
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 80 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 265 57,2 220 145,2
120 300 66 260 171,6

Таблица сечения алюминиевого кабеля

Сечение жил, проводящих ток (мм) Алюминиевые жилы проводов и кабелей
Напряжение 220 В Напряжение 380 В
Ток (А) Мощность (кВТ) Ток (А) Мощность (кВТ)
2,5 22 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44 170 112,2
120 230 50,6 200 132

От верно подобранного сечения кабеля напрямую зависит безопасность объекта — поэтому необходимо подойти к процедуре выбора со всей ответственностью. Рекомендуется также проконсультироваться со специалистами перед приобретением проводов — опытный электрик подскажет наиболее оптимальный вариант.

Экономия при покупке часто выходит боком — нередко владельцы квартир или домов приобретают алюминиевый кабель взамен медного, не учитывая тот факт, что его сечение должно быть больше. В итоге смонтированная электропроводка сильно греется, и в течение достаточно малого времени требуется полная замена проводов, что не слабо ударит по кошельку собственника жилья. К тому же, это ещё и чрезвычайно опасно – многие любители сэкономить остались в итоге без крыши над головой.

Если возникли сомнения в собственных силах, рекомендуется обратиться к специалисту — только в этом случае можно гарантировать безопасность для жильцов и продолжительность работы новой электропроводки.

Ремонт плавкого предохранителя своими руками

Ремонт трубочного плавкого предохранителя

Первый самый простой. Проволока зачищается до блеска и наматывается на каждую чашку по несколько витков, затем предохранитель вставляется в держатель. Этот способ ненадежен, и воспользоваться им можно, как временной мерой. Благодаря своей простоте он позволяет оперативно проверить исправность электроприбора. Если при включении проволока расплавилась, значит дело не в предохранителе, и требуется более квалифицированный ремонт.

Второй способ несколько сложней. Но тоже не требует применения пайки. Нужно прогреть по очереди чашки зажигалкой или на газовой плите и удерживая через ткань руками снять их со стеклянной трубки. Нагревать можно и паяльником. Внутри чашки для хорошего контакта нужно тщательно очистить от остатков клея.

Продеть зачищенную от изоляции проволоку через трубку по диагонали, загнуть ее концы вдоль трубки и надеть на место чашки. Плавкий предохранитель отремонтирован.

Третий способ по сути такой же, как и первых два. Но отремонтированный предохранитель практически не отличается от нового. Ремонт выполняется следующим образом.

Заводская калиброванная проволока при изготовлении предохранителя продевается в отверстия в торцах чашек и фиксируется припоем. Для того, чтобы вставить новую проволоку необходимо паяльником разогреть торцы чашек и зубочисткой или заточенной деревянной палочкой освободить отверстия в торцах чашек от припоя. Далее выполнить описанную выше заводскую операцию.

Бывает отверстия в чашках очень маленького диаметра и сложно их очистить от припоя. Тогда при наличии технической возможности проще просверлить отверстия сверлом диаметром 1-2 мм или расширить граненым шилом

Предложенная технология ремонта предохранителей и плавких вставок с успехом может быть применена для восстановления практически любых типов плавких предохранителей.

Ремонт автомобильного предохранителя ножевого типа

Технология ремонта автомобильного предохранителя ничем не отличается от технологии ремонта трубчатого, даже проще, так как нет необходимости заниматься его разборкой.

Сначала нужно наждачной бумагой или надфилем зачистить ножи предохранителя у его основания полоской в несколько миллиметров и залудить эти места припоем.

При залуживании столкнулся с тем, что при использовании спирто-канифольного флюса припой не хотел растекаться по поверхности ножей. Пришлось применить флюс «ФИМ», предназначенный для пайки меди, серебра, константана, платины и черных металлов. Основой флюса является ортофосфорная кислота. Я его всегда использую для пайки, если канифоль не подходит. Остатки флюса ФИМ удаляются промывкой водой.

Предохранитель был рассчитан на ток защиты 10 А, поэтому в соответствии с приведенной выше таблицей для ремонта был взят провод ⌀0,25 мм. Проводу была придана форма петли, как показано на фотографии, и концы его залужены припоем.

После всех подготовительных работ осталось только завести петлю провода внутрь корпуса предохранителя и припаять концы к ножкам.

Растекшийся припой можно срезать ножом, удалить с помощью наждачной бумаги или сточить надфилем.

Автомобильный предохранитель отремонтирован, и теперь его можно повторно использовать для защиты цепей в электропроводке автомобиля. Если после установки отремонтированного предохранителя он опять перегорел, то нужно искать неисправность в электрооборудовании автомобиля.

Как правильно выбрать предохранитель?

Каждый из нас примерно понимает, зачем нужен предохранитель и как его выбрать. Мы все когда-либо были рассержены или разочарованы перегоревшим предохранителем. Иногда нам хотелось бы, чтобы в наших цепях не было такого компонента. С появлением в 1800-х годах электрического распределения плавкие вставки стали важным средством предотвращения пожаров. Электронные системы нуждаются в них по той же причине, плюс плавкие вставки защищают дорогостоящие компоненты электрических систем. Электронные системы имеют те же проблемы с огнем, что и электрические.

Какой-то мастер придумал фразу: «Транзистор за двадцать долларов всегда сгорит, чтобы защитить предохранитель за десять центов». Предохранитель не предназначен для защиты транзистора. Он был бы еще менее подходящим для защиты лазерного диода, так как плавкие вставки разрушаются с помощью нескольких наносекунд перегрузки по току.

Предохранители идеально подходят для защиты проводов и дорожек печатных плат от расплавления и возгорания. Это может произойти, когда возникают контакты между проводами из-за поврежденной изоляции или магнитного провода, который закорочен из-за вибрации и сокращений под действием переменного магнитного поля. Другая распространенная неисправность связана с электролитическими и танталовыми конденсаторами, которые могут выйти из строя при коротком замыкании.

Вместо того, чтобы рассчитывать на плавкую вставку для защиты электронных компонентов вашего изделия, вы можете питать разрабатываемую вами цепь от лабораторного источника питания и устанавливать ограничение на выходной ток. Вы можете установить ток источника питания меньше того, который расплавил бы провода или разрушил p-n переходы внутри транзистора или интегральной микросхемы IC. Тогда ваша испытательная схема просто нагреется (в случае неправильной сборки или ошибки в расчетах), а не взорвется. После того, как все заработало, вы можете добавить предохранитель.

Общие правила расчета

Для правильного расчета предохранителей необходимо учитывать номинальное напряжение. Это значение должно быть таким, чтобы предохранитель разорвал электрическую цепь. Главный показатель – минимальное ожидаемое напряжение для базы и предохранителя.

Еще один важный показатель, который необходимо учитывать при расчетах, – это напряжение отключения. Этот параметр представляет собой мгновенное значение напряжения, которое появляется после сгорания самого предохранителя или предохранителя. Как правило, учитывается максимальное значение этого напряжения.

Кроме того, учитывается ток плавления, от которого зависит диаметр установленной внутри проволоки. При расчете предохранителя этот показатель имеет свое значение для каждого металла и подбирается с помощью таблицы или калькулятора. Материал и размеры вставок должны обеспечивать требуемые защитные свойства. Длина вставки не должна быть чрезмерной, поскольку это влияет на гашение дуги и общие температурные характеристики.

Номинальная мощность нагрузки обычно указывается на этикетке продукта. На основе этого параметра номинальный ток предохранителя рассчитывается по формуле: Inom = Pmax / U, где Inom – номинальный ток защиты, Pmax – максимальная мощность нагрузки, а U – напряжение питания.

Понравилась статья? Поделиться с друзьями:
Зинг-Электро
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: