Контроллеры
Известный факт, что полное разряжение, как и чрезмерная зарядка, влияют на дальнейшую работу аккумуляторных батарей. Особо чувствительными являются свинцово-кислотные аккумуляторные панели. Для предохранения батарей от этих нагрузок и служит регулятор. При максимальной зарядке АКБ (аккумуляторной батареи) с помощью контроллеров уровень тока будет понижен, при понижении заряда до критических значений подача энергии будет остановлена.
Типы контроллеров
Существует несколько типов регуляторов: On/Off, ШИМ и МРРТ.
Перед подбором устройства необходимо ответить на два основных вопроса:
Какое напряжение на входе?
Какой номинальный ток?
Автоматический контроллер заряда с регулятором MPPT для солнечных батарей
Как и у большинства устройств, обязательно наличие прочностного запаса. Максимальное напряжение контроллера должно превышать общее напряжение на 20 процентов. Для определения запаса номинального тока нужно к величине тока короткого замыкания солнечных батарей прибавить 10–20 процентов, также данное значение зависит от типа регулятора. Эти данные можно найти в технических паспортах контроллеров. Например, для контроллера солнечных батарей SOL4UCN2 (ШИМ) выходное напряжение тока принимает значения 3 вольта, 6 вольт, 12 вольт. Также возможно подобрать контроллеры с выходным напряжением 36 или 48 вольт. К тому же необходимо предусмотреть инвертор для преобразования тока.
Контроллеры On/Off
В линейке контроллеров являются простейшими и, соответственно, недорогими. Когда заряд аккумулятора достигает предельного значения, контроллер разрывает соединение между солнечной панелью и батареей посредством реле. В действительности батарея не полностью заряжена, что оказывает влияние на дальнейшую работоспособность аккумулятора. Поэтому несмотря на низкую стоимость, лучше не использовать регулятор данного типа.
Контроллер On/Off для солнечных батарей
ШИМ (PWM) – контроллеры
Для этого типа контроллера применена технология широтно-импульсной модуляции. Преимуществом является прекращение заряда аккумуляторной батареи без отсоединения солнечных модулей, что позволяет продолжить зарядку АКБ до максимального уровня. Рекомендованная область применения – системы с небольшой мощностью (до 48 вольт).
МРРТ – контроллеры
Maximum power point tracker контроллер появился 80-х годах. Самым эффективным по праву считается именно этот тип контроллера. Он отслеживает максимальный энергетический пик и понижает напряжение, но увеличивает силу тока, не изменяя мощность. Благодаря высокому коэффициенту полезного действия МРРТ – контроллеры сокращают срок окупаемости солнечных станций. Выходные напряжения варьируются от 12 до 48 вольт.
Самодельные контроллеры
Безусловно, можно сделать контроллер своими руками. Прототипом служит . В его схеме с помощью реле коммутируется сигнал, полученный с ветрогенераторов или солнечных батарей. Реле управляется посредством пороговой схемы и полевого транзисторного ключа. Подстроечные резисторы регулируют пороги переключения режима.
Схема для создания контроллера своими руками
В данной схеме использовано 8 резисторов в качестве нагрузки для утилизации энергии. Эта схема является первоначальной, ее можно упростить самостоятельно, а можно прибегнуть к помощи достоверных источников. Несмотря на очевидную простоту конструкции, не рекомендуется использовать контроллеры, созданные своими руками, во избежание неблагоприятных последствий, таких как порча АКБ, например (при напряжениях 36–48 вольт).
Гибриды
Гибридным контроллером считается контроллер, использующий энергию ветра и солнца. Его преимуществом является возможность использование двух источников тока (ветрогенератора или солнечной батареи) совместно или попеременно. Незаменим для автономных производств.
Дополнительные функции аккумуляторных батарей
Прогресс не стоит на месте и благодаря ему можно подобрать контроллер с нужными характеристиками для каждого потребителя индивидуально. Модель контроллера может включать в себя дисплей с выводом информации о батарее, реле, солнечных панелях, количестве заряда, напряжении (вольт), токе. Также может присутствовать система оповещения при приближении разрядки и таймер для активации ночного режима. Существуют контроллеры с возможностью подключения к компьютеру.
Контроллер с возможностью подключения к компьютеру I-Panda SMART 2
Подбор контроллера по напряжению и току солнечных батарей и акб
Большинство выпускаемых солнечных батарей имеет номинальное напряжение 12 или 24 вольта. Это сделано для того чтобы можно было заряжать аккумуляторные батареи без дополнительного преобразования напряжения. Аккумуляторные батареи появились значительно раньше солнечных батарей и имеют распространённый стандарт номинального напряжения на 12 или 24 вольта. Соответственно большинство контроллеров для солнечных батарей выпускается с номинальным рабочим напряжением равным 12 или 24 вольта, а также двухдиапазонные на 12 и 24 вольта с автоматическим распознаванием и переключением напряжения.
Номинальное напряжение на 12 и 24 вольта достаточно низкое для мощных систем. Для получения необходимой мощности приходится увеличивать количество солнечных батарей и аккумуляторов, соединяя их в параллельные контуры и значительно увеличивая силу тока. Увеличение силы тока ведет к нагреву кабеля и электрическим потерям. Необходимо увеличивать толщину кабеля, возрастает расход металла. Также необходимы мощные контроллеры, рассчитанные на высокий ток, такие контроллеры получаются очень дорогими.
Чтобы исключить возрастание тока, контроллеры для мощных систем делают для номинально рабочего напряжения на 36, 48 и 60 Вольт. Стоит заметить, что напряжение контроллеров кратно по напряжению 12 вольтам, для того чтобы можно было подключать солнечные батареи и акб в последовательные сборки. Контроллеры с кратным напряжением выпускаются только для технологии зарядки ШИМ.
Как видно ШИМ контроллеры выбираются с напряжением кратным 12 вольтам, причем в них входное номинальное напряжение от солнечных батарей и номинальное напряжение контура подключенных аккумуляторов должно быть одинаковым, т.е. 12В от СБ – 12В к АКБ, 24В на 24, 48В на 48В.
У контроллеров MPPT входное напряжение может быть равным или произвольно выше в несколько раз без кратности 12 Вольтам. Обычно MPPT контроллеры имеют входное напряжение от солнечных батарей от 50 Вольт для простых моделей и до 250 вольт для мощных контроллеров. Но следует учесть, что опять же производители указывают максимальное входное напряжение, и при последовательном подключении солнечных батарей следует складывать их максимальное напряжение, или напряжение холостого хода. Проще говоря: входное максимальное напряжение любое от 50 до 250В, в зависимости от модели, номинальное или минимальное входное при этом будет 12, 24, 36 или 48В. При этом выходное напряжение для заряда АКБ у контроллеров MPPT стандартное, часто с автоматическим определением и поддержкой напряжений на 12, 24, 36 и 48 Вольта, иногда 60 или 96 вольт.
Существуют серийные промышленные очень мощные MPPT контроллеры с входным напряжением от солнечных батарей на 600В, 800В и даже 2000В. Данные контроллеры также можно свободно приобрести у российских поставщиков оборудования.
Окромя выбора контроллера по рабочему напряжению, контроллеры следует выбирать по максимальному входному току от солнечных батарей и максимальному току заряда акб.
Для ШИМ контроллера, максимальный входной ток от солнечных батарей будет переходить в зарядный ток АКБ, т.е. контроллер не будет заряжать большим током, чем выдают подключенные к нему солнечные батареи.
В MPPT контроллере все иначе, входной ток от солнечных батарей и выходной ток для заряда акб – это разные параметры. Эти токи могут быть равными, если номинальное напряжение подключенных солнечных батарей равно номинальному напряжению подключенных акб, но тогда теряется суть преобразования MPPT, и эффективность контроллера уменьшается. В MPPT контроллерах номинальное входное напряжение от солнечных батарей должно быть выше номинального напряжения подключенных АКБ оптимально в 2-3 раза. Если входное напряжение выше ниже чем в 2 раза, к примеру, в 1,5 раза, то будет меньшая эффективность, а выше более чем в 3 раза, то будут большие потери на разницу преобразования напряжения.
Соответственно входной ток всегда будет равен или ниже максимальному выходному току заряда АКБ. Отсюда следует, что MPPT контроллеры необходимо выбирать по максимальному зарядному току АКБ. Но чтобы не превысить данный ток, указывается максимальная мощность подключаемых солнечных батарей, при номинальном напряжении контура подключенных АКБ. Пример для контроллера заряда MPPT на 60 Ампер:
- 800Вт при напряжении АКБ электростанции 12В;
- 1600Вт при напряжении АКБ электростанции 24В;
- 2400Вт при напряжении АКБ электростанции 36В;
- 3200Вт при напряжении АКБ электростанции 48В.
Следует заметить, что данная мощность при 12 вольт указана для зарядного напряжения от солнечных панелей в 13 — 14 Вольт, и кратна для остальных систем с напряжениями на 24, 36 и 48вольт.
Гибридные виды для ветростанций
В Скандинавии, Германии, Испании, США ветрогенераторы покрывают приличную часть общих потребностей государства в электричестве. В них также находится место для такого узла, как контроллер заряда.
А в случае, если ЭС является комбинированной (на солнечных панелях и ветряках), используется так называемый гибридный модуль.
Он также может работать по принципу ШИМ или МРРТ . Главным отличием гибридного контроллера является использование несколько других вольтамперных характеристик. Происходит это потому, что ветрогенераторы имеют большие скачки выработки и потребления энергии, а батареи, в свою очередь, значительно перегружаются. Контроллер сбрасывает лишнюю энергию на сторону (например, на блок-тэны).
Простейшие контроллеры типа Откл/Вкл (или On/Off)
Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.
Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.
Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.
2 Структурные схемы контроллеров
Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.
2.1 Вариант #1 – устройства PWM
Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.
Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность
Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.
Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.
Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.
2.2 Вариант #2 – приборы MPPT
Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.
Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами
Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.
Схемой таких устройств реализуются несколько методов контроля:
- возмущения и наблюдения;
- возрастающей проводимости;
- токовой развёртки;
- постоянного напряжения.
А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.
Контроллер Майкла Дэвиса
Это устройство предназначено для более мощных солнечных панелей. Оно прекрасно справляется с регулированием зарядки аккумуляторов током, произведенным ветрогенератором. Поскольку аппарат имеет достаточно простое строение, его можно изготовить своими руками.
Есть два варианта этого контроллера. Первый является старым и несовершенным. Второй — простым и более эффективным. Его схема на рисунке:
Для его создания нужно подготовить:
- 2 регулятора: 7805 (К142ЕН5А) (IC1) и NE555 (IC1);
- 2 стандартные кнопки (РВ1 и РВ2);
- 2 LED-лампочки. Одна зеленого цвета, другая – желтого;
- 1 автомобильное реле на 12 В (RLY1). Желательно подбирать такое реле, которое позволяет коммутировать токи 30-40 А;
- 1 диод 1N4001. Можно взять любой подобный;
- 2 подстроечных резистора 10К. На схеме они обозначены, как R1 и R2. Лучше, чтобы они были многооборотными. Разрешается брать такие резисторы, интервал подстройки которых составляет 0-100К. Однако элементы с 10К дают лучшую подстройку;
- 3 резистора 1К Ом 1/8 Вт 10% (обозначены R3-R5);
- 1 резистор 330 Ом (R6);
- 1 резистор 100 Ом (R7);
- 2 транзистора 2N2222 и IRF540. Обозначены как Q1 и Q2 соответственно. Вместо первого транзистора можно взять 2N3904, NTE123 или любой другой, имеет биполярную NPN структуру и аналогичные характеристики. Так же можно поступить со вторым транзистором;
- 2 конденсатора 0,33 uF и 0,1uF. Оба рассчитаны на 35 V. Вид конденсатора может быть любой.
Все эти элементы размещают на плате и припаивают. После чего проводят первичную регулировку схемы. Она заключается в выставлении уровней напряжения на контрольных точках ТР1 и ТР2. Напряжение на первой должно равняться 1,667 В, на второй — 3,333 В. Эти уровни выставляют, настраивая кнопки. Также на каждую цепочку питания следует установить предохранитель на соответствующий ток.
Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти
Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью — найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.
Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний
Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.
Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные — из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.
Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы — как и качественные устройства, их можно купить на зарубежных торговых площадках
Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.
Можно ли заменить фотоэлектрические пластины чем-то другим
Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.
Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов
Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись. Дата: 25 сентября 2021
Какой контроллер выбрать для солнечной батареи
Исходя из выше представленного описания, можно понять, что ON/OFF контролер не подходит для длительного использования. Его можно установить только в качестве тестера для работы всей системы. Его использовать, мы не рекомендуем, ведь цены на АКБ помнят все.
Лучше смотреть на ШИМ или PWM или MPPT, они являются более функциональными. Конечно, на них кусается и стоимость, но оно того стоит. Если говорить за технологию MPPT то она существенно продлевает жизнь АКБ, ведь заряд держится на уровне 93-97%, у ШИМ или PWM 60-70%.
Цена на контроллеры
Любая солнечная электростанция собирается только для экономии, так что, переплачивать лишние деньги для покупки дорогих комплектующих – это плохо. Интересная статья по теме: как выбрать недорогой аккумулятор для солнечной электростации.
Мы собрали для вас два самых популярных контролера для солнечных батарей, которые являются универсальными и лучшими в соотношении цена/качеств:
- MPPT Tracer 2210RN Solar Charge Controller Regulator он стоит 75 долларов, универсальный, распознает день/ночь, есть сертификаты качества и отличный КПД – 93%.
- Solar controller 20a его мы выделили из-за низкой цены – всего 20 долларов. Работает по технологии ШИМ или PWM, можно управлять с помощью компьютера. Установлен простой и понятный интерфейс, он позволяет с легкостью устанавливать все стандартные настройки.
Применяемые на практике виды
- Устройства серии PWM.
- Устройства серии MPPT.
Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики. Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.
Одна из популярных у пользователей моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей
Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность. Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.
Контроллер типа MPPT:
- имеет более высокую стоимость;
- обладает сложным алгоритмом настройки;
- даёт выигрыш по мощности только на панелях значительной площади.
Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.
Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных
Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).
Схема подключения модуля
Клик для увеличения схемы
После снятия задней стенки можно получить доступ к печатной плате устройства.
В качестве аккумулятора была выбрана батарея 12 В емкостью 1,2 А/ч, потому, что она у автора была. На самом деле в ясный солнечный день панель сможет зарядить 2-3 таких аккумулятора. Для уменьшения опасности короткого замыкания в цепь аккумулятора включен плавкий предохранитель. Для недопущения разряда аккумулятора через солнечную панель при малом освещении последовательно с панель включен диод Шотки типа IN5817. Когда аккумулятор полностью заряжен ток, отбираемый от солнечной батареи, составляет около 50 мА, при напряжении 19 В.
В качестве тестовой нагрузки использована самодельная светодиодная фитолампа на 4-х последовательно включенных фитосветодиода мощностью 1 Вт, последовательно со светодиодами включен резистор типа МЛТ-2, сопротивлением 30 Ом. При напряжении 12,6 В, ток потребляемый лампой составит около 60 мА. Таким образом аккумулятор на 1,2 А*ч позволяет питать эту лампу около 20 часов.
В целом собранная автономная конструкция оказалась вполне работоспособной с технической точки зрения. Но с экономической точки зрения, учитывая стоимость солнечной батареи, аккумулятора и блока управления картина получается безрадостной. Солнечная батарея стоит 2700 р, аккумулятор 12 В 1,2 А/ч стоит около 500 р, блок управления 400 р. Так же автор пробовал использовать два последовательно включенных аккумулятора 6 В 12 А/ч (они будут иметь стоимость около 3000 р), такой аккумулятор у автора заряжается за 3-4 солнечных дня, при этом ток зарядки доходит до 270 мА.
Общая стоимость использованного оборудования в минимальной комплектации 3600 р. Как несложно видеть, данная фитолампа потребляет около 0,8 Вт. При тарифе 3,5 р за 1 кВт/ч, лампа должна работать от сети при КПД источника питания 50%, около 640000 ч или 73 года только для того, что бы можно было оправдать затраты на оборудование. При этом за такой промежуток времени, несомненно, придется несколько раз полностью сменить оборудование, деградацию аккумулятора и фотоэлементов ни кто не отменял.
Критерии выбора контроллера
Контроллер процесса зарядки аккумуляторов для солнечных панелей является очень важным элементом системы энергоснабжения. Разнообразный ассортимент моделей может немного озадачить при выборе устройства.
Подобрать подходящую модель проще, если при покупке взять во внимание следующие критерии:
- Показатель входного напряжения. Данное значение выбранного прибора должно быть выше примерно на 20% показателей напряжения батарей, которые генерируют преобразователи солнечного света в ток.
- Значение общей мощности батарей. Оно не должно быть выше показателя тока на выходе.
Современные модели имеют ряд дополнительных функций, предназначенных для повышения безопасности при использовании регуляторов процесса зарядки. Устройства управления процессами зарядки-разрядки могут иметь защиту от воздействия погодных условий, излишней нагрузки, коротких замыканий, перегрева, а также от неправильного подключения (это касается несоблюдения полярности). Поэтому выбирать прибор следует не только в зависимости от описанных критериев, но и с учетом функций защиты, которые лучшим образом обеспечат безопасную эксплуатацию устройства.
Как вам статья?
Мне нравитсяНе нравится