Какие есть примеры?
Определенная схема позволит вам сделать правильный выбор сечения кабеля для своей квартиры. Прежде всего, спланируйте места, в которых будут размещаться источники света и розетки. Также следует выяснить, какая техника будет подключаться к каждой группе. Это позволит составить план подсоединения всех элементов, а также рассчитать длину проводки. Не забывайте прибавлять по 2 см на стыки проводов.
Определение сечения провода с учетом разных видов нагрузки
Применяя полученные значения, по формулам вычисляется значение силы тока и по таблице определяется сечение. Например, требуется узнать сечение провода для бытового прибора, мощность которого 2400 Вт. Считаем: I = 2400/220 = 10,91 А. После округления остается 11 А.
Схемы прокладки кабелей
Чтобы определить точный показатель площади сечения применяются разные коэффициенты. Особенно данные значения актуальны для сети 380 В. Для увеличения запаса прочности к полученному показателю стоит прибавить еще 5 А.
Схема трехжильной проводки
Стоит учитывать, что для квартир применяются трехжильные провода. Воспользовавшись таблицами, можно подобрать самое близкое значение тока и соответствующее сечение провода. Можно посмотреть какое нужно сечение провода для 3 кВт, а также для других значений.
У проводов разного типа предусмотрены свои тонкости расчетов. Трехфазный ток применяется там, где нужно оборудование значительной мощности. Например, такое используется в производственных целях.
Для выявления нужных параметров на производствах важно точно рассчитать все коэффициенты, а также учесть потери мощности при колебаниях в напряжении. Выполняя электромонтажные работы дома, не нужно проводить сложные расчеты. Следует знать о различиях алюминиевого и медного провода
Медный вариант отличается более высокой ценой, но при этом превосходит аналог по техническим характеристикам. Алюминиевые изделия могут крошиться на сгибах, а также окисляются и имеют более низкий показатель теплопроводности. По технике безопасности в жилых зданиях используется только продукция из меди
Следует знать о различиях алюминиевого и медного провода. Медный вариант отличается более высокой ценой, но при этом превосходит аналог по техническим характеристикам. Алюминиевые изделия могут крошиться на сгибах, а также окисляются и имеют более низкий показатель теплопроводности. По технике безопасности в жилых зданиях используется только продукция из меди.
Основные материалы для кабелей
Так как переменный ток передвигается по трем каналам, то для монтажных работ используется трехжильный кабель. При установке акустических приборов применяются кабели, имеющие минимальное значение сопротивления. Это поможет улучшить качество сигнала и устранить возможные помехи. Для подключения подобных конструкций применяются провода, размер которых 2*15 или 2*25.
Подобрать оптимальный показатель сечения для применения в быту помогут некоторые средние значения. Для розеток стоит приобрести кабель 2,5 мм2, а для оформления освещения – 1,5 мм2. Оборудование с более высокой мощностью требует сечения размером 4-6 мм2.
Варианты соединения проводов
Специальная таблица окажет помощь, если возникают сомнения при расчетах. Для определения точных показателей нужно учитывать все факторы, которые оказывают влияние на ток в цепи. Это длина отдельных участков, метод укладки, тип изоляции и допустимое значение перегрева. Все данные помогают увеличить производительность в производственных масштабах и более эффективно применять электрическую энергию.
Строение кабеля
Кабели AWG имеют такое же строение, как провода, что применяются в России. В основе 2 элемента:
- токоведущая жила,
- слой защитной изоляции.
Токовод выполняется из электротехнической меди. За счет ее химической чистоты удается добиться минимального удельного сопротивления готового изделия. Жилы бывают однопроволочными (монолитными) и многопроволочными (гибкими). Что выбрать, зависит от ситуации. Если монтаж сложный и предстоит делать много изгибов провода, то необходимо применять гибкие кабели. Если проводка должна помнить форму — то монолитные.
Дополнительно токоведущие жилы могут лудиться слоем олова. Это повышает их антикоррозионные свойства и облегчает будущую пайку.
Изоляция выполняется из вспененного полиэтилена. В отдельных модификациях в состав вносятся добавки, повышающие эластичность или морозоустойчивость. Под изоляцией может располагаться экранирующий слой. В таком случае проводник становится устойчивым к внешним помехам.
Рабочие характеристики
Проводка стандарта AWG обладает теми же техническими характеристиками и условиями эксплуатации, что и знакомые российским электрикам кабеля. Поэтому у этих видов проводниковой продукции есть общие черты:
- Изоляция кабелей не должна иметь повреждений. Этот момент следует проверить при укладке или монтаже проводки. Трещины и отверстия в защитном изолирующем слое приведут к попаданию в полости кабеля влаги и риску его отгорания.
- Провод AWG подбирается по допустимому току и рабочему напряжению. Если превысить значение тока, то изоляция кабеля расплавится. А если переборщить с напряжением, то случится пробой изоляции.
- По стенам кабели прокладываются в отдельной противопожарной защите. Например, в монтажном канале или гофре. Данное правило особенно актуально для деревянных строений.
- Не должно быть открытых участков токоведущих жил. Независимо от напряжения. Все соединения герметизируются изоляционной лентой или термоусаживаемыми трубками.
Термоусадочный водонепроницаемый встык для AWG
С точки зрения конструкции AWG не отличается от других видов монтажных проводов. Особенность имеется только в маркировке. Чем выше калибр провода, тем он тоньше. Подобная система противоположна той, что принята в странах постсоветского пространства.
Провод AWG универсальный. Он пригоден для монтажа систем освещения, автоэлектрики, звуковых и сигнальных сетей. Применяя его, главное, не запутаться в диаметре токоведущих жил. Существуют специальные формулы для расчета необходимого сечения проводки и его перевода в привычные кв. мм.
На рынке электроматериалов, кроме проводов со стандартной российской маркировкой, нередко встречаются кабеля с обозначением AWG. Проводники данного класса предназначаются для решения конкретных задач и обладают индивидуальными техническими характеристиками.
Таблица перевода кабеля и провода AWG в миллиметры
Чтобы не пересчитывать калибр каждого проводника на диаметр в квадратных миллиметрах на калькуляторе, можно прибегнуть к помощи таблицы с готовыми цифрами:
Калибр | Диаметр мм | Поперечное сечение мм2 |
0000 | 11,68 | 107 |
000 | 10,40 | 85 |
00 | 9,26 | 67,4 |
8,25 | 53,5 | |
1 | 7,34 | 42,4 |
2 | 6,54 | 33,6 |
3 | 5,82 | 26,7 |
4 | 5,18 | 21,2 |
5 | 4,62 | 16,8 |
6 | 4,11 | 13,3 |
7 | 3,66 | 10,5 |
8 | 3,26 | 8,37 |
9 | 2,90 | 6,63 |
10 | 2,58 | 5,26 |
11 | 2,30 | 4,17 |
12 | 2,05 | 3,31 |
13 | 1,82 | 2,62 |
14 | 1,62 | 2,08 |
15 | 1,45 | 1,65 |
16 | 1,29 | 1,31 |
17 | 1,15 | 1,04 |
18 | 1,02 | 0,82 |
19 | 0,91 | 0,65 |
20 | 0,81 | 0,51 |
21 | 0,72 | 0,41 |
22 | 0,64 | 0,32 |
23 | 0,57 | 0,25 |
24 | 0,51 | 0,20 |
25 | 0,45 | 0,16 |
26 | 0,40 | 0,12 |
27 | 0,36 | 0,10 |
28 | 0,32 | 0,08 |
29 | 0,28 | 0,06 |
30 | 0,25 | 0,05 |
31 | 0,22 | 0,04 |
32 | 0,20 | 0,03 |
33 | 0,18 | 0,02 |
34 | 0,16 | 0,0201 |
35 | 0,14 | 0,016 |
36 | 0,12 | 0,012 |
37 | 0,11 | 0,01 |
38 | 0,10 | 0,007 |
39 | 0,08 | 0,006 |
40 | 0,07 | 0,005 |
Как перевести дюймы в миллиметры
Разобравшись, чему равен 1 дюйм, постараемся применить полученные знания на практике. К примеру, у вас есть импортная труба, диаметр которой равен 3″. Как подобрать подходящие для него гайки и другие комплектующие? Здесь не возникнет никаких проблем – достаточно умножить 3″ на количество сантиметров в дюйме – 25,4 миллиметра. В результате вы получите 76,2 миллиметра. Чаще всего измерения округляются до целых чисел, то есть результат составит 76 миллиметров.
Труба имеет более крупный диаметр, например, 10″? И здесь проблем не возникнет 10*25,4=254 миллиметра или 25,4 сантиметра.
Попробуем более сложные примеры. Распространены трубы диаметром в ¼”. Производим нехитрое вычисление: ¼*25,4=6,35 миллиметра.
Нередко диаметр имеет дробное значение, к примеру, 2,5″. Как провести вычисления в таком случае? И снова решаем привычную задачу – 2,5*25,4=63,5 миллиметра.
Как вы могли убедиться, зная, сколько см в 1 дюйме, можно без особого труда произвести все требуемые расчеты и получить нужный результат.
Назначение кабелей
Проводники AWG применяются в тех же отраслях, что и любые другие аналогичные по строению. Чаще всего это следующие сферы применения:
- Построение линий связи. При наличии экрана кабели могут использоваться для прокладки интернета или телефонной сети.
- Использование в аудиотехнике. С помощью AWG 22 и 24 передается звук в некоторых моделях наушников. Данный акустический провод подходит для подобных целей из-за высокой гибкости.
- Большая часть проводки в автомобилях выполняется на проводах марки AWG. Обычно используется витая пара калибра 23.
- Подключение светодиодных лент и прочих низковольтных диодных источников освещения. За счет малой толщины и гибкости удобно укладывается в пазы для проводки. Такое свойство позволяет выполнить скрытую линию питания.
- Тонкие провода калибром менее 24 применяются в системах сигнализации и автоматики. Из них проводят линии для датчиков температуры, давления и влажности промышленного оборудования.
Акустический провод AWG
Условия эксплуатации
Кабели AWG обладают тем же изоляционным слоем и внешней оболочкой, что и традиционные провода метрической системы. При монтаже изделий и их эксплуатации нужно соблюдать основные правила:
- Во время укладки линии в грунте нельзя осуществлять монтаж проводников без защитной гофры или асбестового рукава.
- При натяжке проводов между опорами необходимо использовать направляющие тросы, снимающие натяжение с проводников.
- Если кабель укладывается на дно водоёма, его соединения должны быть тщательно заизолированы вспененным полиэтиленом.
- https://samelectric.ru/spravka/tablitsa-perevoda-secheniya-provoda-iz-awg-v-mm2.html
- https://220.guru/electroprovodka/provoda-kabeli/awg.html
- https://strojdvor.ru/elektrosnabzhenie/rasshifrovka-oboznachenij-i-perevod-sechenij-awg-kabelya/
Расчет сечения медных проводов и кабелей
Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на примере двухкомнатной квартиры.
Как известно, вся нагрузка делится на две группы: силовую и осветительную.
В нашем случае основной силовой нагрузкой будет розеточная группа, установленная на кухне и в ванной. Так как там устанавливается наиболее мощная техника (электрочайник, микроволновка, холодильник, бойлер, стиральная машина и т.п.).
Для этой розеточной группы выбираем провод сечением 2.5мм2. При условии, что силовая нагрузка будет разбросана по разным розеткам. Что это значит? Например, на кухне для подключения всей бытовой техники нужно 3-4 розетки подключенных медным проводом сечением 2.5 мм2 каждая.
Если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 будет недостаточно, в этом случае нужно использовать провод сечением 4-6 мм2. В жилых комнатах для питания розеток можно использовать провод сечением 1.5 мм2, но окончательный выбор нужно принимать после соответствующих расчетов.
Питание всей осветительной нагрузки выполняется проводом сечением 1.5 мм2.
Необходимо понимать, что мощность на разных участках электропроводки будет разной, соответственно и сечение питающих проводов тоже разным. Наибольшее его значение будет на вводном участке квартиры, так как через него проходит вся нагрузка. Сечение вводного питающего провода выбирают 4 – 6 мм2.
При монтаже электропроводки применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ.
Выбор сечения кабеля по мощности
Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.
Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда.
Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.
Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток — это направленное движение частиц.
Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока.
Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.
Несмотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.
Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.
Таблица проводников под допустимый максимальный ток для их использования в проводке:
С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)
Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных.
Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.
А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо, когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.
Рекомендации
- Логарифм по основанию 92 можно вычислить, используя любой другой логарифм, например общий или же натуральный логарифм, используя журнал92Икс = (журнал Икс) / (журнал 92).
- Стандарт ASTM B258-02, страница 4
- Результат примерно равен 2,0050, или на четверть процента больше, чем 2.
- . Таблица 310.15 (B) (16) (ранее Таблица 310.16) стр. 70-161, «Допустимые значения силы тока для изолированных проводов номиналом от 0 до 2000 вольт, от 60 ° C до 90 ° C, не более трех токоведущих проводников в кабельной канавке, кабель , или земля (непосредственно закопанная) при температуре окружающей среды 30 ° C «. Выписки из NFPA 70 не представляют полную позицию NFPA необходимо ознакомиться с исходным полным Кодексом. В частности, максимально допустимая защита от сверхтока устройства могут устанавливать нижний предел.
- «Таблица 11: Рекомендуемые номинальные токи (при продолжительном режиме работы) для электронного оборудования и проводки шасси». Справочные данные для инженеров: радио, электроника, компьютер и связь (7-е изд.). С. 49–16.
- Вычислено с использованием уравнений из Бити, Х. Уэйн; Финк, Дональд Г., ред. (2007), Стандартное руководство для инженеров-электриков (15-е изд.), McGraw Hill, стр. 4–25, ISBN 978-0-07-144146-9
- ^
Многожильные проводники
С многожильными проводниками все не так просто. Хотя многие источники приводят для многожильных кабелей точно такую же формулу, что и для одножильных, на самом деле это неправильно, так как в многожильном проводнике приходится рассчитывать суммарную площадь сечения через площади сечения маленьких жилок, а эквивалентный диаметр – через диаметр отдельных жилок, уложенных по принципу плотной упаковки. Например, для 7-жильного кабеля диаметр проводника геометрически равен трем диаметрам жил, для 19-жильного – 5 диаметрам, а для промежуточных отношений диаметр рассчитывается через промежуточный коэффициент.
Понятно, что целое значение коэффициента (причем всегда нечетное) будет только при строго определенном количестве жил в проводнике. Для 7-жильного это коэффициент 3, для 19-жильного – 5, для 37 – 7, для 61 – 9. Рассчитать такие «правильные» конфигурации несложно:
1 + 6 = 7
1 + 6 + 12 = 19
1 + 6 + 12 + 18 = 37
1 + 6 + 12 + 18 + 24 = 61
1 + 6 + 12 + 18 + 24 + 30 = 91
и т.д.
Но в реальной жизни для очень_много_жильных проводников используются и «неправильные» количества жил, и тогда приходится определять фактический диаметр жилы эмпирическим путем.
В таблице, приводимой далее, диаметр отдельной жилы рассчитан по той же формуле, что и для одножильных проводников, затем рассчитано сечение жилы, затем суммарное сечение всех жил в проводнике, а затем для «правильных» конфигураций дан расчетный диаметр. Самый правый столбец – фактический диаметр, его еще в некоторых источниках называют «приведенным». Как видите, разница между теоретическим и фактическим диаметрами не так уж велика.
AWG | Кол-во жил | AWG жилы | Диаметр жилы, мм | Сечение жилы, кв. мм | Суммарное сечение жил, кв. мм | Расчетный диаметр, мм | Фактический диаметр, мм |
---|---|---|---|---|---|---|---|
4/0 | 259 | 21 | 0.723 | 0.410 | 106.314 | — | 13.259 |
4/0 | 427 | 23 | 0.573 | 0.258 | 110.231 | — | 13.259 |
3/0 | 259 | 22 | 0.644 | 0.326 | 84.311 | — | 11.786 |
3/0 | 427 | 24 | 0.511 | 0.205 | 87.417 | — | 11.786 |
2/0 | 133 | 20 | 0.812 | 0.518 | 68.841 | — | 10.516 |
2/0 | 259 | 23 | 0.573 | 0.258 | 66.862 | — | 10.516 |
1/0 | 133 | 21 | 0.723 | 0.410 | 54.594 | — | 9.347 |
1/0 | 259 | 24 | 0.511 | 0.205 | 53.024 | — | 9.347 |
1 | 817 | 30 | 0.255 | 0.051 | 41.605 | — | 8.331 |
1 | 2109 | 34 | 0.160 | 0.020 | 42.479 | — | 8.331 |
2 | 259 | 26 | 0.405 | 0.129 | 33.347 | — | 7.417 |
2 | 665 | 30 | 0.255 | 0.051 | 33.865 | — | 7.417 |
2 | 1333 | 33 | 0.180 | 0.025 | 33.856 | — | 7.417 |
2 | 2646 | 36 | 0.127 | 0.013 | 33.518 | — | 7.417 |
4 | 133 | 25 | 0.455 | 0.162 | 21.593 | — | 5.898 |
4 | 259 | 26 | 0.405 | 0.129 | 33.347 | — | 5.898 |
4 | 1666 | 36 | 0.127 | 0.013 | 21.104 | — | 5.898 |
6 | 133 | 27 | 0.361 | 0.102 | 13.580 | — | 4.674 |
6 | 259 | 30 | 0.255 | 0.051 | 13.189 | — | 4.764 |
6 | 1050 | 36 | 0.127 | 0.013 | 13.301 | — | 4.674 |
8 | 49 | 25 | 0.455 | 0.162 | 7.955 | — | 3.734 |
8 | 133 | 29 | 0.286 | 0.064 | 8.541 | — | 3.734 |
8 | 655 | 36 | 0.127 | 0.013 | 8.297 | — | 3.734 |
10 | 37 | 26 | 0.405 | 0.129 | 4.764 | 2.834 | 2.920 |
10 | 65 | 28 | 0.321 | 0.081 | 5.263 | — | 2.950 |
10 | 105 | 30 | 0.255 | 0.051 | 5.347 | — | 2.950 |
12 | 7 | 20 | 0.812 | 0.518 | 3.623 | 2.435 | 2.440 |
12 | 19 | 25 | 0.455 | 0.162 | 3.085 | 2.273 | 2.360 |
12 | 65 | 30 | 0.255 | 0.051 | 3.310 | — | 2.410 |
12 | 165 | 34 | 0.160 | 0.020 | 3.323 | — | 2.410 |
14 | 7 | 22 | 0.644 | 0.326 | 2.279 | 1.931 | 1.850 |
14 | 19 | 26 | 0.405 | 0.129 | 2.446 | 2.024 | 1.850 |
14 | 42 | 30 | 0.255 | 0.051 | 2.139 | — | 1.850 |
14 | 105 | 34 | 0.160 | 0.020 | 2.115 | — | 1.850 |
16 | 7 | 24 | 0.511 | 0.205 | 1.433 | 1.532 | 1.520 |
16 | 19 | 29 | 0.286 | 0.064 | 1.220 | 1.430 | 1.470 |
16 | 26 | 30 | 0.255 | 0.051 | 1.324 | — | 1.500 |
16 | 65 | 34 | 0.160 | 0.020 | 1.309 | — | 1.500 |
16 | 105 | 36 | 0.127 | 0.013 | 1.330 | — | 1.500 |
18 | 7 | 26 | 0.405 | 0.129 | 0.901 | 1.215 | 1.220 |
18 | 16 | 30 | 0.255 | 0.051 | 0.815 | 1.273 | 1.200 |
18 | 19 | 30 | 0.255 | 0.051 | 0.968 | 1.273 | 1.240 |
18 | 42 | 34 | 0.160 | 0.020 | 0.846 | — | 1.200 |
18 | 65 | 36 | 0.127 | 0.013 | 0.823 | — | 1.200 |
20 | 7 | 28 | 0.321 | 0.081 | 0.567 | 0.963 | 0.890 |
20 | 10 | 30 | 0.255 | 0.051 | 0.509 | 1.137 | 0.890 |
20 | 19 | 32 | 0.202 | 0.032 | 0.609 | 1.010 | 0.940 |
20 | 26 | 34 | 0.160 | 0.020 | 0.524 | — | 0.914 |
20 | 42 | 36 | 0.127 | 0.013 | 0.532 | — | 0.914 |
22 | 72 | 40 | 0.080 | 0.005 | 0.361 | — | 0.762 |
22 | 19 | 34 | 0.160 | 0.020 | 0.383 | 0.801 | 0.787 |
22 | 26 | 36 | 0.127 | 0.013 | 0.329 | — | 0.762 |
24 | 7 | 32 | 0.202 | 0.032 | 0.224 | 0.606 | 0.610 |
24 | 10 | 34 | 0.160 | 0.020 | 0.201 | 0.715 | 0.584 |
24 | 19 | 36 | 0.127 | 0.013 | 0.241 | 0.635 | 0.610 |
24 | 42 | 40 | 0.080 | 0.005 | 0.210 | — | 0.584 |
26 | 7 | 34 | 0.160 | 0.020 | 0.141 | 0.480 | 0.483 |
26 | 10 | 36 | 0.127 | 0.013 | 0.127 | 0.567 | 0.553 |
26 | 19 | 38 | 0.101 | 0.008 | 0.151 | 0.504 | 0.508 |
27 | 7 | 35 | 0.143 | 0.016 | 0.112 | 0.428 | 0.457 |
28 | 7 | 36 | 0.127 | 0.013 | 0.089 | 0.381 | 0.381 |
28 | 19 | 40 | 0.080 | 0.005 | 0.095 | 0.399 | 0.406 |
30 | 7 | 38 | 0.101 | 0.008 | 0.056 | 0.302 | 0.305 |
30 | 19 | 42 | 0.063 | 0.003 | 0.060 | 0.317 | 0.305 |
32 | 7 | 40 | 0.080 | 0.005 | 0.035 | 0.240 | 0.203 |
32 | 19 | 44 | 0.050 | 0.002 | 0.038 | 0.251 | 0.229 |
34 | 7 | 42 | 0.063 | 0.003 | 0.022 | 0.190 | 0.191 |
36 | 7 | 44 | 0.050 | 0.002 | 0.014 | 0.151 | 0.153 |
Надеемся, что эти таблицы содержат все необходимые вам значения :).
Информация по стандарту AWG
Одножильный провод |
||||
---|---|---|---|---|
AWG | Диаметр, мм | Площадь сечения, мм² | Погонное сопротивление, Ом/км | Погонный вес, кг/км |
4 | 5,189 | 21,15 | 0,815 | 188,0 |
6 | 4,115 | 13,30 | 1,297 | 118,2 |
8 | 3,264 | 8,37 | 2,061 | 74,38 |
10 | 2,588 | 5,26 | 3,277 | 46,77 |
11 | 2,304 | 4,17 | 4,134 | 35,05 |
12 | 2,052 | 3,31 | 5,217 | 29,46 |
13 | 1,829 | 2,626 | 5,562 | 23,36 |
14 | 1,628 | 2,084 | 8,268 | 18,45 |
15 | 1,450 | 1,652 | 10,43 | 14,69 |
16 | 1,290 | 1,309 | 13,19 | 11,62 |
17 | 1,151 | 1,039 | 16,57 | 9,24 |
18 | 1,024 | 0,826 | 20,96 | 7,32 |
19 | 0,912 | 0,652 | 26,41 | 5,80 |
20 | 0,813 | 0,519 | 33,14 | 4,61 |
21 | 0,724 | 0,412 | 41,99 | 3,66 |
22 | 0,643 | 0,325 | 53,15 | 2,89 |
23 | 0,574 | 0,259 | 66,60 | 2,31 |
24 | 0,511 | 0,205 | 84,32 | 1,82 |
25 | 0,455 | 0,163 | 106,3 | 1,44 |
26 | 0,404 | 0,128 | 134,5 | 1,14 |
27 | 0,361 | 0,102 | 168,8 | 0,91 |
28 | 0,320 | 0,081 | 214,2 | 0,72 |
29 | 0,287 | 0,065 | 266,4 | 0,58 |
30 | 0,254 | 0,051 | 341,2 | 0,45 |
31 | 0,226 | 0,040 | 427,0 | 0,359 |
32 | 0,203 | 0,032 | 538,0 | 0,238 |
33 | 0,180 | 0,025 | 679,0 | 0,226 |
34 | 0,160 | 0,020 | 856,0 | 0,179 |
35 | 0,142 | 0,016 | 1086,0 | 0,142 |
36 | 0,127 | 0,013 | 1361,0 | 0,113 |
AWG | Количество и диаметр жил, AWG (мм) | Диаметр проводника, мм (ном.) | Площадь сечения, мм² | Погонный вес, кг/км | Погонное сопротивление, Ом/км |
---|---|---|---|---|---|
4 | 7×12 (2,052) | 6,16 | 23,2 | 212,0 | 0,78 |
4 | 19×17 (1,151) | 5,75 | 19,8 | 181,0 | 0,92 |
6 | 7×14 (1,628) | 4,88 | 14,6 | 131,0 | 1,24 |
6 | 19×19 (0,912) | 4,56 | 12,4 | 114,0 | 1,46 |
8 | 7×16 (1,290) | 3,87 | 9,15 | 83,8 | 1,98 |
8 | 19×21 (0,724) | 3,62 | 7,82 | 71,6 | 2,32 |
8 | 49/25 (0,455) | 3,734 | 8,00 | 70,7 | 2,20 |
10 | 37×26 (0,404) | 2,921 | 4,77 | 42,1 | 3,64 |
10 | 49×27 (0,361) | 2,946 | 5,04 | 44,5 | 3,58 |
10 | 105×30 (0,254) | 2,946 | 5,37 | 47,3 | 3,22 |
12 | 7×20 (0,813) | 2,438 | 3,66 | 32,3 | 4,76 |
12 | 19×25 (0,455) | 2,370 | 3,10 | 24,43 | 5,58 |
12 | 65×30 (0,254) | 2,413 | 3,32 | 29,26 | 2,74 |
14 | 7×22 (0,643) | 1,854 | 2,28 | 20,2 | 7,58 |
14 | 19×27 (0,361) | 1,854 | 1,95 | 17,2 | 8,86 |
14 | 41×30 (0,254) | 1,854 | 2,09 | 18,5 | 8,30 |
16 | 7×24 (0,511) | 1,524 | 1,44 | 12,7 | 12,0 |
16 | 19×29 (0,287) | 1,473 | 1,24 | 10,9 | 14,0 |
16 | 26×30 (0,254) | 1,499 | 1,33 | 11,7 | 13,1 |
18 | 7×26 (0,404) | 1,219 | 0,90 | 8,0 | 19,2 |
18 | 16×30 (0,254) | 1,194 | 0,82 | 7,2 | 21,3 |
18 | 19×30 (0,254) | 1,245 | 0,97 | 8,6 | 17,9 |
20 | 7×28 (0,320) | 0,960 | 0,56 | 5,2 | 32,0 |
20 | 10×30 (0,254) | 0,889 | 0,51 | 4,5 | 33,9 |
20 | 19×32 (0,203) | 0,940 | 0,62 | 5,5 | 28,3 |
22 | 7×30 (0,254) | 0,762 | 0,36 | 3,2 | 48,4 |
22 | 19×34 (0,160) | 0,787 | 0,38 | 3,4 | 45,1 |
22 | 26×36 (0,127) | 0,762 | 0,33 | 2,9 | 52,3 |
24 | 7×32 (0,203) | 0,610 | 0,23 | 2,2 | 76,4 |
24 | 10×34 (0,160) | 0,582 | 0,20 | 1,8 | 85,6 |
24 | 19×36 (0,127) | 0,610 | 0,24 | 2,1 | 69,2 |
26 | 7×34 (0,160) | 0,483 | 0,142 | 1,25 | 122,4 |
26 | 10×36 (0,127) | 0,533 | 0,128 | 1,13 | 136,1 |
26 | 19×38 (0,102) | 0,508 | 0,156 | 1,37 | 113,0 |
27 | 7×35 (0,143) | 0,457 | 0,112 | 0,99 | 178,7 |
28 | 7×36 (0,127) | 0,381 | 0,072 | 0,79 | 212,9 |
28 | 19×40 (0,079) | 0,406 | 0,093 | 0,82 | 186,0 |
30 | 7×38 (0,102) | 0,305 | 0,057 | 0,50 | 338,6 |
30 | 19×42 (0,064) | 0,305 | 0,061 | 0,53 | 286,4 |
32 | 7×40 (0,079) | 0,203 | 0,034 | 0,30 | 538,1 |
32 | 19×44 (0,051) | 0,229 | 0,039 | 0,34 | 447,5 |
34 | 7×42 (0,064) | 0,191 | 0,022 | 0,20 | 777,6 |
36 | 7×44 (0,051) | 1,152 | 0,014 | 0,13 | 1217,2 |
Таблица перевода AWG (GA) в миллиметры, мм²
Таблица перевода AWG в миллиметры, мм | ||
AWG | Диаметр кабеля, мм (mm) | Сечение кабеля, мм2, (mm2) |
4/0 = 0000 | 11.7 | 107 |
3/0 = 000 | 10.4 | 85.0 |
2/0 = 00 | 9.26 | 67.4 |
1/0 = 0 | 8.25 | 53.5 |
1 | 7.35 | 42.4 |
2 | 6.54 | 33.6 |
3 | 5.83 | 26.7 |
4 | 5.19 | 21.1 |
5 | 4.62 | 16.8 |
6 | 4.11 | 13.3 |
7 | 3.66 | 10.5 |
8 | 3.26 | 8.36 |
9 | 2.91 | 6.63 |
AWG | Диаметр кабеля, мм (mm) | Сечение кабеля, мм2, (mm2) |
10 | 2.59 | 5.26 |
11 | 2.30 | 4.17 |
12 | 2.05 | 3.31 |
13 | 1.83 | 2.62 |
14 | 1.63 | 2.08 |
15 | 1.45 | 1.65 |
16 | 1.29 | 1.31 |
17 | 1.15 | 1.04 |
18 | 1.02 | 0.823 |
19 | 0.912 | 0.653 |
AWG | Диаметр кабеля, мм (mm) | Сечение кабеля, мм2, (mm2) |
20 | 0.812 | 0.518 |
21 | 0.723 | 0.410 |
22 | 0.644 | 0.326 |
23 | 0.573 | 0.258 |
24 | 0.511 | 0.205 |
25 | 0.455 | 0.162 |
26 | 0.405 | 0.129 |
27 | 0.361 | 0.102 |
28 | 0.321 | 0.0810 |
29 | 0.286 | 0.0642 |
AWG | Диаметр кабеля, мм (mm) | Сечение кабеля, мм2, (mm2) |
30 | 0.255 | 0.0509 |
31 | 0.227 | 0.0404 |
32 | 0.202 | 0.0320 |
33 | 0.180 | 0.0254 |
34 | 0.160 | 0.0201 |
35 | 0.143 | 0.0160 |
36 | 0.127 | 0.0127 |
37 | 0.113 | 0.0100 |
38 | 0.101 | 0.00797 |
39 | 0.0897 | 0.00632 |
40 | 0.0799 | 0.00501 |
Магазин на Лещинского, 14А Пн-Вс: 10:00-17:00
Пункт выдачи на радиорынке Вт-Вс: 09:00-16:00; Пн: вых.
Пункт выдачи на Радиорынке (Ждановичи)
Адрес: Минск, ул. Тимирязева 127, павильон 73Время работы: Вт-Вс: 09:00-16:00; Пн: вых.Варианты расчета: наличныйТелефон: 8 (029) 663-72-85
Какой калибр AWG использовать?
Справочная таблица
Чтобы правильно выбрать диаметр проводов, вначале посмотрите какой максимальный ток потребляет коптер, затем найдите подходящий провод в таблице ниже.
Есть несколько правил, которым следую я. Замечу что максимально допустимый ток зависит от качества изготовления провода, а также от материалов; эта таблица и инструкция подходят только для медных проводов.
13AWG Wire - 130A 14AWG Wire - 110A 16AWG Wire - 70A 18AWG Wire - 45A 20AWG Wire - 27A 22AWG Wire - 17A
Если используется подходящий по току провод, то падение напряжения на нем очень маленькое, а потери энергии незначительны, т.е. риск перегрева минимальный.
В большинстве своих коптеров с 5″ винтами я предпочитаю использовать провод сечением 14AWG, даже там, где ток немного превышает допустимый. Это не проблема по нескольким причинам: провода короткие, а ток превышает допустимый всего несколько секунд.
Учтите, что более тонкие провода легче, они более гибкие и с ними проще работать.
Избегаем узких мест
Когда мы соединяем 2 провода, то максимально допустимый ток проходящий через них определяется наиболее тонким проводом. Т.е. при соединении 2 компонентов, всегда используйте провода сечением как у уже имеющихся компонентов.
Например, при подключении разъема XT60 к плате распределения питания я всегда использую провод такого же сечения, что и у аккумуляторов. Если у аккумулятора провод 14AWG, то и мой провод от XT60 тоже будет сечением 14AWG.
Еще один пример: если я хочу удлинить провода от регулей, а на регулях стоят провода 18AWG, то и новые провода будут сечением 18AWG.
Этот способ подходит для всех компонентов. Конечно, вы можете использовать более толстые провода, дополнительных преимуществ это не даст, только зря увеличите вес.
Почему в разных источниках указывается разный максимально допустимый ток?
Возможно, в разных источниках вы видели разные цифры. Эти цифры показывают максимально допустимый ток при определенном нагреве проводов и при определенных условиях тестов. В разных отраслях — разные стандарты, поэтому и цифры будут отличаться. Для коптеров будет достаточно вышеприведенной таблицы.
Имеет ли значение напряжение?
Для нашего хобби напряжение не так важно, т.к. мы работаем с напряжением в пределах 30 вольт
Замечу, что провода, как правило, разработаны для работы под напряжением до 600 В, а тестируются гораздо более высоким напряжением порядка 2000 В
Замечу, что провода, как правило, разработаны для работы под напряжением до 600 В, а тестируются гораздо более высоким напряжением порядка 2000 В.
Многожильные луженые медные провода
Обозн. в стандарте AWG | Количество жил/толщина одной в AWG | Приведенный диаметр | Площадь сечения мм X мм | Минимальный вес | Погонное сопротивление | |||
мм | дюймы | грамм на метр | фунтов на 1000 футов | Ом на метр | Ом на 1000 футов | |||
36 | 7/44 | 0.153 | 0.0060 | 0.014 | 0.11 | 0.076 | 1.3609 | 141.80 |
34 | 7/42 | 0.191 | 0.0075 | 0.022 | 0.18 | 0.121 | 0.8560 | 260.90 |
32 | 7/40 | 0.203 | 0.0080 | 0.034 | 0.29 | 0.195 | 0.5384 | 164.10 |
32 | 19/44 | 0.229 | 0.0090 | 0.039 | 0.29 | 0.195 | 0.5384 | 164.10 |
30 | 7/38 | 0.305 | 0.0120 | 0.056 | 0.45 | 0.304 | 0.3674 | 112.00 |
30 | 19/42 | 0.305 | 0.0120 | 0.060 | 0.45 | 0.304 | 0.3674 | 112.00 |
28 | 7/36 | 0.381 | 0.0150 | 0.071 | 0.72 | 0.484 | 0.2320 | 70.70 |
28 | 19/40 | 0.406 | 0.0160 | 0.093 | 0.72 | 0.484 | 0.2320 | 70.70 |
27 | 7/35 | 0.457 | 0.0180 | 0.111 | 0.91 | 0.614 | 0.1824 | 55.60 |
26 | 7/34 | 0.483 | 0.0190 | 0.140 | 1.15 | 0.770 | 0.146 | 44.40 |
26 | 10/36 | 0.553 | 0.0218 | 0.127 | 1.15 | 0.770 | 0.146 | 44.40 |
26 | 19/38 | 0.508 | 0.0200 | 0.153 | 1.15 | 0.770 | 0.146 | 44.40 |
24 | 7/32 | 0.610 | 0.0240 | 0.226 | 1.83 | 1.229 | 0.091 | 27.70 |
24 | 10/34 | 0.584 | 0.0230 | 0.200 | 1.83 | 1.229 | 0.091 | 27.70 |
24 | 19/36 | 0.610 | 0.0240 | 0.239 | 1.83 | 1.229 | 0.091 | 27.70 |
24 | 42/40 | 0.584 | 0.0230 | 0.201 | 1.83 | 1.229 | 0.091 | 27.70 |
22 | 72/40 | 0.762 | 0.0300 | 0.352 | 2.90 | 1.947 | 0.057 | 17.50 |
22 | 19/34 | 0.787 | 0.0310 | 0.380 | 2.90 | 1.947 | 0.057 | 17.50 |
22 | 26/36 | 0.762 | 0.0300 | 0.327 | 2.90 | 1.947 | 0.057 | 17.50 |
20 | 7/28 | 0.890 | 0.0350 | 0.504 | 4.62 | 3.103 | 0.036 | 10.90 |
20 | 10/30 | 0.890 | 0.0350 | 0.504 | 4.62 | 3.103 | 0.036 | 10.90 |
20 | 19/32 | 0.940 | 0.0370 | 0.612 | 4.62 | 3.103 | 0.036 | 10.90 |
20 | 26/34 | 0.914 | 0.0360 | 0.520 | 4.62 | 3.103 | 0.036 | 10.90 |
20 | 42/36 | 0.914 | 0.0360 | 0.533 | 4.62 | 3.103 | 0.036 | 10.90 |
18 | 7/26 | 1.220 | 0.0480 | 0.891 | 7.34 | 4.93 | 0.023 | 6.92 |
18 | 16/30 | 1.200 | 0.0472 | 0.808 | 7.34 | 4.93 | 0.023 | 6.92 |
18 | 19/30 | 1.240 | 0.0488 | 0.957 | 7.34 | 4.93 | 0.023 | 6.92 |
18 | 42/34 | 1.200 | 0.0472 | 0.819 | 7.34 | 4.93 | 0.023 | 6.92 |
18 | 65/36 | 1.200 | 0.0472 | 0.845 | 7.34 | 4.93 | 0.023 | 6.92 |
16 | 7/24 | 1.520 | 0.0598 | 1.420 | 11.68 | 7.85 | 0.014 | 4.35 |
16 | 19/29 | 1.470 | 0.0579 | 1.216 | 11.68 | 7.85 | 0.014 | 4.35 |
16 | 26/30 | 1.500 | 0.0591 | 1.310 | 11.68 | 7.85 | 0.014 | 4.35 |
16 | 65/34 | 1.500 | 0.0591 | 1.300 | 11.68 | 7.85 | 0.014 | 4.35 |
16 | 105/36 | 1.500 | 0.0591 | 1.365 | 11.68 | 7.85 | 0.014 | 4.35 |
14 | 7/22 | 1.850 | 0.0728 | 2.260 | 18.60 | 12.5 | 0.009 | 2.73 |
14 | 19/26 | 1.850 | 0.0728 | 1.930 | 18.60 | 12.5 | 0.009 | 2.73 |
14 | 42/30 | 1.850 | 0.0728 | 2.060 | 18.60 | 12.5 | 0.009 | 2.73 |
14 | 105/34 | 1.850 | 0.0728 | 2.100 | 18.60 | 12.5 | 0.009 | 2.73 |
12 | 7/20 | 2.440 | 0.0961 | 3.610 | 29.56 | 19.9 | 0.0056 | 1.71 |
12 | 19/25 | 2.360 | 0.0929 | 3.070 | 29.56 | 19.9 | 0.0056 | 1.71 |
12 | 65/30 | 2.410 | 0.0949 | 3.270 | 29.56 | 19.9 | 0.0056 | 1.71 |
12 | 165/34 | 2.410 | 0.0949 | 3.300 | 47.00 | 31.6 | 0.0056 | 1.71 |
10 | 37/26 | 2.920 | 0.1150 | 4.710 | 47.00 | 31.6 | 0.0035 | 1.08 |
10 | 65/28 | 2.950 | 0.1161 | 5.230 | 47.00 | 31.6 | 0.0035 | 1.08 |
10 | 105/30 | 2.950 | 0.1161 | 5.355 | 47.00 | 31.6 | 0.0035 | 1.08 |
8 | 49/25 | 3.734 | 0.1470 | 8.007 | 70.73 | 47.5 | 0.0022 | 0.67 |
8 | 133/29 | 3.734 | 0.1470 | 8.662 | 76.52 | 51.4 | 0.0020 | 0.61 |
8 | 655/36 | 3.734 | 0.1470 | 8.479 | 73.78 | 49.6 | 0.0020 | 0.62 |
6 | 133/27 | 4.674 | 0.1840 | 13.675 | 120.75 | 81.1 | 0.0015 | 0.47 |
6 | 259/30 | 4.674 | 0.1840 | 13.209 | 116.60 | 78.4 | 0.0013 | 0.40 |
6 | 1050/36 | 4.674 | 0.1840 | 13.388 | 118.26 | 79.5 | 0.0013 | 0.39 |
4 | 133/25 | 5.898 | 0.2322 | 21.733 | 191.99 | 129.0 | 0.0008 | 0.24 |
4 | 259/26 | 5.898 | 0.2322 | 26.629 | 235.16 | 158.0 | 0.0007 | 0.20 |
4 | 1666/36 | 5.898 | 0.2322 | 21.242 | 187.66 | 126.1 | 0.0008 | 0.25 |
2 | 1333/33 | 7.417 | 0.2920 | 34.648 | 306.00 | 205.6 | 0.00049 | 0.15 |
2 | 259/26 | 7.417 | 0.2920 | 33.392 | 294.87 | 198.1 | 0.00052 | 0.16 |
2 | 665/30 | 7.417 | 0.2920 | 33.915 | 229.36 | 201.2 | 0.00052 | 0.16 |
2 | 2646/36 | 7.417 | 0.2920 | 33.737 | 298.05 | 200.3 | 0.00052 | 0.16 |
1 | 163.195.0 | 8.331 | 0.3280 | 43.418 | 383.35 | 257.6 | 0.00039 | 0.12 |
1 | 172.508.0 | 8.331 | 0.3280 | 42.322 | 373.83 | 251.2 | 0.00043 | 0.13 |
1 | 817/30 | 8.331 | 0.3280 | 41.667 | 367.73 | 247.1 | 0.00043 | 0.13 |
1 | 2109/34 | 8.331 | 0.3280 | 42.690 | 376.94 | 253.3 | 0.00039 | 0.12 |
1/0 | 133/21 | 9.347 | 0.3680 | 55.098 | 486.71 | 327.1 | 0.00031 | 0.10 |
1/0 | 259/24 | 9.347 | 0.3680 | 53.364 | 471.39 | 316.8 | 0.00032 | 0.10 |
2/0 | 133/20 | 10.516 | 0.4140 | 69.458 | 613.38 | 412.2 | 0.00025 | 0.08 |
2/0 | 259/23 | 10.516 | 0.4140 | 67.472 | 595.88 | 400.4 | 0.00025 | 0.08 |
3/0 | 259/22 | 11.786 | 0.4640 | 83.230 | 746.62 | 501.7 | 0.00020 | 0.06 |
3/0 | 427/24 | 11.786 | 0.4640 | 87.979 | 777.12 | 522.2 | 0.00019 | 0.06 |
4/0 | 259/21 | 13.259 | 0.5220 | 107.297 | 950.76 | 638.9 | 0.00016 | 0.05 |
4/0 | 427/23 | 13.259 | 0.5220 | 111.237 | 982.21 | 660.0 | 0.00015 | 0.05 |
Обозн. в стандарте AWG | Количество жил/толщина одной в AWG | мм | дюймы | Площадь сечения мм X мм | грамм на метр | фунтов на 1000 футов | Ом на метр | Ом на 1000 футов |
Приведенный диаметр | Минимальный вес | Погонное сопротивление |
Также смотрите ответ на вопрос 223 — «Подробная таблица AWG для одножильных и многожильных кабелей и формула пересчета»
Провода и кабели маркируют буквами
Первая буква — материал жилы:
- А — алюминий
- Буквы нет — медь
Вторая буква — в обозначении провода:
- П — провод (ПП — плоский провод)
- К — контрольный
- М — монтажный
- МГ — монтажный с гибкой жилой
- П(У или Ш) — монтажный с гибкой жилой
Третья буква — в обозначении провода и кабеля; материал изоляции жил:
- В или ВР — поливинилхлоридная (ПВХ)
- П — полиэтиленовая
- Р — резиновая
- Н или НР — найритовая (негорючая резина)
- Ф — фальцованная (металлическая) оболочка
- К — капроновая
- Л — лакированная
- МЭ — эмалированная
- О — оплетка из полиамидного шелка
- Ш — изоляция из полиамидоного шелка
- С — из стекловолокна
- Э — экранированная
- Г — с гибкой жилой
- Т — с несущим тросом
Резиновая изоляция провода может быть защищена оболочками: В — поливинилхлоридная, Н — найритовая. Буквы В и Н ставятся после обозначения материала изоляции провода.
Четвертая буква — особенности конструкции:
- А — асфальтированный
- Б — бронированными лентами
- Г — гибкий (провод), без защитного покрова (силовой кабель)
- К — бронированный круглыми проволоками
- О — в оплетке
- Т — для прокладки в трубах
Кроме буквенных обозначений, марки проводов, кабелей и шнуров содержат цифровые обозначения: первая цифра — число жил, вторая цифра – площадь сечения, третья – номинальное напряжение сети. Отсутствие первой цифры означает, что кабель или провод одножильные. Площади сечения жил стандартизированы. Значения площадей сечений проводов, выбираются, в зависимости от силы тока, материала жил, условий прокладки (охлаждение).
В обозначении шнуров обязательно должна быть буква Ш.
Происхождение маркировки
Таблица маркировки проводов AWG
По своей форме кабельные жилы схожи с обычной проволокой из меди.
Каждая следующая процедура протяжки понижала сечение и прибавляла единицу к значению AWG. На старте процесса применяется заготовка с наибольшим калибром AWG 0 (соответствие самому толстому кабелю). При одной протяжке проволоки будет получено значение AWG 1. Если заготовка пройдёт сквозь станок два раза, то получится значение AWG 2 и так по нарастающей.
Самые крупные калибры, большие чем AWG 0, обозначаются как AWG 00, AWG 000 и т.д.
Ранее в США проводка изготавливалась методом волочения. Брался цельный пруток меди, соответствующий калибру AWG 0. Затем его заправляли в специальные прокаточные станки. Проволока проходила через серию валиков и уменьшающихся отверстий. В результате ее диаметр сокращался до требуемого значения.
Если заготовка проходила 1 цикл утоньшения, то на выходе получался провод AWG 1. Если 2, то AWG 2. Количество циклов достигало нескольких десятков. При каждом прохождении через станок проводник становился тоньше по сечению, но на 1 единицу больше по калибру.